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APOLLO EXPE RIENCE REPORT 

ONBOARD NAVIGATIONAL AND ALIGNMENT SOFTWARE 

By Robert T. Savel y, Bedford F. Cockrel l, and Samuel Pines* 
Manned Spacecraft Center 

SUMMARY 

The current limitations of the onboard navigational and alignment software are 
discussed, along with more desirable capabilities and alternate approaches that are 
available. The onboard navigational and alignment software includes programs for 
free-flight prediction, rendezvous navigation, orbital navigation, cislunar navigation, 
and alignment of the inertial measurement unit and support routines (e. g. , lunar and 
solar ephemerides and planetary inertial orientation). 

INTRODUCTION 

The onboard navigational and alignment routines discussed in this report are used 
during the nonthrusting phases of an Apollo mission. The basic objective of the navi­
gational system is to maintain estimates of the position and velocity of the command 
and service module (CSM) and lunar module (LM). Navigation is accomplished by 
extrapolating the state vectors by means of the coasting integration routine and then 
updating this estimate by processing tracking data by means of a recursive navigational 
method. 

The CSM guidance and navigation system uses (1) range data from the very-high­
frequency (vhf) ranging device and (2) angular data from the scanning telescope and 
from the sextant. The LM primary guidance and navigation system uses rendezvous 
radar (RR) tracking data (angles, range, and range rate). In addition, the LM system 
has an alignment telescope for platform alignments. 

These navigational data are incorporated into the state vector estimates by means 
of the measurement-incorporation routine. This routine computes deviations to the 
state vector based on the tracking geometry and the statistics of the state vector history. 

In this report, the limitations of these routines are discussed, and alternate 
approaches with more desirable capabilities are presented. In general, the comments 
reflect the advancement of the state of the art since the design of the Apollo software. 

*Analytical Mechanics Associates. 



An efficient Cartesian coordinate transformation method is described in the 
appendix written by Paul F. Flanagan of the NASA Manned Spacecraft Center and 
Samuel Pines of Analytical Mechanics Associates. 

DISCUSS ION 

Navigationa I System 

The basic objective of the navigational system (maintaining estimates of position 
and velocity vectors for the CSM and LM) is accomplished by extrapolating the state 
vector by means of the coasting integration routine. The procedure used by this rou­
tine is to extrapolate the state vector by means of Encke's method of differential accel­
erations, in which only deviations from conic motion are integrated numerically. This 
approach is sound and represents the current state of the art. However, subtle im­
provements are now available for determining the conic motion and numerically inte­
grating the deviations. 

Even with accurate state vector extrapolation, initial-condition errors grow to an 
intolerable size. Thus, it is necessary to periodically obtain additional data to modify 
the state vectors. These modifications are computed from navigational data obtained 
from sensor measurements. The nature of the measurement sensors requires signifi­
cant crew interface. The introduction of human errors into the navigational system 
can be minimized in future projects by using a more automated sensor system; this 
step not only would improve basic navigational data but also could partially eliminate 
or reduce the need for premission scheduling of sightings. 

When a measurement is made, the best estimate of the state vector is extrapo­
lated to the measurement time. From this estimate, it is possible to compute an 
estimate of the quantity measured. When this computed measurement is compared 
with the actual measured quantity, the difference is used to update the state vector. 
This difference or deviation corrects the state as a linear multiplier of a weighting 
vector (which in turn is a function of the geometry, the assumed measurement uncer­
tainties, and the state uncertainties). The major problem for this area of navigation 
has been error- transition-matrix saturation. This matrix allows reasonable correc­
tions in the beginning but rapidly reduces the allowable correction until a point is 
reached when no useful corrections are permitted. This problem has been circumvent­
ed by constant reinitialization of this matrix, requiring extensive premission naviga­
tional analysis to determine when this event should occur. Nonnominal navigation could 
have reduced the effectiveness of this scheduling. 

