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Foreword 
This NASA-HANDBOOK is published by the National Aeronautics and Space Administration (NASA) to 
provide a Bayesian foundation for framing probabilistic problems and performing inference on these 
problems.  It is aimed at scientists and engineers and provides an analytical structure for combining data and 
information from various sources to generate estimates of the parameters of uncertainty distributions used in 
risk and reliability models.  The overall approach taken in this document is to give both a broad perspective 
on data analysis issues and a narrow focus on the methods required to implement a comprehensive 
database repository.  It is intended for use across NASA. 
 
Recent years have seen significant advances in the use of risk analysis at NASA. These advances are 
reflected both in the state of practice of risk analysis within projects, and in the status of several NASA 
requirements and procedural documents. Because risk and reliability models are intended to support 
decision processes, it is critical that inference methods used in these models be robust and technically 
sound.  To this end, the Office of Safety and Mission Assurance (OSMA) undertook the development of this 
document.  This activity, along with other ongoing OSMA-sponsored projects related to risk and reliability, 
supports the attainment of the holistic and risk-informed decision-making environment that NASA intends to 
adopt. 
 
This document is not intended to prescribe any technical procedure and/or software tool.   The coverage of 
the technical topics is also limited with respect to (1) the historical genesis of Bayesian methods; (2) 
comparisons of “classical statistics” approaches with Bayesian ones; (3) the detailed mathematics of a 
particular method (unless needed to apply the method); and (5) a source of actual reliability or risk 
data/information.  Additionally, this document is focused on hardware failures; excluded from the current 
scope are specific inference approaches for phenomenological, software, and human failures.   As with 
many disciplines, there are bound to be differences in technical and implementation approaches.  The 
authors acknowledge that these differences exist and to the extent practical these instances have been 
identified.   
 
The Bayesian Inference handbook assumes that probabilistic inference problems range from simple, well-
supported cases to complex, multi-dimensional problems.  Consequently, the approaches provided to 
evaluate these diverse sets of issues range from single-line spreadsheet formula approaches to Monte 
Carlo-based sampling methods.  As such, the level of analyst sophistication should be commensurate with 
the issue complexity and the selected computational engine.  To assist analysts in applying the inference 
principles, the document provides “call out” boxes to provide definitions, warnings, and tips.  In addition, a 
hypothetical (but representative) system analysis and multiple examples are provided, as are methods to 
extend the analysis to accommodate real-world complications such as uncertain, censored, and disparate 
data. 
 
For most of the example problems, the Bayesian Inference handbook uses a modern computational 
approach known as Markov chain Monte Carlo (MCMC).  Salient references provide the technical basis and 
mechanics of MCMC approaches.  MCMC methods work for simple cases, but more importantly, they work 
efficiently on very complex cases.  Bayesian inference tends to become computationally intensive when the 
analysis involves multiple parameters and correspondingly high-dimensional integration.  
 
MCMC methods were described in the early 1950s in research into Monte Carlo sampling at Los Alamos.  
Recently, with the advance of computing power and improved analysis algorithms, MCMC is increasingly 
being used for a variety of Bayesian inference problems.  MCMC is effectively (although not literally) 
numerical (Monte Carlo) integration by way of Markov chains.  Inference is performed by sampling from a 
target distribution (i.e., a specially constructed Markov chain, based upon the inference problem) until 
convergence (to the posterior distribution) is achieved.  The MCMC approach may be implemented using 
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custom-written routines or existing general purpose commercial or open-source software.  In the Bayesian 
Inference document, an open-source program called OpenBUGS (commonly referred to as WinBUGS) is 
used to solve the inference problems that are described.  A powerful feature of OpenBUGS is its automatic 
selection of an appropriate MCMC sampling scheme for a given problem.  The approach that is taken in the 
document is to provide analysis “building blocks” that can be modified, combined, or used as-is to solve a 
variety of challenging problems.  Not just for risk and reliability inference, MCMC methods are also being 
used for other U.S. Government activities (e.g., at the Food and Drug Administration, the Nuclear Regulatory 
Commission, National Institute of Standards and Technology, and the National Atmospheric Release 
Advisory Center). 

 
The MCMC approach used in the document is implemented via textual scripts similar to a macro-type 
programming language.  Accompanying each script is a graphical diagram illustrating the elements of the 
script and the overall inference problem being solved.  In a production environment, analysis could take 
place by running a script (with modifications keyed to the problem-specific information).  Alternatively, other 
implementation approaches could include:  (1) using an interface-driven front-end to automate an applicable 
script, (2) encapsulating an applicable script into a spreadsheet function call, or (3) creating an automated 
script-based inference engine as part of an information management system.  In lieu of using the suggested 
MCMC-based analysis approach, some of the document’s inference problems could be solved using the 
underlying mathematics.  However, this alternative numerical approach is limited because several of the 
inference problems are difficult to solve either analytically or via traditional numerical methods. 
 
As a companion activity to this handbook, a data repository and information management system is being 
planned by OSMA.  The approaches described in the report will be considered in the development of the 
inference engine for this system.  While not a risk or reliability data source itself, the Bayesian Inference 
document describes typical sources of generic and NASA-specific data and information.  Further, examples 
of failure taxonomies and associated hierarchies of information are discussed.  Some of the examples and 
case studies use real data – nonetheless the inference results produced in this document should not be 
used for analysis. 
 
Follow-up activities to this document include developing a stand-alone supporting document describing the 
technical detail of the methods described herein.  It is important to note that having the detailed mathematics 
is not required to run or understand the approaches described in the report.  A limited set of the examples 
provided in this report have been validated, but the results and associated tools will be further checked for 
correctness via a more formal approach.  Additional examples will be introduced in future revisions. 
 
Comments and questions concerning the contents of this publication should be referred to the National 
Aeronautics and Space Administration, Director, Safety and Assurance Requirements Division, Office of 
Safety and Mission Assurance, Washington, DC 20546. 
 
Dr. Homayoon Dezfuli 
Project Manager, NASA Headquarters 
June 2009 
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INTRODUCTION 1

1. Introduction 
  

1.1  Risk and Reliability Data Analysis Objectives 
This document, Bayesian Inference for NASA Probabilistic Risk and Reliability Analysis, is intended to 
provide guidelines for the collection and evaluation of risk and reliability-related data.  It is aimed at 
scientists and engineers familiar with risk and reliability methods and provides a hands-on approach to 
the investigation and application of a variety of risk and reliability data assessment methods, tools, and 
techniques.  This document provides both:  

• A broad perspective on data analysis collection and evaluation issues. 
• A narrow focus on the methods to implement a comprehensive information repository. 

