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Abstract 

On July 2 1 ,  1 969, the first manned lunar mission, Apollo 1 1 , placed the first 

retroreflector array on the Moon, enabling highly accurate measurements of the Earth-Moon 

separation via laser ranging. The past quarter century has witnessed a period of 

achievement and scientific impact for Lunar Laser Ranging (LLR), with the promise of 

continued future contributions evident. LLR, which utilizes laser ranging to the Earth's 

natural satellite as a laboratory for a broad range of investigations, has influenced 

astronomy, lunar science, gravitatiol)al physics, geodesy, and geodynamics. Unique 

contributions from LLR include the following: the revolutionary breakthrough in the, lunar 

ephemeris, with a three-orders-of-magnitude improvement in accuracy; a several-orders-of­

magnitude improvement in the measurement of the variations in the Moon's rotation; and 

the verification of the principle of equivalence for massive bodies with unprecedented 

accuracy. LLR analysis has provided measurements of the Earth's precession, the Moon's 

tidal acceleration, and· lunar rotational dissipation. The scientific results, current 

technological developments and prospects for the future, are discussed here. 

1. Introductiqn 

It has been nearly a quarter century since the first manned lunar landing by the 

Apollo 1 1  astronauts. Included on that mission and the later Apollo 14  and 1 5  flights were 

comer-cube retroreflector arrays (Fig. 1 )  that permit accurate laser measurement of the 

Earth-Moon separation. The locations of th� three Apollo arrays plus a French-built array 

on the Soviet roving vehicle Lunakhod 2 provide a favorable geometry for studying the 

rotations of the Moon and for separating these rotations from lunar orbital motion and 

geodynamic effects (Fig. 2, Table 1 ). Unlike the other Apollo scientific experiments, these 

retroreflector arrays require no power and· are still operating normally after 25 years. 
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LLR has proven to be a valuable multidisciplinary tool, advancing many areas of 

science. Several reviews have addressed these contributions: Bender et al. ( 1 )  mark the 

transition of the LLR program from a mission experiment to one of scientific exploration; 

Williams (2) outlines the early scientific accomplishments; Mulholland (3) reviews the 

progress made during the first decade of LLR; and Alley ( 4) discusses LLR results as a test 

of gravitational theories. Dickey et al. (5) and Whipple (6) highlight the accomplishments 

and future challenges for LLR; Williams et al. (7) document geophysical results and 

reference frame contributions from LLR. 

In this paper we review LLR technological developments and scientific results. A 

description of the data characteristics and the enabling technological developments is 

· presented in Section 2. Analysis procedures and scientific results are reviewed in Section 3 

with respect to four broad areas: ( 1 )  ephemeris development and related activity, 2) 

gravitational physics, (3) geodynamics, and (4) lunar science. Concluding remarks and 

prospects for the future are given in the final section. 

2. Data Characteristics and Technology Development 

Lunar laser ranging consists of transmitting short pulses of light to the Moon, 

where they are reflected back to their source. By noting the round-trip travel time, the 

transmitter-reflector separation is measured. Changes of the round-trip travel time (or the 

equivalent distance) with time contain, and yield on analysis, a wealth of information about 

the Earth-Moon system. 'The range data contain a rich frequency spectrum due to many 

effects such as Sun's strong influence on the lunar orbit. 

Ranging to the Moon is technically challenging. An outgoing pulse of laser light 

transmitted from a collimating telescope with a beam divergence of 3-4 seconds of arc, 

consistent with atmospheric seeing, spreads to an area approximately 7 km in diameter on 

the lunar surface. Light which is backscattered from the laser-illuminated part.of the lunar 

surface produces a weak, though marginally detectable, signal that has a time width 
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characteristic of local lunar topography. Consequently, range measurements to a given 

target area can vary by the order of a kilometer, which limits its applications. 

The retroreflector arrays, placed on the lunar surface by the U. S. Apollo program 

in July of 1969 (Apollo 1 1) and in January and July of 197 1 (Apollo 14 and 15) and the 

Soviet Lunakhod program using French-built retroreflectors ( 197 1 and 1973), provide 

optical points on the Moon toward which one can fire a laser pulse and receive back a 

localized and recognizable signal. The result is that centimeter level ranging accuracies were 

immediately possible and meaningful, if one had sufficiently short laser pulse lengths with 

high power. Today, few-centimeter range accuracy for "normal points" corresponding to 

the results over periods of 10-45 min (8) is being obtained routinely. 

The design of the Apollo and Lunakhod retroreflector arrays is straightforward. 

Each individual comer cube reflects incident light back to its point of origin. The Apollo 

arrays consist of 100 (Apollo 1 1  and 14) or 300 (Apollo 15) 3.8 em diameter comer cubes 

mounted in an aluminum panel. The Soviet-French Lunakhod arrays consist of a smaller 

number, (i.e., 14) of larger comer cubes, 1 1  em on an edge. Though subject to thermal 

distortion during the lunar day because of their greater size, they give approximately the 

same lunar-night return signal strength as the Apollo arrays. 