The Apollo guidance computer was designed with a 15-bit word length. This com­
puter is a fractional machine (all numbers in the computer are less than one); thus, to 
store or use a number with a true value greater than one, suitable scaling is necessary. 
As a result, parameters with a large dynamic range are scaled so as to optimize the 
capabilities of the computer. Invariably, however, the extremes of these numbers are 
compromised. This limitation has produced errors of as much as 240 feet down range 
during coasting integration. The down-range errors have the same effect as increasing 
the errors on the rendezvous tracking data. In the following paragraphs, the various 
routines of the navigational system, their limitations, and recommendations for im­
provements are discussed. 
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Coasting Integration Routine 

The coasting integration routine is the subroutine that- when given initial time, 
position, and velocity coordinates - computes the position and velocity of the vehicle 
at a specified time. This time may be either before or after the time of the particular 
initial state vector. This is the basic routine used in the navigational and guidance 
programs; therefore, the speed and accuracy of the onboard program are limited by 
the performance of this routine. 

Coasting integration is accomplished by using Encke' s method of differential 
accelerations. With this technique, the motion of the vehicle is assumed to be domina­
ted by the conic orbit that would result if the spacecraft were in a central force field. 
Then, only the deviations from conic motion are integrated numerically. The nature of 
this method necessitates a discussion of coasting integration in two parts, namely, 
conic solution and numerical integration of disturbing accelerations. 

Conic method. - The conic method is used in the solution of five conic problems. 
Three of the conic problems (Kepler, time theta, and time radius) are initial-value 
problems, and two (Lambert and reentry) are boundary-value problems (ref. 1). The 
numerical integration formulation requires considerable computer time. For example, 
the return-to-earth maneuver-guidance program (P- 37) requires approximately 15 to 
30 minutes to compute a solution. 

Because much of the computer time is spent solving Kepler's equation, which is 
used in the calculation of Kepler's problem and Lambert's problem, a more efficient 
procedure (such as that proposed in ref. 2) would have been useful. To solve this 
equation, it is necessary to sum a special trigonometric series. The proposed formu ­
lation would modify the method used for generating and summing the series. The 
series currently used requires special procedures for integration over 27T (and addi­
tional terms for special cases) and is slower to converge than the proposed method. 
In addition, the procedure described in ref. 2 for solving Lambert's problem is more 
efficient. This method avoids slowly converging inverse trigonometric series and 
would decrease the required computer time. Other advantages of the proposals for 
solving Kepler's problem and Lambert's problem are an improvement in storage re­
quirements, the accuracy of the computations, the reliability of the convergence, 
and computer time. 

Numerical integration method . - The complexity of the numerical evaluation of 
the equations of motion is the largest single item affecting the machine time required 
for each integration step. The integration method used is a third-order Runge-Kutta 
scheme developed by Nystrom. This method requires three entries into the lengthy 
derivative routine for each integration step. For a rapid computing cycle, it is impera­
tive to minimize the number of entries into the derivative routine. 

Backward difference schemes have the advantage of requiring only one entry per 
integration step for prediction methods and a maximum of two entries per integration 
step for predictor-corrector methods. Another advantage of backward difference 
schemes is that they enable the use of a much larger integration step than the third­
order Runge-Kutta scheme now in use. The limiting considerations of the step size 
are (1) the truncation error in the Taylor series used to evaluate the derivative and 
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(2) the machine digit word length, which controls the round-off error. The best step 
size is provided when the magnitude of the truncation error is the same as that of the 
round-off error. 

Because the magnitude of the truncation error decreases with the number of 
terms, the limitation on the step size is the correlation of the number of terms and 
the round-off error. The major source of round-off error is the bias in the round-off 
digit of the integration coefficients. These coefficients can be kept as exact integers if 
the number of terms in the backward table is chosen as shown in the following table. 