 
The topics addressed herein cover the fundamentals of how data and information are to be used in risk 
and reliability analysis models and their potential role in decision making.  Understanding these topics is 
essential to attaining a risk informed decision making environment that is being sought by NASA 
requirements and procedures such as 8000.4 (Agency Risk Management Procedural Requirements), 
NPR 8705.05 (Probabilistic Risk Assessment Procedures for NASA Programs and Projects), and the 
System Safety requirements of NPR 8715.3 (NASA General Safety Program Requirements). 
 

1.2  Taxonomy of Uncertainty 
The word “uncertainty” is, itself, ironic in that it has a variety of meanings and has a variety of synonyms:  
error, information, vagueness, scatter, unknown, discord, undefined, ambiguous, probability, stochastic, 
distribution, confidence, chance, and so forth.  This vagueness in terminology needs to be minimized – to 
the extent possible – to institutionalize the methods described herein.  In this report, definitions are 
provided in shaded boxes.  A list of definitions is also provided in Appendix A. 

Data Distinct observed (e.g., measured) values of a physical process. Data may be 
factual or not, for example they may be subject to  uncertainties, such as 
imprecision In measurement, truncation, and  interpretation errors. 

Information The result of evaluating, processing, or organizing data/information   
in a way that adds to knowledge. 

Knowledge1   What is known from gathered information. 
Inference The process of obtaining a conclusion based on what one knows. 

Examples of data include the number of failures during system testing, the pressure pulse recorded 
during hydrogen detonations, the times at which a component has failed and been repaired, and the 
time it takes until a heating element fails.  In these examples, the measured or observed item is bolded 
to emphasize that data are observable.  Note, however, that information is not necessarily observable; 
only the subset of information that is called data is observable.  The availability of data/information, like 
other types of resources, is crucial to analysis and decision-making.  Furthermore, the process of 
collecting, storing, evaluating, and retrieving data/information affects its organizational value. 

 
Alone, that is, outside of a structured inference process, data has little utility.  For example, recording the 
pressure during a hydrogen detonation test as a function of distance from the detonation point provides a 
relationship of pressure and distance (as seen in Figure 1-1).  This data records a deterministic 
relationship between pressure and distance, but the data does not convey much information that would 
be of use in risk evaluations, it only records a set of ordered pairs of pressure and distance.  The data 
does not indicate the potential variability in hydrogen detonation, the consistency (were the data 

                                                      
1 “Science is organized knowledge. Wisdom is organized life.”  - Immanuel Kant 
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recorded correctly?), why the pressure decreases the further away one is from the detonation, or 
whether the overpressure will be sufficiently large to fail structures of interest.  Data alone cannot answer 
such questions.  Instead, one must analyze the data to produce information, information that will 
ultimately be used for making inferences, whereby such questions may be answered. 
 
Information is the foundation for knowledge.  Examples of information include an empirical estimate of 
system failure probability, the probability that a hydrogen detonation deforms a heat shield, an expert’s 
opinion of a component’s failure probability, and the failure rate for a heating element.  Like data, 

information has 
organizational value.  
Key to this value is 
that information 
should be 
scientifically 
defensible and 
support required 
inference processes.  
Since processes of 
concern cover a 
variety of activities, 
any data/information 
collection activity and 
repository must 
support not only 
changing needs but 
modifications to 
requirements and 
applications. 
 

Since data are the subset of information that is observable or measurable, there is an implied contextual 
structure to the information conditional on the data context.  However, as described later in this report, 
knowledge about specific context may be generalized to other situations.  This generalization concept is 
an integral part of any inference process. 

Context The set of environmental conditions and circumstances, both helpful and 
adverse, that surround a reliability or risk-relevant event.  In the analysis of 
human performance, context includes both system-manifested impacts (e.g., 
available time, ergonomics, and task complexity) and human-manifested 
impacts (e.g., stress level, degree of training, fatigue).  In the analysis of 
hardware or software performance, context includes the operational 
environments and interactions with other hardware, software, and human 
elements. 

 
To evaluate or manipulate data, we must have a "model of the world" (or simply “model”) that allows us 
to translate real-world observables into information.  [Winkler, 1972; Apostolakis, 1994]  Within this model 
of the world, there are two fundamental types of model abstractions, aleatory and deterministic.  The 
term “aleatory” when used as a modifier implies an inherent "randomness" in the outcome of a process.  
For example, flipping a coin1 is modeled as an aleatory process, as is rolling a die.  When flipping a coin, 
the “random” but observable data are the outcomes of the coin flip, that is, heads or tails.  Note that since 

                                                      
1 Flipping a coin is deterministic in principle, but the solution of the "coin-flipping dynamics" model, including knowledge of the 
relevant boundary conditions, is too difficult to determine or use in practice.  Hence, we abstract the flipping process via an aleatory 
model of the world. 

Figure 1-1. Example observed data from a hydrogen detonation (hydrogen/oxygen mix, 
0.258 lb hydrogen). 
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probabilities are not observable quantities, we do not have a model of the world directly for 
probabilities.  Instead, we rely on aleatory models (e.g., a Bernoulli1 model) to predict probabilities for 
observable outcomes (e.g., two heads out of three tosses of the coin). 

Model (of the world) A mathematical construct that converts information (including data as 
a subset of information) into knowledge.  Two types of models are 
used for risk analysis purposes, aleatory and deterministic. 

Aleatory Pertaining to stochastic (non-deterministic) events, the outcome of 
which is described by a probability.  From the Latin alea (game of 
chance, die). 

Deterministic Pertaining to exactly predictable (or precise) events, the outcome of 
which is known with certainty if the inputs are known with certainty.  As 
the antitheses of aleatory, this is the type of model most familiar to 
scientists and engineers and include relationships such as E=mc2, 
F=ma, F=G m1 m2 /r2, etc. 

 
The models that will be described herein are parametric, and most of the model parameters are 
themselves imprecisely known, and therefore uncertain.  Consequently, to describe this second layer of 
uncertainty, we introduce the notion of epistemic uncertainty.  Epistemic uncertainty represents how 
precise our state of knowledge is about the model (including its parameters), regardless of the type of 
model. [Eerola, 1994]  Whether we employ an aleatory model (e.g., Bernoulli model) or a deterministic 
model (e.g., applied stress equation), if any parameter in the model is imprecisely known, then there is 
epistemic uncertainty associated with the model (for examples of epistemic distributions, see Appendix B 
or Figure 4-2).  Stated another way, if there is epistemic uncertainty associated with the parametric inputs 
to a model, then there is epistemic uncertainty associated with the output of the model, as well.  