The relatively small size of the arrays means that only 10-9 of the impinging light 

can be collected and therefore reflected back toward the Earth. The angular spread of the 

returning pulse is set by diffraction, polarization properties, and irregularities of the arrays' 

individual comer cubes which, in the case of the 3.8 em diameter Apollo. comer cube, is 

approximately 10 seconds of arc. Thus, the diameter of the spot produced on the Earth is 

approximately 20 km. The use of a 1-m diameter receiving telescope would mean that only 

2 x 10-9 of the returning photons would enter the aperture. A variety of practical matters, 

such as quantum efficiency, mirror reflectance, optical performance under thermal stress, 

and velocity aberration (which slightly shifts the center of the returning beam from the 

location of the transmitting and receiving telescope), make the transmitting, lunar 
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retroreflecting and receiving efficiencies considerably less than unity. The signal loss of 

approximately I0-21 puts a premium on the detailed design of ground stations to minimize 

their losses. Since three joules of light, the most energy that one can currently transmit each 

second, contains 1 x 1Ql9 photons, single-photon detection is a necessity. 

At present, there are only a few lunar laser ranging stations operating, and only one 

of these is fully dedicated to lunar ranging. The other stations are shared lunar and artificial­

satellite ranging facilities. At the time of the Apollo 11 landing, laser ranging was initiated 

at McDonald Observatory in Texas, where lunar ranging (shared with artificial-satellite 

ranging) continues. Preliminary ranging also took place at the Lick Observatory in 

California where the ftrst returns from the Moon were detected (9). 

During the first fifteen years after the emplacement of the initial retroreflector 

package on the lunar surface, the McDonald Observatory, near Fort Davis, Texas, was the 

only facility that routinely ranged to the Moon. In the late 1960s, the new 2.7-m telescope 

had just become operational at McDonald, and a commitment to use this instrument in a 

long-term program of lunar laser ranging was made. Time-sharing with the Observatory's 

regular astronomical program, McDonald laser operations maintained routine activities for 

more than 15 years. There were nominally three 45-minute observing sessions per day, 

when the Moon was 3 hours east of, on, and 3 hours west of the meridian, some 21 days 

per lunation ( 1 0). The data can naturally be divided into three time spans, based on their 

accuracies (see Fig. 3). The early 1970s saw LLR data accuracies at the 25 em level. Based 

mainly upon improvements in the 2.7-m LLR timing system, these were improved to the 

15 em level by the mid-: 1970s. When the transition was made in the mid-1980s to the 

MLRS LLR system, accuracies were further improved to the 2-3 em level. Despite the 

order-of-magnitude improvement in accuracy during the past two decades, the early data 

are still important in the separation of effects with long characteristic time scales, notably 

precession and nutation, relativistic geodetic precession, tidal acceleration, lunar J2, and the 

relative orientation of the planes of the Earth's equator, the lunar orbit and the ecliptic. 

6 



· The 2.7-m McDonald laser ranging system was decommissioned in 1985 and was 

superseded by a dedicated 0.76-m ranging system, the McDonald Laser Ranging System 

(MLRS) capable of ranging to artificial satellites as well as to the Moon ( 1 1-see Fig. 4). 

The present incarnation of the MLRS is constructed around a frequency-doubled, 120 

millijoules/pulse, 200 picosecond pulse-length, neodymium-Y AG laser firing 10 

times/second. It has an internal calibration system, and the precision of its epoch timing 

system is approximately 25 picoseconds. This station now produces LLR data approaching 

1 em normal-point precision. However, the accuracy is still limited to 2-3 em. In spite of 

its reduced aperture, which results in fewer data than the 2.7-m telescope could have 

produced, the shorter laser pulse length has led to a fourfold improvement in the accuracy 

of the MLRS ranges, providing stronger data than those from the 2.7 meter system despite 

the reduced volume. A number of strategies are being pursued to produce significantly 

higher volumes of LLR data and further increases in accuracy, including increased station 

computing, offset guiding and tracking, and improved timing systems. 

During the past 8 years, successful ranging has been carried out by a French 

(CERGA) station at Grasse, located at 1220 m elevation 20 km north of Cannes, using a 

1.5-m dedicated lunar las�r ranging telescope, and until recently by a second U.S. artificial­

satellite and lunar ranging station on Maui, Hawaii. Though strong lunar returns were often 

received by this latter station-a station which continues to perform artificial satellite 

ranging-it has been unable to continue lunar ranging during the past few years due to 

cutbacks in available support. The Grasse site has a dedicated lunar station equipped with a 

1.5-m telescope with both absolute and offset pointing capabilities; a separate artificial 

satellite ranging facility is located nearby ( 12). The station's 10 Hz repetition rate Nd YAG 

laser produces 700 mJoules per pulse at 1.064 Jlm. The yield on frequency doubling is half 

of this energy at 0.532 Jlm-the rest remains as infrared (IR). The pulse length (at half 

height) is 350 picoseconds, giving a transmitted pulse length of approximately 0. 1 m. 

Technological innovations and upgrades that have occurred at the Grasse station include 
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experimental simultaneous ranging in the green and IR and the use of high speed and high 

quantum efficiency photodiodes (instead of photomultipliers) for detectors. During the past 

5 years, this dedicated station has produced the bulk of lunar ranging data, with 2-3 em 

accuracy. Lunar laser ranging has also been occasionally carried out from (primarily) 

artificial satellite stations in Australia and Germany, and has been proposed at several other 

stations around the world. Data from a global network of stations (Table 1) are clearly 

needed for a robust analysis program since separation of parameters is enhanced by a 

geographically distributed network of observing sites. 