Computing word length, 
digits 

5 

6 

7 

8 

9 

10 

11 

Backward difference 
predictor (no corrector used), 

number of terms 

6 

7 

7 

8 

9 

10 

11 

For the numerical integration by the onboard computer with eight-digit arithme­
tic, a sixth-order predictor (no corrector used) scheme (ref. 3) is recommended. 
The reference 3 predictor is self-started, but for multiple starts during a mission, a 
Runge-Kutta starter is recommended. Although an eighth-order scheme could be ac­
commodated while still maintaining the integration coefficients as exact integers (see 
preceding table), the computer space limitations led to the sixth-order recommenda­
tion. Thus, a Runge-Kutta starter would be required only for building the table. Al­
though the backward difference scheme will prove efficient over a relatively long 
computing arc, the scheme cannot be recommended for use in a Kalman sequential 
point-by-point update mode with observations. 

· 

For the navigation update mode, it is recommended that a less complex method 
be considered to predict the state to the next observation with an extra error source 
added to the W-matrix to account for unmodeled errors in the dynamic model. 

The -error transition matrix. - The position and velocity vectors maintained by 
the computer with numerical integration are only estimates of the true values. As part 
of the navigational teclmique, it is also necessary to maintain statistical data in the 
computer to aid in processing navigational measurements. To accomplish this, a cor­
relation matrix is defined that represents probable uncertainties in the state and the 
correlation of these uncertainties. For convenience, a matrix called the error transi­
tion matrix (or square root of the correlation matrix) is defined, and this matrix must 
be maintained by the computer. 
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Extrapolation of the error transition matrix in the Apollo guidance computer is 
made by direct numerical integration of as many as nine vector differential equations. 
This method is costly because most of the time spent in this matrix propagation is in 
the derivative routine (that portion of the logic that numerically evaluates the integra­
tion equations (equations 2. 2. 35 of ref. 1)). 

Reference 2 contains an alternate method for state error propagation. This ana­
lytic method, sometimes called the mean conic method, estimates errors at future 
times by introducing predicted errors at the initial time and propagating these errors 
along the average conic. This average or mean conic is defined by the initial and final 
state estimates and by the transfer time. The method involves no numerical integra­
tion or iteration and requires the definition of only four indexed analytic partials. 

Rendezvous Navigation (P-20) 

Rendezvous navigation has been excellent in the Apollo Program; however, if 
large down-range errors occur in the location of the non-updated vehicle, the CSM 
rendezvous navigation is degraded. The CSM rendezvous navigation degradation occurs 
because the capability to solve for angle biases in the CSM filter was not provided, due 
to the small sextant biases; however, the sextant line-of-sight measurements are made 
with respect to inertial space and a down-range error. In the non-updated vehicle, 
position appears as an angle bias. Because rendezvous navigation is a relative prob­
lem, it is sufficient that the LM and CSM state vectors be accurate relative to each 
other, even though the inertial accuracy of each state is poor. The fact that a relative 
problem is being solved enabled the software designers to design the program to update 
or solve for the state vector of only one of the two vehicles. Another way to account 
for the downtrack error is to solve for the state vector of both vehicles; however, this 
procedure requires too much computer time and is not necessary because the relative 
problem can be solved in all cases if the solution for the angle biases is part of the 
solution vector. 

Anomalous simulation results . - During the navigational planning and analysis for 
Apollo 10, two interesting results were obtained from simulations of the onboard ren­
dezvous navigation of the CSM and LM. 

1. Although the LM RR is less accurate in its measurements of line of sight and 
range than is the CSM sextant and vhf ranging, the LM guidance computer (LGC) often 
obtained a superior determination of the relative state (producing a more accurate 
rendezvous). 

2. The method of immediately obtaining a set of "good" estimates of the RR 
angle biases (by rolling the LM 180 o between the first two data sets) resulted in infe­
rior accuracy compared to the method of allowing these estimates to be determined 
throughout the rendezvous sequence. 