Epistemic Pertaining to the degree of knowledge of models and their parameters.  From 
the Greek episteme (knowledge). 

 
It is claimed that models have epistemic uncertainty, but is there epistemic uncertainty associated with 
other elements of our uncertainty taxonomy?  The answer is yes, and in fact almost all parts of our 
taxonomy have a layer of epistemic uncertainty, including the data, context, model information, 
knowledge, and inference.   
 
In summary,  

• We employ mathematical models of reality, both deterministic and aleatory. 
• These models contain parameters – whose values are estimated from information – of which 

data are a subset. 
• Uncertain parameters (in the epistemic sense) are inputs to the models used to infer the 

values of future observables, leading to an increase in scientific knowledge.  Further, these 
parameters may be known to high precision and thus have little associated epistemic 
uncertainty (e.g., the speed of light, the gravitational constant), or they may be imprecisely 
known and therefore subject to large epistemic uncertainties (e.g., frequency of lethal solar 
flares on the Moon, probability of failure of a component).  

 
Visually, our taxonomy appears as shown in Figure 1-2. 

                                                      
1 A Bernoulli trial is an experiment outcome that can be assigned to one of two poss ble states (e.g., success/failure, heads/tails, 
yes/no).  The outcomes are assigned to two values, 0 and 1.  A Bernoulli process is obtained by repeating the same Bernoulli trial, 
where each trial is independent.  If the outcome assigned to the value 1 has probability p, it can be shown that the summation of n 
Bernoulli trials is binomial distributed ~ Binomial(p, n). 
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• Figure 1-2.  Representation of the data, modeling, analysis, and inference approach that is the 
basis for taxonomy of uncertainty used in this document (for example, in estimating the Space 
Shuttle Main Engine demand failure probability). 
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1.3  Data-Model Relationship 
1.3.1 Modeling system performance  
A multitude of complex factors affect system performance.  For example, operating a trajectory console 
while fatigued increases the likelihood of an error, a caustic environment increases the likelihood of 
corrosion-induced failure, and large overpressure during an explosion may cause structural 
deformation, leading to structural failure.  In each of these scenarios, there is at least one causal 
mechanism linking the event to the resulting outcome. For example, in the case of an error at the 
trajectory console, fatigue influences the probability of experiencing the negative outcome.  If one 
evaluates statistics for the rate of console-based errors, the correlation between drowsiness and the 
chance of an error may be high.  In general though, one must infer carefully, because correlation does 
not automatically imply causation.  The time-worn example of the high positive correlation between 
crime rate and the density of churches illustrates this point.  Pearl, in his text on causation, notes, 
“Causation is much harder to measure than correlation.” [Pearl, 2000]  If correlation is the throw rug 
purchased at the local department store, causation is the Persian tapestry, much more rich, intricate, 
and interwoven. 
 
For the types of inference described in this report, we will need to determine how to make inference in 
relation to associated causal factors related to risk.  In many cases, we may not have (or choose not to 
use) a model describing the causal factors at work due to the complexity of the scenario.  In these 

cases, we rely for inference on aleatory models. 
 
We have already mentioned aleatory models such as 
the Bernoulli.  We call these models parametric 
because the key feature of these approaches is that a 
complex, unpredictable behavior is described not via 
causal mechanisms but by a simple, high-level set of 
mathematical rules, typically expressed in terms of 
only one or two parameters.  In the case of a heating 
element fails-to-operate scenario, a PRA analyst 
typically would use a Poisson1 process model and 
would be concerned with only two parameters, the 

heating element’s failure rate, λ , which is to be estimated, and the time required to operate, t (or 
mission time), which is specified.  Absent from these types of models are parameters for the explicit 
causes of failures – no breakage of the element due to vibration, no short due to current surge, no 
failures due to low-temperature embrittlement, etc.  This abstraction of a complex failure environment to 
a simple aleatory model (the Poisson process, with the key parameter “failure rate”) is illustrated in 
Figure 1-3.  Note that in this Poisson model, we do not explicitly model impact due to the environment, 
the heating element itself, or the operation.  Instead these mechanisms are included implicitly in the 
failure rate (a model parameter), which determines the probability of observed outcomes such as 
failure. 

                                                      
1 The Poisson model is defined in Section 4.2.2. 

Hill, in his work on causation related to 
disease [Hill, 1965] suggests that 

causal associations are themselves 
affected by considerations such as (in 

order of importance, with most 
important first):  strength, consistency, 

specificity, temporality, biological 
gradient, plausibility, coherence, 

experiment, and analogy. 
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• Figure 1-3.  Abstracting a complex failure environment into a simple aleatory (parametric) model.  

 
A more complex type of aleatory model, in which causes of failure are modeled more explicitly, but 
which is less frequently encountered, is sometimes termed a reliability-physics model.  In general, 
this is a model that attempts to predict the reliability of a complex process by using detailed, physics-
based deterministic models associated with observable outcomes which themselves contribute to 
failure.  For example, in the aging study described in [Smith et al, 2001], the researchers used a flow-
accelerated corrosion model to predict pipe wall thinning.  Within this aleatory model of the corrosion 
process, the researchers concerned themselves with 13 environmental variables that affected 
corrosion, including the operational time, the pipe material, the pipe geometry, the fluid velocity, the 
water chemistry, the water temperature, and the initial pipe thickness.  The rate of pipe corrosion, via a 
causation mechanism, then affected the probability of a pipe failure. 

Reliability The degree of plausibility that an item (e.g., component or system) would not 
fail during a specified time (or mission). 