3. Analysis and the Impact of LLR on Various Disciplines 

The data set that will be considered here consists of over 8,200 normal-point ranges 

(8) spanning the period August 1969-December 1993. The observatories and the lunar 

reflectors included in the analysis are listed in Table 1, with time history of returns shown 

in Fig. 5. The data are analyzed with a model which calculates the light travel time between 

the observatory and the reflector, accounting for the orientation of the Earth and Moon, the 

distance between the centers of the two bodies, solid tides on both bqdies, plate motion, 

atmospheric delay, and relativity (13). The parameters (Table 2) which have been fit 

include the geoc�ntric locations of the observatories, corrections to the variation of latitude 

(i.e., polar motion), the orbit of the Moon about the Earth, the Earth's obliquity, 

precession, and nutation, plus lunar parameters including the selenocentric reflector 

coordinates, fractional moment-of-inertia differences, gravitational third-degree harmonics, 

a lunar Love number, and rotational dissipation. 

Orbits and Ephemeris Development 

The computation of the round trip light travel time between the ranging observatory 

and the lunar reflector depends on the geocentric location of the observatory RE. the 

selenocentric position of the reflector RM. and the distance between the centers of the Earth 
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and Moon r. For data analysis, the light time calculation is done with higher accuracy, but 

for purposes of dis.cussion the approximate range (see Fig. 6) is: 
A A p ::! lrl - RM · r+ RE · r ( 1 )  

The mean Earth-Moon distance is 384,400 km; the radii of the Earth and Moon are 637 1 

km and 1738 km, respectively. 

The Moon's orbit is strongly distorted from a simple elliptical path by the solar 

attraction-the instantaneous eccentricity varies by a factor of two (0.03 to 0.07). The 

perturbed orbit contributes a rich spectrum of range signatures which give sensitivity to a 

wide variety of parameters. The complications of the orbit are handled by simultaneous 

numerical integration of the orbits of the Moon and nine planets (the lunar and planetary 

ephemeris), and lunar rotation (lunar librations) ( 14). While our numerical integrations use 

Cartesian coordinates rather than orbital elements as explicit parameters, analytical theories 

fit to the integrations provide information on the behavior of the orbital elements ( 15). The 

accuracy of the resulting ephemeris is set by the accuracy of the model for accelerations and 

the accuracy of the fit of the range data. The lunar ephemeris relies entirely on LLR data. 

The existing acceleration model accounts for relativistic forces between the Sun, Earth, 

Moon and planets; gravitational harmonics of the Earth and Moon; the orientation of the 

Earth's equator; the rotation of. the triaxial Moon (physical librations); tides, including tidal 

dissipation of energy on both Earth and Moon; and gravitational forces from' the larger 

asteroids. The associated parameters such as masses, gravitational harmonic coefficients, 

and tidal strengths must be known a priori or must be included among the parameters fit in 

the least-squares solution to the time delay measurements. 

From the solution, the lunar orbit about the Earth is determined with great accuracy. 

Ranging data have provided a dramatic improvement in the accuracy of the lunar orbit: the 

orientation is determined at least two orders of magnitude more accurately, and the accuracy 

of the radial component is better by four orders of magnitude, than that obtained from 

classical optical data. The radial distance variations are determined better than the 2-3 em 
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range accuracy. The angular-rate uncertainty is no more than 0.3 milliseconds of arc/yr 

(7). The orbital compoQents havjng the greatest uncertainties are the mean distance, 

presently 0.8 m due to correlation with the reflector coordinates in the mean-Earth 

direction, and the orientation of the orbit plane with respect to the Earth's equator, 1.5 

milliseconds of arc or 3 m at the lunar distance. These accuracies are degraded when 

extrapolated outside the span of observations. A continual supply of high-quality 

measurements and the accompanying analysis are required to maintain and enhance 

accuracies. The ephemerides and physical librations are essential for mission planning and 

spacecraft navigation. 

The strong influence of the Sun on the lunar orbit permits the range data to be used 

to determine the mass ratio Suni(Earth+Moon) and the relative orientation of the Earth­

Moon system orbit about the Sun. The size of the Earth-Moon orbit is set by the sum of the 

Earth's GM and the Moon's GM, with the Moon's orbit being deformed from a simple 

Keplerian ellipse by the influence of the Sun. The two largest solar perturbations in 

distance r are 3,699 km (monthly) and 2,956 km (semimonthly), and few centimeter 

determination of these variations corresponds to 1 o-s relative accuracy in the mass ratio 

(16). From fits, the mass ratio is found to be (7) 

Masssun I Mass (Earth+ Moon) = 328900.560 ± 0.002 

The solar perturbations allow the relative geocentric positions of the Moon and Sun 

to be determined to within one millisecond of arc. The planetary positions are known with 

respect to the Earth's orbit around the Sun, so the geocentric position of th� Moon and the 

heliocentric positions of the planets can be made internally consistent in their relative 

orientation ( 17). Because the ranging stations are on the spinning Earth, the orientation of 

the equatorial plane is also determined relative to both the lunar orbit plane and the ecliptic 

plane of the heliocentric Earth-Moon orbit. Thus, LLR is sensitive to the mutual orientation 

of the planes of the Earth's equator, the lunar orbit, and the ecliptic; hence, it locates the 

intersection of the ecliptic and equator planes (the dynamical equinox) and determines the 
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angle between them (the obliquity of the ecliptic). The process of orienting the planetary 

ephemerides into the fundamental astronomical r�ference frame is made possible at the 

millisecond of arc level with LLR data (18). 