Explanation of results . - As a result of reconsideration of the problem, the anom­
alous results were attributed to a down-range error in the state vector of the non­
updated vehicle. 
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For the onboard formulations in both vehicles, it is assumed that the state of one 
vehicle is perfectly known; therefore, sensor residuals are used to correct the other 
vehicle state vector. Because line- of-sight measurements are made with respect to 
inertial space in a near- circular orbit, down-range errors in the position of the non­
updated vehicle act as angle biases in the filter. (If all navigational measurements and 
rendezvous maneuvers were made with respect to the local (orbital plane) coordinates, 
such errors would not be significant; however, the mechanization of such measure­
ments is not feasible. ) This apparent bias "drives" the filter away from the correct 
solution, resulting in state estimates with poor error-propagation characteristics. 

During the design of the filters for onboard navigation, the RR angle biases were 
expected to be rather large; therefore, they were included in the LGC solution vector. 
Apparent angle biases caused by down-range errors are attributed by the LGC to phys­
ical angle biases and do not severely degrade the state vector of the updated vehicle. 
The command module computer (CMC) does not provide such an attribution for these 

biases; therefore, they degrade the state vector solution. Rolling the LM to quickly 
determine the biases degrades the solution because the filter "closes out" subsequent 
significant updates to the angle biases, and the down-range error is not recovered as 
such a bias. (Reinitializing the filter in order to reopen it to further bias updates, 
although retaining the bias estimates, would theoretically provide excellent perform ­
ance; however, the RR angle biases have tended to be small enough in practice that 
such a procedure is not worthwhile. ) 

Command module computer change. - Studies were undertaken to evaluate the 
usefulness of expanding the CMC solution vector to solve for the down-range error, 
either explicitly or as angle biases; favorable results were obtained. Simulations in­
dicated that the approach was valuable and also led to a slight modification of the 
original equations. 

Examination of the equations and the existing CMC program structure led to new 
estimates of additional storage requirements, namely, 50 words of fixed memory and 
two or three words of erasable memory. A Program Change Request (PCR) was 
written for consideration by the Apollo Software Control Board (SCB). 

During the evaluation of the proposal, the contractor for the design of the primary 
guidance, navigation, and control system pointed out that, in the Apollo CMC programs, 
a reallocation of erasable memory assignments would be required because the rendez­
vous targeting routines shared erasable memory with cells used for W-matrix storage 
in the 9-D mode. The SCB did not approve the PCR primarily because the CMC ren­
dezvous navigation program is used as a backup capability on lunar flights. Of course, 
in earth orbit, down-range errors are less important; but the error that does occur, 
when taken in combination with the inertial measurement unit (IMU) and sextant biases, 
produces poor accuracy for some rendezvous profiles. 

Orbital Navigation (P-22) 

Although a limited capability to perform orbital navigation exists in the software, 
it has not been a requirement in the Apollo Program. However, P-22 was used to 
gather time-mark data for Manned Space Flight Network (MSFN) orbital navigation 
evaluation, lunar mapping, and descent targeting. (A new program (P-24), which 
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removed the liabilities of P-22, was added to the software for Apollo 14 and subsequent 
flights. The liabilities of P-22 are the lack of acquisition assistance and the five-mark 
limitation. ) 

Cislunar Navigation (P-23) 

Cislunar navigation was satisfactory for the Apollo missions. A problem oc­
curred on the Apollo 14 mission when the incorrect lunar horizon was used as a target. 
Procedures have been developed to eliminate this error, which occurred as a result of 
the moon's being nearly fully sunlit. Software modifications such as solutions for the 
altitude of the horizon locator and the sextant bias could be evaluated. 

Inertial Measurement Unit Alignment 

The IMU alignment programs could pos.sibly be improved in the area of transfor­
mation computation. The current 3 x 3 matrix product-transformation procedure could 
be replaced by the vector operation discussed in the appendix to this report. However, 
the only significant problem is in the area of the hardware-software incapability expe­
rienced in the LM. The LM IMU alignment system is sufficiently accurate for a safe 
landing but has only marginal accuracy for precision landing. 