 
To a large degree, current PRAs do not use such causal-based aleatory models, with some exceptions 
seen in phenomenological, structural, and human failure modeling.  Analysts generally do not use 
reliability-physics aleatory models for initiating events or hardware failures even though, in theory, they 
certainly could.  For example, if one reviewed hardware failure "causes," one could surmise a variety of 
items that do impact hardware reliability.  A short list of these hardware performance shaping factors (to 
borrow a term from human reliability analysis) include: 

“Structural failure, explosions, blockage, dust, metal fragments, thermal stresses, bending moments, 
lightning, short circuits, fabrication errors, erosion, fatigue, embrittlement...” [Andrews and Moss, 2002] 

 
While the measurement of correlation is not an exact science, neither is that of causation.   Dodge, in 
discussing uncertainty in his experimental human psychology research in the 1920s, noted, “Variability 
is quite as real as the central value.” [Dodge, 1924] Consequently, both correlation and causation may 
be described by inference methods since both can be described by different types of probabilistic 
models.  However, one common element between these two models is the data used to perform the 
analysis. 
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1.3.2  How simple is tossing a coin?  
We have explained that tossing a coin is typically evaluated using an aleatory model rather than a 
deterministic one.  However, since coin-tossing is such a commonplace process, we have many 
opportunities (at least in principle) to study the deterministic details of the coin-tossing process.  
Instead, we choose to abstract the complex physics of the toss into a simple aleatory model called the 
Bernoulli model – this is a modeling choice.  By using this Bernoulli model, we can make predictions 
about the probability of seeing a certain outcome (e.g., H H T, in three tosses of the coin, where 
H=heads and T=tails).  In reality though, the physics surrounding the coin toss are quite complex.  
Concepts such as air friction of the coin, the center of gravity (centroid) of the coin, the initial velocity 
(angular and rectilinear), etc., all come into play for the coin physics.  Many different causal factors are 
involved such as the local environment of the toss and the person doing the tossing.  A question one 
might ask is where do these factors go when we use the simpler Bernoulli model? 
 
We can identify a variety of physical manifests (the person providing the coin, the way the coin is 
tossed, the environment surrounding the coin, etc.) that play a role in the process of tossing a coin.  
However, when we turn to the Bernoulli model, these physical manifests are summarily hidden.  In 
place of these complex physical influences, we use the simple model1 known as a Bernoulli model and 
its associated aleatory likelihood function, the binomial formula for multiple tosses. Note that, within this 
likelihood, the only parameter of interest is the coin toss outcome probability (i.e., the probability of 
obtaining a head, p).  In other words, we acknowledge that the procedure of tossing a coin is quite 
involved and has a variety of real factors that influence the toss.  Our predictive ability to explicitly take 
these influences into account and determine observable outcomes – in our case the number of heads 
versus tails – is quite limited. 
 
Rather than relying on a deterministic model that represents the process of interest, we instead abstract 
the process to a higher level (a Bernoulli model) which, in this case, is at the highest level possible, that 
of utilizing the outcome probability directly in the model.  Consequently, the data that is required for this 
coin-toss model is also at the highest level possible, that of an observed outcome (heads or tails) on a 

toss of the coin. 
 
If we chose to model the coin toss by including 
the causal factors in our inference process, we 
might develop a graphical model similar to that 
shown in Figure 1-4.  This type of model is 
known as an influence diagram and is an acyclic 
graph wherein nodes represent influencing 
factors and the arcs (or arrows) between nodes 
indicate causality among these factors.  In our 
coin-tossing model, we are ultimately trying to 
make inference as to the coin toss outcome 
probability.  This probability might be that of 
tossing a head, for example.  Factors that affect 
this probability include (but are not necessarily 
limited to) items such as the coin itself (an 

asymmetrically weighted coin would increase the chance of seeing a head), the environment (it might 
be more difficult to influence the outcome when tossing a coin in a strong wind versus the still confines 
of a room), and the tossing mechanism.  While we can make this graphical model as complex as 
needed and we may have the computational tools (software/hardware) to attempt to analyze this 
model, we usually choose not to use such a detailed model.  Instead, we abstract this incredibly rich 
and complex process into the much simpler Bernoulli model.  It is this abstraction procedure that is a 
key element to defining the data requirements since the type of model chosen determines the type of 
data needed to make inference about the model parameters and to check the validity of the model.  

                                                      
1 “To choose a simple model because data are scarce is l ke searching for the key under the light in the parking lot.”  - Pierre Baldi 

The “bi” in binomial indicates two possible 
outcomes, head/tails, pass/fail, 
failure/success, etc. 
 
If more than two outcomes are possible (e.g., 
failure, degraded failure, success), then a 
multinomial model may be used.  It may also 
be possible to use the multinomial in a 
decomposition of failures, say failure due to 
stress, failure due to training, failure due to 
complexity, but in these cases, we are still 
abstracting a complex process by a high-
level model. 
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However, as we will describe later, it is possible within the Bayesian framework to infer low-level 
information when only high-level information or data are available just as easily as inferring high-level 
information when low-level information or data are available. 

 
• Figure 1-4.  A causal model representing the physics of tossing a coin as a function of causal 
factors. 
 

1.3.3  What is data?  
Earlier, data was defined as distinct observed (i.e., measured) outcomes of a physical process.  It was 
noted that data may be factual or not and that data may be known with complete certainty or not.  Later 
in this document, we will describe processes that are available to quantitatively evaluate both situations. 
 
In our definition, we stated that data are an observable quantity.  This implies a temporal constraint on 
the collection of data:  data must be collected prior to the present moment (defined as t0).  While it is 
possible to talk about data being collected in the future, such data does not exist until it is actually 
observed.  If we ask experts to predict what might happen in the future – for example, to predict how 
many U. S. launch vehicle failures we can expect to see over the next 10 years – this prediction is not a 
data collection activity.  Instead, these opinions are information, not data, since they are not observed.1  
However, it would be incorrect to then assume either: 

• This information has less organizational value than available data. 
• This information cannot be used quantitatively. 

 
Information, in all its various forms, is just as useful as data and may have more organizational value 
than data, depending on the type, quality, and quantity of the data/information. And when we describe 
the Bayesian approach to inference, we will see that information is as useful as data, it is just used in a 
different manner. 
 
When we use data (which, by definition, occurs after t0), we are transforming the data into information. 
This transformation takes place in conjunction with a model.  Note that it is possible to construct a 
model, collect data, and then produce information about an event that has occurred in the past – this 
approach occurs frequently in science because the past (especially the distant past) may be just as 
uncertain as the future.  An illustration of this for past events is shown in Figure 1-5 where temperature 
deviations (in the Northern Hemisphere) over the last 1,000 years are shown, along with uncertainty 
estimates derived via data and models.  In this figure, measured values of temperature, which we call 
“data,” are shown in red (called “direct temperatures” on the chart) while inferred information (not 
measured) are shown in blue (called “proxy data”).  In this figure, the uncertainties are shown in grey. 