Gravitational Physics and Relativity 

Lunar laser ranges, along with microwave ranges to planetary orbiting spacecraft 

and landers, have contributed strongly to solar system tests of gravitational theories. The 

Moon and planets provide excellent tests, because the ratio of non-gravitational to 

gravitational forces is very small. For example, the ratio of the solar radiation pressure 

force on the f\:1oon to the gravitational attraction by the Earth is only 4x1Q-13, 

Shortly before the first Apollo landing, Nordtvedt ( 19) pointed out that a new test 

of general relativity could be carried out using lunar range .data. The equivalence principle, 

a fundamental tenet of general relativity, states that the ratio of gravitational mass to inertial 

mass is the same for all bodies, independent of their composition (20). This principle had 

been tested in the laboratory but had not been tested for bodies large enough to have a 

significant fraction of their mass coming from gravitational self-energy. The Strong 

Equivalence Principle in gravitational theory requires that all bodies fall with the same 

acceleration in an external gravitational field, with the gravitational self-energy contributing 

equally to the gravitational and inertial masses. Different metric theories of gravitation treat 

the effect of gravity on gravitational energy differently; some predict violations of the 

Strong Equivalence Principle by massive bodies (21 ). 

Since 1976, lunar laser ranging data have been used to test the Strong Equivalence 

Principle (22). If the Earth and the Moon were separately orbiting the Sun with the same 

period, a violation of the Principle would lead to their having different mean distances from 

the Sun. This is because roughly 4. 64x 1 Q-1 o of the mass of the Earth is due to its 

gravitational self-energy, i.e., the gravitational interaction energy of its different parts, 

while the corresponding fraction for the Moon is much less (1.9 x I0-11). In the actual 
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situation, where the Moon orbits the Earth, a violation of the Equivalence Principle would 

cause the orbit of the Moon about the Earth-Moon center of mass to be polarized in the 

direction of the Sun, with the maximum size of the polarization being about 9 m (see Fig. 

7). This signature would have the synodic period of 29.53 days and is referred to as the 

Nordtvedt term: 

or = CoTI cosD, 

where D is the angular elongation of the Moon from the Sun and Co - 9m. The quantity 11 

is defined by the ratio of gravitational mass Ma to the inertial mass M1: 

Ma I M1 = 1 + 1'1 Ua I Mc2, 

where Ua is the. self-energy (23, 24) and c is the speed of light. Analysis with the early 

LLR data up to the mid- 1970s confirmed General Relativity with 11 = 0.00 ± 0.03 (22). 

The current determination of the polarization of the lunar orbit from lunar laser ranging data 

gives a value of CoTI = -0.5 ± 1.3 em (or 11 = -0.0006 ± 0.0014), which is currently the 

best test of the Strong Equivalence Principle. Here, the errors are realistic rather than 

formal (25). This uncertainty is about a factor 5 less than reported previously (26, 27). 

With feasible improvements in the accuracy for lunar ranging (see final section), and with 

continued data, further improvement in the test appears likely. 

The above results can be interpreted as a test of the parameters � and 'Y from the 

Parametrized Post Newtonian theory of gravitation, which in General Relativity has the 

value of � = 'Y = 1. The Nordtvedt coefficient, 11. can be expressed as: 

1'1 = 4� - 3 - 'Y • 

The parameter � measures the superposition of gravitational effects, and usually is thought 

of as determined from the precession of perihelion for Mercury, while 'Y measures how 

much space-curvature is produced by unit rest mass (20). Combining the above value for 11 

with the result 'Y = 1.000 ± 0.002 from analysis of the Viking lander tracking data (28) 

gives 

� = 0.9999 ± 0.0006. 
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The uncertainty is about a factor of 5 smaller than if � is derived from the precession of 

Mercury's perihelion (27). 

A second important test of ·gravitational theory comes from the measurement of 

relativistic precession of the lunar orbit (termed geodetic precession), first predicted by de 

Sitter in 19 16. According to General Relativity, this effect should cause a precession of the 

entire lunar orbit with respect to the inertial frame of the solar system by 19 milliseconds of 

arc/yr. The lunar range data are sensitive to this effect mainly through the excess precession 

of perigee beyond that expected due to the Newtonian effects of the Sun, Earth, and other 

planets (29). The first observations of. geodetic precession did not occur until the late 

1980's; those results were in agreement with the predictions of General Relativity to within 

their 2% accuracy (30, 26). New solutions presented here (Table 3) give a difference from 

the expected value of -0.3 ± 0 .9%. The error is partly due to an uncertainty in J2, the 

primary lunar oblateness term (31). 

Lunar range data also provide a test of a possible change in the gravitational 

constant (G) with time because of the lunar orbit sensitivity to solar longitude ( 16). Adding 

cosmological interest is the suggestion that quite large changes in G may have occurred 

during an inflationary phase in the early history of the universe (see e. g. 32). Estimates of. 

limits on dG/dt I G from combining various types of solar system data including lunar data 

and Viking lander tracking data currently range from 1 x IO-llfyr to 0.4 x IO-llfyr (33, 

34). The published limit from binary pulsar data is 1.3 x IO-llfyr (35). Our current 

uncertainty from analyzing lunar range data only is similar to that reported by Chandler et 

al. (33). 