The LM alignment problem resulted from the fact that the sighting instrument 
(the alignment optical telescope (AO T)) is much less accurate than the IMU .  The sys­
tem could have been improved by a better instrument (such as the star tracker or the 
sextant) or by increasing the number of stars tracked and by averaging data. That is, 
instead of sighting on only two stars and defining the reference stable member matrix 
(REFSMMA T), three to five stars could have been sighted in an identical manner 
(three marks per star). The stars would have been properly chosen as a function of 

their relative position with respect to one another. Some simple type of averaging 
(such as a least squares approximation for defining REFSMMA T) that would minimize 
the error in this transformation could then be accomplished. This averaging technique 
could be used in the onboard computer to determine the LM position on the moon. 

5 up port Routines 

Coordinate systems . - An additional difficulty encountered in the manned space 
flight program is the use of unconventional coordinate systems. The system based on 
the X- axis through Greenwich at midnight on the day of launch was used in Project 
Mercury and in the Gemini Program. The Nearest Besselian Year (NBY) system was 
used in the Apollo Program. The primary advantage of the NBY coordinate system is 
that the transformation from earth-fixed coordinates to inertial coordinates is a rota­
tion instead of the 3 x 3 transformation required for the standard fixed-coordinate sys­
tems. However, in retrospect, this small saving in computer time is offset by the 
complex effort required to convert the ephemeris data to the NBY system and by the 
necessity to remake the computer "ropes" for each Besselian year. This revision is 
necessary because the fixed memory contains data that are NBY dependent. In general, 
the use of a fixed-coordinate system would simplify the overall software problem. The 

7 



fixed-coordinate system should probably be the 1950. 0 system, in which the basic 
lunar-solar- planet ephemerides are located. 

The NBY system was established for the following reasons: 

1. The precession of the pole of the earth can be neglected when computing the 
earth-oblateness accelerations. 

2. The transformation to earth-fixed coordinates may use small- angle 
approximations. 

3. The NBY coordinate system is widely used and is one for which information 
is available from the Nautical Almanac Office. 

Although these reasons seem valid, they are not decisive. The effects of precession 
may be accounted for easily, the small-angle approximations are valid over extended 
periods, and the Nautical Almanac Office does not publish the data until after they are 
needed (necessitating an annual request to that office for prepublication data). 

Modifications needed for use of a constant system . - The following are the Apollo 
guidance computer modifications that would be required if a fixed-coordinate system 
were adopted. 

Lunar-solar ephemerides: To use the lunar-solar ephemerides, no problem 
exists for the CMC because the data are stored entirely in an erasable memory; the 
generation program may be used with little or no change. For the LGC, a minor 
change would improve the accuracy and extend the usefulness to several years for the 
lunar ephemerides. The root mean square of the error in location of the moon was 
approximately equal to the diameter of the moon (0. 5°), and the maximum error during 
a 1 -year span was greater than 1 o {1 7 milliradians). A plot of the lunar ephemerides 
error was made for in-plane and perpendicular-to-plane locations. The in-plane error 
was an irregular function but seemed to have a period of 14. 5 to 15. 0 days. The error 
perpendicular to the plane was a regular function with a period of 32 days. 

The error in the lunar orbit plane could be corrected by an additional term in the 
expression for the longitude of the moon. The error perpendicular to the orbit plane 
can be corrected by modifying the earth-mean unit vector to include a final Y-axis 
rotation. These additional terms correspond approximately to the truncated terms of 
Brown's series for the position of the moon. 

Earth orientation: The small-angle approximations for earth orientation are 
valid for several years; to use the true earth pole in the oblateness perturbation com­
putation, a small change to cos </> is required (requiring one word of fixed memory in 
both CMC and LGC, but four words of erasable memory in the LGC). The change in 
the oblateness computation could probably be omitted from the LGC, however. 

The diurnal rotation of the earth builds up an error in the Apollo guidance com­
puter of approximately 30 ft/yr because of round-off errors. If this amount is con­
sidered excessive, moving constants to erasable memory would permit sufficient 
correction. 
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Lunar orientation: No problem exists with use of lunar orientation data, because 
all residuals may be collected into.the lunar "libration vector, " which is part of the 
erasable load. 