                                                      
1 Such information about future outcomes of a physical process is sometimes referred to as “predicted data.” 
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• Figure 1-5.  Variations in the Earth’s surface temperature over the last millennia. (Source: 
http://www.ipcc.ch/graphics/graphics/2001syr/large/05.16.jpg ) 
 

In summary,  
• We model complex processes using either aleatory or deterministic models, where we have 

divided the  aleatory classification into simple parametric models, such as the Bernoulli model 
for coin-tossing and more complex reliability-physics models, such as the one used for flow-
accelerated corrosion by [Smith et al, 2001]. 

• These models require information for support, but the type of information varies from one 
model to the next. 

• What is known about these models and information, including data, may be uncertain, leading 
to a layer of epistemic uncertainty.  

 
If our model is as simple as Z = data1 + data2, we still end up with information (Z), but this is not a very 
useful model since it does not predict anything.  For example, if data1 = 57 marbles and data2 = 42 
marbles, then the model returns the information 99 marbles (spread across two measurements).  This 
model simply returns the aggregation of what we already saw.  Real organizational value from data 
collection and analysis comes from the "processing, manipulating, and organizing" process when we 
obtain information. 
 
What if, however, instead of data we do not know how many marbles are in our containers?  We can 
still use the same model (“+”), but in this case we would have epistemic uncertainty on the parameters 
of the model and the model would need to be modified slightly Z = d1 + d2, where each di is an 
uncertain quantity.  In this case, we will still use the data we have (if any) but we will need to infer the 
possible values of di.  Since the parameters of this model are uncertain, the information (Z) is uncertain.  
To use this information in decision-making for NASA processes, we need to identify, describe, and 
understand this uncertainty. 

Uncertainty A state of knowledge – measured by probability – represented by aleatory and 
epistemic elements. 
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2. Bayesian Inference  
 

2.1  Introduction 
In Chapter 1, we defined inference as the process of obtaining a conclusion based on the information 
available, which includes observed data as a subset.  From this, we can define Bayesian inference. 

Bayesian Inference A process of inference using Bayes' Theorem in which information is 
used to newly infer the plausibility of a hypothesis.  This process 
(Bayesian inference) produces information that adds to organizational 
knowledge.   

Information about a hypothesis beyond the observable empirical data about that hypothesis is included 
in the inference.  In this view, probability quantifies our state of knowledge and represents the 
plausibility of an event, where “plausibility” implies apparent validity.  In other words, Bayesian inference 
is a mechanism to encode information, where the encoding metric is a value (on an absolute scale 
from 0 to 1) known as a probability.   

Probability A measure of the degree of plausibility of a hypothesis.  Probability is evaluated 
on a 0 to 1 scale.   

The types of hypotheses potentially considered as a part of risk analyses can be quite varied and 
include items such as:  the ability of an astronaut to carry out an action, the temperature on the leading 
edge of a heat shield during Earth reentry, the likelihood of ground personnel incorrectly performing 
testing, the potential for redundant thrusters to fail simultaneously, the stress loading on near-by 
components during a hydrazine deflagration, and so on. 
 
Key points related to Bayesian inference include: 

• Bayesian inference produces information, specifically, probabilities related to a hypothesis.  
Bayesian Inference = Information, where Information = Models + Data + Other Information. 

• Probability1 is a measure of the degree of plausibility of a hypothesis.  Probability is evaluated 
on a 0 to 1 scale. 

• Unlike temperature though, probability – in the objective sense – does not exist (it is not 
measured, therefore it is never considered data). 

• Since probability is subjective, for any hypothesis there is no true value for its associated 
probability.  Furthermore, because model validity is described probabilistically, there is no such 
thing as a true, perfect, or correct model. 

 
First used by Laplace, the Bayesian method of inference or inductive reasoning has existed since the 
late 1700s.  [Bayes, 1763; Laplace, 1814].  Inductive reasoning relies on the fundamental concept of a 
probability as illustrated in Figure 2-1.  In general, events described as part of a risk analysis represent 
necessary elements of a scenario-based model.  These events are generally uncertain – we do not 
know exactly whether an event will occur (true) or not occur (false) and, therefore, events are described 
via probabilities.  Probability in this context corresponds to the “absolute” scale described by Sträter 
[2003] and is simply measured on a zero-to-one cardinal scale. 
  
 

                                                      
1 In this document, l ke in risk and reliability practice, we denote probabilities via different nomenclature, including f(x), π(x), P(x), 
and Pr(x). 
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• Figure 2-1.  Graphical abstraction of probability as a measure of information (adapted from 
“Probability and Measurement Uncertainty in Physics” by D’Agostini, [1995]). 
 

The use of Bayesian inference methods, as noted by risk researchers (for example, Kelly [1998]), uses 
“all of the (available) information” and “leads to better parameter estimates and to better decisions.”  
These aspects are important since organizations are often asked to make inference using sparse data.  
Consequently, waiting to obtain the “long run” objective frequency before making a decision is in many 
cases simply not possible.  Furthermore, additional information (beyond data) usable in the Bayesian 
inference framework should not be ignored.  For example, a great deal of engineering design and 
experience has gone into current NASA missions such as the Space Station and Space Shuttle – 
ignoring this bank of information based upon a desire to let the data “speak for themselves” is inefficient 
and misguided. 
 
To describe the Bayesian method of inference (or simply the “Bayes” method), we first note that logic 
theory uses a variety of deductive and inductive methods [Jaynes; 2003].  Logic theory relies on two 
plausibility statements, the so-called “strong” and “weak” statements: 

Strong: If A occurs, then B will occur B is false thus, A is false 
Weak: If A occurs, then B will occur B is true thus, A is more plausible 

 
where the observed evidence that we speak of is contained in event B. 
 
In probabilistic failure models such as those used in PRA, we generally obtain information in the form of 
the weak logic statement.  The observations we track, categorize, and analyze are failures – failures of 
hardware, software, and humans.  In terms of the logic statements above, when we record failure events, 
we have observations where B is true.  Examples of these observations include: 

• If it is raining then the sidewalk is wet.  The sidewalk is wet.  Thus, it is more plausible that it is 
raining. 

• If an engine gimble demand failure probability is 0.01, then the gimble will, on average, fail once 
in 100 starts.  The gimble failed 3 times in the last 100 tests.  Thus, it is more plausible that the 
failure probability is larger than 0.01. 
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The more failures we record, the more information we have related to the associated event A, which may 
represent hardware, software, or human performance.  As described, it is the weak logic statement that 
is used in predicting performance, where this relationship between observable events and performance 
can be described mathematically by: 

.
)(

)|()()|(
BP

ABPAPBAP =  (2-1) 

This equation of logical inference is known as Bayes’ Theorem.  If we dissect Equation (2-1), we will 
see there are four parts, as listed in Figure 2-2: 
where D   =  the Data  

H   =  our Hypothesis 
 E   = general information known prior to having updated information (or data) specific to 
   problem at hand in other words, our Experience). 