Geodynamics 

Of importance to the geodynamics community has been the series of LLR 

measurements that permit long-term studi�s of variations in the Earth's rotation, as well as 

the determination of constants of precession and nutation, station coordinates and motions, 
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the Earth's gravitational coefficient, and tides accelerating the Moon (6,7). For studying the 

processes which underlie variations in the Earth's rotation, the more than two-decade-long 

span of LLR data exceeds that available from other space geodetic techniques. LLR has 

provided information about the exchange of angular momentum between the solid Earth 

and the atmosphere (36) and was instrumental in the discovery of the near 50-day 

oscillation in the length of day and its correlation with a similar oscillation in the 

atmosphere (37), which has stimulated research in the atmospheric community (38). 

Tidally driven periodic terms in Earth rotation have been studied and have been used to 

determine the response of the Earth (dependent on the Earth's structure and tides) at the 

fortnightly and monthly periods (39). The development of regular very-long-baseline 

interferometry (VLBI) measurement programs during the 1 980s and refinement of satellite 

laser ranging programs have strongly complemented LLR results, providing more frequent 

and regular measurements in recent years (36). 

LLR provides an accurate value of the mass ratio Sun/(Earth + Moon) (see previous 

section on orbits). Utilizing this mass ratio together with the solar GM and the lunar GM 

from lunar-orbiting spacecraft ( 40), the Earth's GM (7) in an Earth-centered reference 

frame is determined with accuracy of 1 part in 1 os (see Table 4 ) .  Within the errors, this 

value is compatible with the value derived from ranges to artificial Earth satellites (41).  

Tidal dissipation causes a misalignment of the tidal bulge of the Earth relative to the 

Earth-Moon direction. The bulge exerts a secular torque, causing the lunar orbit to expand 

as its angular momentum increases and the Earth's rotation rate to decrease. Most of the 

effect comes from the ocean tides, but a small unknown contribution comes from the 

mantle. The importance of this tidal acceleration of the Moon is that it is the dominant cause 

of the long-term slowing of the Earth's rotation rate (other contributors are the tidal 

interaction with the Sun and the change in the Earth's oblateness). The resulting changed 

length-of-day has been seen in the geological record in a few special circumstances ( 42). 
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Because the lunar orbit is neither circular nor coplanar with the Earth' s  equator, the 

tides can be separated into distinct frequency components within bands near 0, 1 ,  and 2 

cycles/day. The tidally induced secular acceleration n of the lunar mean longitude is due 

mainly to the dominant semi-diurnal M2 constituent, with smaller contributions from the 

diurnal 01 and semi-diurnal N2 components. The span and accuracy of the data are now 

sufficient to resolve the diurnal and semi-diurnal contributions from the amplitude of the 

1 8.6 year along track tidal perturbations (43). The diurnal contribution is -4.04 ± 0.4 
. . 

arcsec/cy2; the semi-diurnal tides contribute -22.24 ± 0.6 arcsec/cy2 for a total of -26.28 ± 

0.5 arcsec/cy2 (44). The small dissipation in the long-period tides is not modeled and is 

effectively included in the semi-diurnal component. This LLR-derived secular acceleration 

is compatible with those inferred from artificial satellite measurements of ocean tides (45) 

for both the diurnal and semidiurnal components. Dissipation in the Moon itself is well 

established, but the contribution to the secular acceleration depends on which of two 

possible mechanisms of dissipation dominates: solid friction modeled by a constant time 

delay or turbulent fluid friction at the lunar core-mantle boundary (see following section) .  

The time-delay lunar model utilized ( 46, 4 7) causes +0.4 arcsec/cy2, yielding a total secular 

acceleration of -25.88 ± 0.5 arcsec/cy2. If the dissipation is due to fluid friction at a core­

mantle interface (44), the lunar contribution could be considerably smaller. The total tidal 

secular acceleration corresponds to an increase in the semimajor axis of 3.82 ± 0.07 em/yr. 

Due to torques from the Sun and Moon, the Earth's spin axis precesses about the 

ecliptic periodically and nutates in space. These motions, designated luni-solar precession 

and nutation, respectively, depend on the flattening of the Earth [more specifically, the 

moment of inertia function (C-A)/C], the flattening of the core-mantle interface, and ocean 

tides. Both LLR and VLBI analyses (7, 48, 49) have indicated that significant corrections 

are required to the standard precession and nutation model, as a consequence of 

geophysical effects. The nearly quarter-century span of the LLR observations is an 

advantage when .trying to detect and separate the precession and 1 8.6 yr nutation 
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corrections; LLR analysis indicates that the correction to the standard precession constant is 

-3.3 ± 0.4 milliseconds of arc/yr (7), giving the lunar-solar precession constant as 50.3845 

seconds of arc/yr. Further, the amplitude of the 1 8.6  yr nutation in-phase term of the pole 

requires a correction of about 3 milliseconds of arc, the magnitude of the term being 

increased, with a smaller out-of-phase term. Also detected was a 2 milliseconds of arc 

annual correction (7, 48, 49), which has been interpreted as being due to a 5% deviation in 

the flattening of the core-mantle boundary from that expected from hydrostatic equilibrium 

(50). An analogous discrepancy between theory and observation has been observed in tidal 

gravity data (5 1 ) ,  with results which are consistent with this increased flattening of 5%. 