Star table: Most of the stars in the star table have small proper motions; the 
vectors are accurate to 5 seconds of arc over periods of± 3 years. Occasional up­
dating would be required. 

Transformations. - A more efficient Cartesian coordinate transformation method 
that precludes matrix manipulations is discussed in the appendix. 

CONCLUD lNG REMARKS 

Apollo mission experience has shown that the basic onboard navigational and 
alignment software is adequate for lunar landing missions. However, since its incep­
tion, the advancement of the state of the art has presented alternate approaches with 
more desirable capabilities. These new techniques involve more automated sensor 
systems; improved mathematical functions for numerical integration, conic calcula­
tions, and state error propagation; a larger solution state during rendezvous naviga­
tion; averaging techniques for star sightings; a more standard basic coordinate system; 
and an improved transformation algorithm. 

Manned Spacecraft Center 
National Aeronautics and Space Administration 

Houston, Texas, December 14,  1971 
924-22- 20-01-72 
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APPEND IX 

AN EFFICIENT METHOD FOR CARTES IAN 

COORDINATE TRANSFORMATIONS 

By Paul F. Flanagan* and Samuel Pinest 

Manned Spacecraft Center 

INTRODUCTION 

An efficient alternate method used to perform Cartesian coordinate transforma­
tions is derived. This method replaces the 3 X 3 matrix product-transformation proce­
dure by a simpler vector operation that requires less computer storage and less 
computer execution time. Also, for applications in which interpolation routines are 
applied to stored transformation matrices, this method is more efficient because it 
requires the interpolation and storage of only four elements, which results in a more 
accurate final computation. 

CARTES IAN COORDINATE TRANSFORMATIONS BY MEANS 
OF RIGID VECTOR ROTATIONS 

A 3 x 3 transformation matrix A is given that causes the Cartesian coordinate 
system I to be transformed to the Cartesian coordinate system II. Thus, any vector 
� in the original coordinate system is carried into the second coordinate system by 

(1) 

The same transformation can be achieved by a rigid rotation of 11 about a unit 
vector N through some angle w. The resultant vector equation is 

l1J = 11 cos w + N�(1 - cos w)N +sin w N� (2) 

*Formerly of NASA Manned Spacecraft Center, currently with Analytical Mechan­
ics Associates. 

tAnalytical Mechanics Associates. 
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If the transformation matrix is required, it can be generated from the unit vector 
N and the angle w by the following equation. 

where 

A =I cos w + (1 - cos w)NNT 
+ sin w Nx 

0 

Nx = 

-N 3 

The vector N and the trigonometric function cos w are computed from the 
transformation matrix as follows. 

cos w = trace
2 
A - 1 

DERIVATION OF THE EQUIVALENT TRANSFORMATION EQUATION 

(3a) 

(3b) 

(4a) 

(4b) 

(4c) 

It can be shown that the rigid-rotation matrix may be written as the sum of a 
symmetric matrix and a skew- symmetric matrix. The symmetric matrix terms of 
equation {3a) are 

T A sym =I cos w + (1 - cos w)NN (5a) 
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The skew-symmetric terms are given by 

A skew sym = sin w Nx (5b) 

The trace of A is given by the trace of its symmetric part; thus 

( 2 2 2) 
trace A = 3 cos w + (1 - cos w) N

1 
+ N2 + N 

3 
(6) 

Because N is a unit vector, equation (4a) is obtained. 

A rigid rotation about N through an angle w greater than rr may be replaced 
by a rigid negative rotation about the same vector N through 27i - w; therefore, the 
angle w can be restricted to the first or second quadrants, and equation (4b) results. 

To obtain the components of the vector N, note that the skew-symmetric part of 
A is given by 

A - A T 
A skew sy m = ____,2..-----

This expression must be equal to the skew-symmetric part of A (N, w) so that 

A - A T 

2 
=sin w Nx 

It follows that because N is a unit vector, equation (4c) is obtained. 

(7) 

(8) 

12 NASA-Langley, 1972 - 31 S-317 