 
 

• Figure 2-2.  The equation for Bayes’ Theorem dissected into four parts. 
 
In the context of PRA, where we use probability distributions to represent our state of knowledge 
regarding parameter values in the models, Bayes’ Theorem gives the posterior (or updated) 
distribution for the parameter (or multiple parameters) of interest, in terms of the prior distribution, failure 
model, and the observed data, which in the general continuous form is written as: 

.
)()|(
)()|()|(

∫
=

θθπθ
θπθθπ

dxf
xfx1  (2-2) 

 

In this equation, π1(θ|x) is the posterior distribution for the parameter of interest, denoted as θ (note that 
θ can be vector-valued).  The posterior distribution is the basis for all inferential statements about θ, and 
will also form the basis for model validation approaches to be discussed later.  The observed data 
enters via the likelihood function, f(x|θ), and π(θ) is the prior distribution of θ. 
 
The denominator of Bayes’ Theorem is sometimes denoted f(x), and is called the marginal or 
unconditional distribution of x.  The range of integration is over all possible values of θ.  Note that it is a 
weighted average distribution, with the prior distribution for θ acting as the weighting function.  In cases 
where X is a discrete random variable (e.g., number of events in some period of time), f(x) is the 
probability of seeing x events, unconditional upon a value of θ.  In this context, which will become useful 
for model validation, f(x) will be referred to as the predictive distribution for X. 
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The likelihood function, f(x|θ), is most often 
binomial, Poisson, or exponential in traditional PRA 
applications.1  This function represents the observed 
failure generation mechanism (the aleatory failure 
model) and is also a function of the data collection 
process.  Note that the symbol “|” represents a 
conditionality, which in the case of the likelihood 
function is described as “the probability we see the 
observed data given the parameter θ takes on a 
certain value.”2 
 
Priors can be classified broadly as either informative 

or noninformative.  Informative priors, as the name suggests, contain substantive information about the 
possible values of the unknown parameter θ.  Noninformative priors, on the other hand, are intended to 
let the data dominate the posterior distribution; thus, they contain little substantive information about the 
parameter of interest.  Other terms for noninformative priors are diffuse priors, vague priors, flat priors, 
formal priors, and reference priors.  They are often mathematically derived, and there are numerous 
types in use (for example, see Appendix B). 
  

2.2   A simple example — Tossing a coin to collect data 
If we toss a coin, can we tell if it is an unfair coin?  Specifically, what can the Bayesian method do to 
assist in this inference task?  The issue that we are concerned with is the possibility of an unfair coin 
(e.g., a two-headed coin; for now, we will ignore the possibility of a two-tailed coin only to simplify the 
presentation) being used.  Let us jump directly into the Bayes analysis to see how straightforward this 
type of analysis can be in practice. 
 
First, we note that Bayesian methods rely on three items, the prior, the likelihood, and data.  The prior is 
a mechanism for encoding a state of knowledge about a hypothesis.  In this example, we have (at a 
minimum) two hypotheses (H): 

H1  =  fair coin 
H2  =  unfair coin 

 
Recall in this example, that an unfair coin implies a two-headed coin.  Thus, the probability of heads 
associated with H2 would be 1.0 (since we cannot obtain a tail if in fact we have two heads).  At this 
point, we are ready to assign the prior. 
 
Step 1:  The prior 
Knowledge of the person tossing the coin might lead us to believe there is a significant chance that an 
unfair coin will be used in the toss (perhaps this person has such a coin in their possession).  Thus, for 
the sake of discussion, let us assume that we assign the following prior probabilities to the two 
hypotheses: 

P(H1)= 0.75  P(H2) = 0.25  
 
This means that we think there is a 25% chance that an unfair coin will be used for the next toss.  
Expressed another way, this prior belief corresponds to odds of 3:1 that the coin is fair. 
 
Step 2:  The data 

                                                      
1 When dealing with repair or recovery times, the l kelihood function may be lognormal, We bull, or gamma.  If the observed 
variable is unavailability, the likelihood may be a beta distribution.  We will descr be these, and other, examples in Chapter 4. 
2 When the observed random variable is discrete, the likelihood function is a probability.  For continuous random variables, the 
l kelihood is a density function, which is proportional to a probability. 

The likelihood function, or just likelihood, 
is also known by another name in PRA 
applications – it is the aleatory model 

describing an observed physical 
process.  For example, a battery failure 
may be modeled in an electric power 

system fault tree as a Poisson process.  
Consequently, there is a fundamental 
modeling tie from the PRA to the data 

collection and evaluation process. 
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The coin is tossed once, and it comes up heads. 
 
Step 3:  Bayesian calculation to estimate probability of a fair coin, P(H1) 
The likelihood function (or aleatory model) representing “random” outcomes (head/tail) for tossing a 
coin is given by the Bernoulli model: 
 

ipEHDP =)|(  (3) 
where 
 pi = P(getting a head on a single toss conditional upon the ith hypothesis) 
The normalization constant in Bayes, P(D | E), is found by summing the prior multiplied by the 
likelihood over all possible hypotheses, or in our case: 
 

625.0)0.1(25.0)5.0(75.0)()()|( 2211 =+=+= pHPpHPEDP  (4) 
 
where for hypothesis H1, p1 = 0.5 while for H2, p2 = 1.0.  At this point, we know the prior, the likelihood 
(as a function of our one data point), and the normalization constant.  Thus, we can compute the 
posterior probability for our two hypotheses.  When we do that calculation, we find: 
 

P(H1 | one toss, data are “heads”) = 0.6 
P(H2 | one toss, data are “heads”) = 0.4 

 
The results after one toss are presented in Table 1 and show that the posterior probability is the 
normalized product of the prior probability and the likelihood (e.g., H1 posterior is 0.375/0.625 = 0.60). 
 
• Table 1. Bayesian inference of one toss of a coin on an experiment to test for a fair coin. 