Joint solutions for precession and nutation have been made using LLR and VLBI data 

together, which combine the strength of the LLR data for the long time scale with the high 

resolution of the VLBI d�ta for shorter periods (52). 

Lunar Science 

The analysis of the LLR data provides a wealth of information concerning the 

dynamics and structure of the Moon. The selenocentric reflector coordinates, the moment 

of inertia combinations, � = (C-A)/B and y = (B-A)/C (where A < B < C), and the third­

degree gravitational harmonics are determined with high accuracy. The coordinates for the 

lunar reflectors and the ALSEP radio transmitters serve as the fundamental control points 

for lunar cartography (53). The distances between the retroreflectors and the Earth change 

in part due to lunar rotation (physical librations) and tides. Values of the gravitational 

harmonics, the moments of inertia and their differences, the lunar Love number k2 (which 

.measures the tidal change in the moments of inertia and gravity-see Table 5) and 

variations in the lunar physical librations are related to the Moon's composition, mass 

distribution, and internal dynamics. 

Presently, the most accurate estimate of the lunar moment of inertia is obtained from 

the separate determinations of moment of inertia differences, � and y, from the LLR 

1 6  



solution (see Table 5) and the lunar gravity field coefficients, J2 [=(C-(B+A)/2)fMR2] and 

c22[ =(B-A)/4MR2] obtained from analY,sis of lunar satellite doppler data (54). The 

resulting polar moment from these two different data analyses is C=(0.3933 ± 

0.001 1 )MR2. The lunar mass distribution also perturbs the lunar orbit, producing secular 

precessions in the lunar node and perigee directions (55). The lunar mass distribution 

contributions are -0. 1 7  arcsecond/year to the node rate and -0.02 arcsecond/year to the 

perigee rate; the former changes the monthly range signature in RE • �by 0.5 rnlyear. 

Figure 8 shows an interpretation of the polar moment in terms of a 60km thick lunar 

crust with density 2.75 glee, a constant density {p) lunar upper mantle, a lower mantle with 

contrast in �p relative to the upper mantle and a variable radius iron core with density = 7 

glee. We find that the maximum core size is in the range of 220-350 km. Magnetometer 

estimates of core size are ambiguous. Russell et al. (56) find 435 ± 1 5  km, while 

Wiskerchen and Sonnet (57) claim only an upper bound of 400 km. The seismic constraint 

is less confining (58) with Rc < 500 km. 

Two other major types of information concerning the lunar interior can be obtained 

from lunar libration data. One is the apparent tidal distortion of the Moon. The other is the 

mean direction of the spin axis. However, there are complications involved in interpreting 

the results. 

Consider the influences on lunar orientation arising from: 1 )  inelastic deformation 

of the mantle shape with amplitude proportional to the tidal Love number k2 and phase 

determined by the solid friction Q; 2) turbulent dissipation at the core mantle boundary 

(CMB) for a fluid core, and 3) CMB ellipticity ec = (a-c)/a. The primary lunar contribution 

to orientation variations is dependent on the mean lunar argument of latitude F (orbital mean 

longitude minus the ascending node on the ecliptic). The primary latitude variations along 

the Earth-Moon direction (p1) due to these effects (46, 47, 59) are 

X Rc 5 .  _y_ Rc 5 Pt = (74 k2 + 4.9 1 _x (350km) ) smF + (230 k2/Q + 4.9 1 +y2 (350km) ) cosF, 
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where we have adopted a core density = 7 glee and the units are seconds of arc. Here x = 

ec/0.0040 is the CMB ellipticity multiplied by the ratio of the 1 8.6 year nodal precession 

period to the lunar orbit period [60], and y is the core frictional parameter to be discussed 

later. 

The apparent Love number k2 (Table 5) presently obtained from LLR analysis, 

0.0302 ± 0.001 2, comes from the coefficient of the sin F term in p, ignoring the possible 

CMB ellipticity. It is much larger than expected, based on naive extensions of lunar seismic 

velocity profiles derived from the Apollo mission. Goins et al. (61) and Nakamura (58) 

deduced similar seismic velocity profile& in the upper mantle, strikingly different profiles in 

the middle mantle, and provided essentially no constraints below - 1000 krn depth. This is 

partially due to the front-side cluster of seismic stations, the sparsity of detectable far-side 

impacts, and the - 1000 km maximum depth of deep focus moonquakes. If we simply 

extend the observed S and P wave velocities down to a nominal 350 krn radius core, we 

obtain the following model values for k2, 

k2 (Goins et al. ) = 0.024, 

k2 (Nakamura) = 0.022. 

Figure 9 shows k2 deduced· from different S-wave velocities (V 5) and lunar core 

sizes of radius 300 and 400 krn used in the Goins et al. (61 )  and Nakamara (58) models 

below 1 000 km depth (note the lunar radius is 1 738 km). The 400 km core radius 

corresponds to the largest possible lunar core consistent with moment of inertia and 

magnetic constraints. The core size, within the limits considered, has only a small effect on 

k2 (62). On the other hand, if a low velocity zone below 1000 km in depth is added to the 

Goins et al. model then the observed k2 would be consistent with V5::: 3.0krnls. The -

40% decrease in V s from middle mantle values can be explained only as arising from 

considerable partial melt, a much higher fraction than observed in a similar zone within the 

Earth. Clearly, the situation is even more implausible if the starting point is Nakamura' s  S­

wave profile. Also, a large partial melt zone may face serious theoretical objections. 
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An alternative· explanation for the apparent large k2 is the presence of a small core 

boundary ellipticity ec = (a-c)/a which can partially mimic the k2 libration signature, as can 

be seen from the equation for p1• The observed k2 = 0.0302 (with x = 0) can be reduced to 

a value of 0.024 by adopting a core radius = 350 km and a core ellipticity a-c = 0.0004a = 

1 40m. Separation of the k2 value and core ellipticity effects depends on detection of other 

periodic terms which are smaller. Therefore, a solution to this problem requires 

improvement in range accuracy. 

If the Moon were a perfectly rigid body, the mean direction of its spin axis �ould 

precess with the orbit. The lunar laser data show that the true spin axis of the Moon is 

displaced from this expected direction by 0.26 arcsec (Fig. 1 0). The two dissipative terms 

proportional to cos F in the expression for P1 are due to solid and fluid dissipation. We can 

account for the observed 0.26 arcsec offset deduced from the lunar range by adopting either 

of the following: k2/Q = 0.00 1 1 36 ± 0.000016 (or Q == 26.5 ± 1 .0-see Table 5) or a value 

for the core frictional parameter of y = 0.053(350km1Rc)5 [see 63 for details]. A value of Q 

as low as 26.5 is surprising in view of the high seismic Q for most of the Moon, even if 

some partial melt is present below 1000 for depth. Thus, the presence of a fluid core with a 

turbulent boundary layer appears to be the plausible interpretation. 

The direct separation of the competing dissipative terms is difficult. The largest 

differential signature ari�es in the lunar orbit acceleration and separation here requires an 

independent estimate of n due to earth tidal friction. The contribution of solid friction in the 

Moon to the secular n is  0.4 arcsec/century (64) while that due to core surface, fluid 

friction is about a factor of 3 smaller. In principle, the difference in n could be detected by 

comparing the total n measured by LLR with n predicted from artificial satellite 

measurements of ocean tides (4 1 ). Unfortunately, the present determinations are not yet 

precise enough to discriminate between these two alternatives. 

It also is worthwhile to mention the observation of an apparent free libration of the 

Moon. Separate from librations driven by the time-varying torques of the Earth and Sun 
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(the forced physical librations), three modes of free libration exist. One of these rotational 

modes is analogous to the Earth's  Chandler wobble (but with a 74-year period), another is 

an oscillation of the pole direction in space (in addition to the uniform precession), and the 

last is a 2.9-year oscillation in rotation speed (longitude). Without suitable recent exciting 

torques, and because of the substantial dissipation (see below), the amplitudes of these free 

librations should have damped to zero. However, the LLR data show an apparent rotational 

free libration in longitude for the Moon with 2.9-year period and 1 arcsec amplitude (65). 

The reason why considerable uncertainty remains about this motion is that it is 

difficult to be certain that some very small forcing term in the lunar orbit near the resonance 

frequency for the free libration is not being amplified strongly to mimic the free motion. 

The .numerically integrated rotational motions of the Moon have been compared with semi­

analytic calculations of the forced angular motions to separate out the free motion; however, 

the semi-analytic results may not be accurate enough to rule out the observed motion 

actually being a forced mption. 

Studies have been carried out to investigate whether the apparent free libration is 

l ikely to have been excited by impacts on the Moon (66). Such excitation would have 

required an impact in very recent times by an object large enough to leave a 10 km diameter 

crater, statistically a highly unlikely event. Seismic events on the Moon also cannot explain 

the observed amplitude. Passes through weak resonances have occurred in the geologically 

recent past and can stimulate free librations in longitude (65). A very plausible explanation 

appears to be core boundary effects, similar to those which are believed to account for the 

decade scale fluctuations in the Earth's rotation (46). 

Clearly, LLR has revealed important information about lunar structure and 

dynamics. A continuing program will result in clear discrimination of the appropriate model 

interpretation, given ranging of even higher quality. 

Concluding Remarks 

20 



The past quarter century has been a productive period for LLR, including several 

landmark scientific results such as the verification of the Strong Equivalence Principle with 

unprecedented accuracy. orders-of-magnitude improvements in the determination of the 

lunar rotation (physical librations), the indication of a probable liquid lunar core, and the 

accurate determination of the lunar tidal acceleration and the Earth's precession. LLR is the 

only working experiment which still carries forward the Apollo legacy and, because of its 

passive nature, can continue as long as proper ground-based ranging stations are 

maintained. 

Over the lifetime· of the LLR experiment, the range accuracy has improved by an 

order of mag�itude from 25 em uncertainty in the early 70s to today' s  2-3 em ranges. The 

precision on some days reaches 1 em, but the calibration accuracy for the timing systems is 

not yet this good. The accuracy limitation due to the atmosphere appears likely to be only 

about 2 mm at 45° elevation angle (67). 

In the immediate future, we have underway the provision of dramatically increased 

station computing power, offset guiding capability, and hands-off auto guiding. The 

benefits from the above items will not only be an increased number of normal points spread 

over significantly more of the lunar phase, but also a significantly increased number of 

individual observations within a given normal point. The more extended and denser lunar 

phase coverage means greater sensitivity to many of the lunar solution parameters. The 

increased number of observations per normal point will provide better operational 

precision, and hopefully aid in improving the accuracy. 