 
What has happened in this case is that the probability of the second hypothesis (two-headed coin) 
being true has increased by almost a factor of two simply by tossing the coin once and getting a head.  
If it is possible to continue to collect data (which always has a beneficial impact in Bayesian methods), 
we can evaluate the data sequentially via Bayes’ Theorem as it arrives.  For example, let us assume 
that we toss the coin j times and want to make inference on the hypotheses (if a head comes up) each 
time. Thus, we toss (x = 1, 2, …, j) the coin again and again, and each time the estimate of the 
probability that the coin is fair changes.  We see this probability plotted in Figure 2-3, where initially 
(before any tosses) the prior probability of a fair coin (H1) was 0.75.  However, after five tosses where a 
head appears each time, the probability that we have a fair coin is small, less than ten percent – a 
Bayesian would claim the odds are about 10:1 against having a fair coin. 

Hypothesis Prior Probability Likelihood (prior) x 
(likelihood) 

Posterior 
Probability 

H1: fair coin (i.e., the
probability of a heads

is 0.5) 

0.75 0.5 0.375 0.60 

H2: two-headed coin
(i.e., the probability of

a heads is 1.0) 

0.25 1.0 0.250 0.40 

 Sum:  1.00  Sum:  0.625 Sum:  1.00 
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• Figure 2-3.  Plot of the probability of a fair coin as a function of the number of tosses. 
 
 

Odds The odds of an event is determined by taking the ratio of the event probability and one 
minus the event probability, or:  Odds = Event Probability / (1 – Event Probability). 

 
At this point, one may be wondering what tossing a coin has to do with PRA or data analysis.  The 
short answer to that query is that, just as in the simple coin-tossing example, Bayesian methods 
provide a structured and consistent way (logically and mathematically) to perform quantitative inference 
in situations where we have experience (i.e., prior information) and subsequent data.  The same 
aleatory models (Bernoulli model for failures on demand, Poisson model for failures in time) that are 
used for coin-tossing and radioactive decay are applied to the basic events in traditional PRAs. 
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3. Data Collection Methods  
 

3.1  Introduction 
3.1.1  Key Topical Areas  
This section provides an overview of the types of information and data of interest, the sources of these, 
and type classifications.  The concept of a taxonomy specific to risk and reliability analysis is described.  
Lastly, an example case study is presented – this case study will be used in the next Chapter to 
demonstrate the inference methods. 
 
3.1.1  Types of Information and Data  
The focus of a data collection process is to inform future risk/reliability assessments, which themselves 
inform decision-making processes.  As noted by Vesely, “the data analysis results serve as an input to 
the risk analysis…risk analysis, however, also affects the data collection and data analysis…” [ASME, 
1977]  The implication is that data “collection” and “analysis” are not performed in isolation – an 
understanding of the intended use and application of the process results should be present during the 
design and implementation of the analysis methods. 
 
The analysis methods described in this document are applicable to a wide variety of inference 
situations, including those outside the risk and reliability community.  Consequently, we could 
generalize the methods herein very broadly.  However, the focus of this document is to demonstrate 
these methods as they pertain to risk and reliability practices.  Within these boundaries, the types of 
information and data to be described are found in a relatively narrow set. 
 
A general description of the type of information and data dealt with in this document is that we are 
looking at failure, success, or degradation for systems or components.  As we will describe in the next 
Chapter, information or data that is vague, uncertain, or only somewhat applicable is still useful when 
inferring the performance of systems or components.  We illustrate this concept of ancillary information, 
in a qualitative fashion, in Figure 3-1, where two key attributes, applicability and precision, of data and 
information are shown.  Within this figure, the term “applicability” implies the degree of specificity 
between the set of information and the inference being made.  For example, if we are inferring the 
failure probability of a pulsed plasma thruster, “complete applicability” information would need to be 
specific to that unique thruster type.  Conversely, “minimal applicability” information could be failures for 
the general class of “thrusters.” 
 
In Figure 3-1, the term “precision” implies the amount of quantitative information available for the 
inference process.  In the pulsed plasma thruster, an example of “high precision” information would be 
when the thruster has been designed, constructed, tested, and operated under real conditions, where 
this history is available for analysis.  The converse, “low precision” information would be when no test or 
operational data are available for the thruster. 
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• Figure 3-1. Qualitative listing of the types of data/information that are used for risk and reliability 
inference. 

 

Generic data Surrogate or non-specific information related to a class of parts, components, 
subsystems, or systems. 

As new data are collected, analysts will incorporate these into existing data collection systems.  These 
data will be processed as specific missions are underway and are completed.  Over time, the set of 
data and information will be used to perform inference on a variety of classes of systems and 
components.  This knowledge base will span a variety of needs, from inferring “high level” performance 
of complex systems to “low level” reliability of specific parts. 
 

3.2   Mission Development Phase and Data Availability 
Different types of data come about for a component/system at different times or phases.  For example, 
information is known in the design phase that may provide some use even if the information is 
imprecise or only partially applicable.  During a mission, data may be available on component/system 
performance, but, depending on the mission type, specific data on the nature of an incident may not be 
available. 
 
A variety of process phases are followed for NASA activities.  For example, the System Engineering 
Technical Processes (as defined by NPR 7123.1 Systems Engineering Processes and Requirements 
and the SP-2007-6105 Systems Engineering Handbook), list: 

• Requirements Design 
• Technical Solution Definition 
• Technical Planning 
• Technical Control 
• Technical Assessment 
• Technical Decision Analysis 
• Product Transition 
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• Evaluation 
• Design Realization 

 
Some of these engineering phases are programmatic in nature and may provide (relatively) more 
information than data. 
 

3.3   Sources of Data and Information 
3.3.1  NASA and Aerospace-Related Data Sources  
NASA has performed risk and reliability assessments for a variety of vehicles and missions for over 40 
years.  Each of these quantitative evaluations tends to increase the general collection of risk and 
reliability information when this information is stored or published for later use.  In addition to the 
individual quantitative evaluations, NASA also manages incident reporting systems, for example via the 
Problem and Corrective Action (PRACA) system.  PRACA systems have served as key information 
repositories and have been used in analyses such as the Shuttle PRA and the Galileo RTG risk 
assessment.  A selection of other NASA data collection systems includes: 

• Center-specific Problem Reporting systems (to record pre- and operational anomalies) 
• The Spacecraft On-Orbit Anomaly Reporting system 
• The Problem Report/Problem Failure Report (PR/PFR) system 
• Incident, surprise, and anomaly reports 
• PRA and reliability analysis archives (e.g., Shuttle, ISS) 
• Apollo Mission Reports  
• The Mars Exploration Rover Problem Tracking Database  
• Results of expert elicitation 

 
Within NASA, the treatment of intellectual property and data rights fall under the umbrella of the Office 
of General Counsel.  In short, processes are in place to control issues such as data rights, publication 
of data, and the release of information outside of NASA.  NASA, in general, does fall under the 
Freedom of Information Act (FOIA), which permits the right of access to agency records unless 
specifically exempted. Proprietary documents containing private sector trade secrets and commercial 
information, generated outside NASA, but in the control of NASA, are exempt from disclosure by FOIA. 
 