Farther down the road, we see the availability of more precise and more efficient 

photon detectors, such as micro-channel plates, significantly improved timing systems, and 

shorter-pulse, more powerful lasers. These will provide for higher accuracy, additional 

sensitivity to lunar parameter signatures and a further increase in the lunar data density. On 

the more distant horizon, lunar missions have been proposed that could place microwave or 
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optical transponders (68) at widely separated lunar sites. This would permit differential 

measurements with up to two orders of magnitude improvement in accuracy: 

The expected inc�ased data density and improved accuracy in the future will permit 

higher understanding of the Earth, the Moon and the Earth-Moon system, answering old 

questions and revealing new phenomena to be explored. Advances in ephe�eris 

development will continue, and higher improved tests of gravitational physics and relativity 

are expected. 
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Table 1 .  Distribution of LLR Data 

Observatories 'Apollo 1 1  Apollo 14 Apollo 15 

McDonald Observatory 468 495 2356 
2.7m (Texas) 

McDonald Laser Ranging 24 36 607 
System (MLRS) 

Halaekala (Maui, HI) 20 23 633 

CERGA (Grasse, France) 324 339 2699 

Table 2. Solution Parameters 

Calibration 
Bias in each station 
Bias in individual spans of data 

Earth 
Station coordinates 
Monthly and fortnightly tidal terms in Universal Time (UTI)*  
Rate correction in  UT 1 and polar motion 
Precession and obliquity rate 
Nutation terms at 1 8.6 yr, 1 yr*, 112 yr*, 

1/2 month*, and free core nutation* 
Orbit 

. 

Lunar orbit 
Solar orbit 
GM Earth + Moon 
Tidal acceleration 
Geodetic precession 
Nordtvedt coefficient 

Moon 
Reflector coordinates--4 sites 
Six libration initial conditions 
Second degree moment difference-p, y 
J2 and Third degree harmonics 
Lunar rotational dissipation 
Lunar Love number 
Experimental libration terms* 

Earth Rotation Parameter solved for stochastically: 
Universal Time 
Variation of Latitudetpolar Motion 

*Terms that are not normally included in a standard solution. 
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Total 
Number of 

Normal 
Lunakhod 2 Points 

1 32 345 1 

5 672 

1 8  694 

1 97 3559 



-==--=--------c�--����=�- ----- - - -----

Table 3 .  Determination of Gravitation Physics and Relativity Parameters 

Nordtvedt Effect 
Tl = -0.0006 ± 0.00 1 4  
C0TJ = -0.5 ± 1 .3 em 

Parametrized Post Newtonian (PPN) Parameter 
� = 0.9999 ± 0.0006 

Deviation from the Expected Geodetic Precession 
-0.3  ± 0.9% 

Table 4. Determination of Geophysical Parameters 

GMEARru 

Luni-Solar Precession constant 

1 8 .6 yr nutation corrections (units: milliarcseconds) 
In-phase terms 

6£ 
sin E 6£ 

Out-of-phase terms: 
6 £  
sin £ 6£ 

n secular acceleration of the Moon 
Total 
Diurnal term 
Semi-diurnal term 
Lunar contribution 
Increase Semi-major axis rate 

34 

398,600.442 ± 0.004 km3/sec2 

50.3845 ± 0.0004 arcsec/year 

2.8 ± 1 . 1  
-2.9 ± 1 .4 

0.6 ± 1 .3 
0.5 ± 1 .0 

-25.88 ± 0.5 arcsec/cy2 
-4.04 ± 0.4 arcsec/cy2 

-22.24 ± 0.6 arcsec/cy2 
+0.40 arcsec/cy2 

3 .82 ± 0.07 em/year 



Figure Captions 

1 .  Photograph of a retroreflector array of Apollo 14 on the lunar surface. 

2 .  Geographical distribution of  the retroreflector arrays on the lunar surface, A- l l , A- 14 

and A- 15  denote the Apollo 1 1 , 14 and 15  site, respectively; whereas L- 1 and L-2 are 

the Lunakhod 1 and 2 locations (no returns are available from Lunakhod 1) .  

3 Histogram of the weighted root-mean square (rms) residual as a function of time. 

4 .  The McDonald Laser Ranging System atop Mt. Fowlkes. 

5 .  Histogram of LLR normal points as a function of year. The years 1 982 and 1 983 

marked the transition from the McDonald 2.7m telescope observing program to the 

McDonald Laser Ranging System. 

6 .  The geometry of the Earth-Moon System. 

7 .  Lunar orbit a.bout the Earth as affected by the Nordtvedt term. A violation of the 

Equivalence Principle would cause the orbit of the Moon about the Earth-Moon center 

of mass to be polarized in the direction of the Sun, with the maximum size of - 9 m. 

8 .  Constraint on core radius from moment of inertia and lower mantle density contrast. 

9 .  Love number k2 as a function of Apollo derived S-wave velocity profiles of Goins et 

al. (61 )  and Nakamura (58); comparison of LLR-determined value of k2 is made with 

that derived from variable Vs below 1000 km depths and core radius of 300 and 400 

km. Note that LLR value is independent of V s· 
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10 .  Orientation of the Moon relative to the Cassini state. 
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