Implications of proprietary data will manifest themselves for any computerized implementation of a data 
repository.  The data repository may need to be constructed such that proprietary data are 
characterized as such so that only applicable users have access to this information.  In this case, 
inference will – in many cases – draw upon both proprietary and non-proprietary sources.  Data 
classified as International Traffic in Arms Regulations (ITAR) will restrict its availability to U.S. persons. 
 
3.3.2  Other Data Sources  
Outside the NASA and associated industries, a large set of risk and reliability data/information is 
collected.  While many of these knowledge sources fall into the category of “generic” data, their 
applicability to NASA applications may be high in certain instances.  Examples of these sources 
include: 

• IEEE Std 500-1984 
• NUCLARR (updated version is called NARIS) 
• Nuclear industry EPIX/RADS system 
• The Military Handbook for Reliability Prediction of Electronic Equipment MIL-HDBK-217F 
• Government-Industry Data Exchange Program (GIDEP) 
• Reliability Information Analysis Center (RIAC) 
• Nonelectronic Parts Reliability Data, [Rome Air Development Center, 1995] NPRD-95 
• International Common Cause Failure Data Exchange (ICDE) 
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The GIDEP is a cooperative activity between government and industry for the goal of sharing technical 
information essential during the life cycle of systems or components. As part of GIDEP, the “Reliability 
and Maintainability Data” contains information for methods for reliability and maintainability processes. 
 
Other sources of data include non-U.S. experience such as launch vehicle performance (e.g., Ariane) 
and Russian experience (e.g., Soyuz, Proton).  However, the availability of quality non-U.S. data is 
generally limited with a few exceptions (e.g., the OREDA Offshore REliability DAta). 

 

3.4   Risk and Reliability Lexicon 
The goal of inference is to enrich an organization’s knowledge base.  To successfully carry out this 
inference process within an organization, information must be transmitted between entities in the 
organization.  Consequently, a common vocabulary, or lexicon, must be established to avoid increasing 
inference uncertainty due to miscommunication. 
 
Failure databases use a hierarchical system (i.e., taxonomy) to create structure and logic between the 
listed items. One of the key items found when constructing any taxonomy is an identifiable boundary 
around the piece(s) of equipment to be tracked.  A second key item in failure taxonomies is the text to 
describe the failure itself, or the so-called “failure mode.”  To depict these system-related constituents, 
we need to define the terms of interest.  Definitions of the terms in our failure hierarchy are: 

System A group of subsystems and components organized as a whole. A system may 
have one or more functions. 

Subsystem A group of components comprised as a portion of a system. 

Component A group of parts designed to work together to perform a specific function.  
Components are constituents of systems and subsystems. 

Part The smallest piece of hardware contained in a component.  One piece of 
hardware, or a group of pieces, that cannot be disassembled without 
destruction. Examples of a part are a bolt, resister, or electronic chip. 

Failure A loss of function for a system, subsystem, component, or part. 

Failure Cause A causal impact leading, either indirectly or directly, to failure. 

Failure Mode A specific type of failure, describing the manner of failure. 

Failure Effect An outcome resulting from a failure.  A failure may have multiple effects. 

As we will demonstrate in Section 4, inference may be performed at any level of this failure hierarchy.
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3.5   Taxonomies and Classification 
Using a taxonomy implies a knowledge structure used to describe a parent-child relationship (i.e., a 
hierarchy).  Under the guidelines for evaluation of risk and reliability-related data, the taxonomy 
provides the structure by which data and information elements provide meaning to analysts.  In this 
section, we demonstrate examples of taxonomies for possible use in risk and reliability inference 
processes.  The intent of this section is to describe ways in which taxonomies are used to classify 
structures related to data collection.  The examples listed in this section should not be construed as 
definitive taxonomies for failure classification – that exercise must be accomplished during 
implementation of a specific data collection system. 
 
Within the risk and reliability community, a variety of taxonomies and associated definitions are used.  
We will first explore a variety of these to provide a sense that, depending on the application, some 
variation in the structure details is possible. 
 
In a recent paper, Tumer, Stone, and Bell acknowledge that a variety of potential failures can be 
detected at the conceptual design phase. [Tumer Stone Bell, 2003]  As part of this work, they 
attempted to derive what they called “elemental” failure modes based upon physical properties, with the 
goal to place these properties into a failure taxonomy.  Relying on failure modes and effects analysis 
and earlier classification work, they developed a loss-of-function failure taxonomy that included a first 
level of: 

Corrosion Wear  Impact  Fretting  Creep  Fatigue 
Thermal  Galling  Spalling  Radiation Buckling  Rupture 

If one were concerned about the physical causes of failures, a set of physics-based causal factors such 
as these would be required.  However, this low level of information is not necessary if the inference 
being made for a specific component or system is concerned with – in general – failures or successes.  
If, instead, we wished to infer the probability of failure conditional upon a specific failure mechanism, we 
would need to have information related to the nature of failure.  Birolini, in his reliability text, suggests 
that failures should be classified by mode, cause, and effect [Birolini, 2004]. 
In other words, this classification can take place via a failure modes and effects analysis, similar to the 
functional failure modes and effects analysis as described in MIL-STD-1629. [MIL-STD-1629, 1984]  
Henley and Kumamoto carried this idea one step further when they proposed a formal cause-
consequences structure to be stored in an electronic database. [Henley and Kumamoto, 1985]  In their 
approach, specific keywords, called modifiers, would be assigned to equipment failures.  For example, 
modifiers for on-off operation included:  close, open, on, off, stop, restart, push, pull, and switch. 
 
The NASA PRA Procedures Guide [NASA, 2002] describes an event classification process as: 

System 
└ Component 
   └ Failure Mode 
      └ Affected Item 
         └ Failure Mechanism 
            └ Failure Cause 

The lowest level in this hierarchy, failure cause, would provide a bridge back to the Tumer, Stone, and 
Bell loss-of-function failure taxonomy.   
 
In 2006, the NASA Engineering and Safety Center Working Group led an activity to produce a common 
taxonomy for structuring nonconformances, anomalies, and problems. [NASA, 2006b]  While not a 
failure taxonomy, Appendix A of that report provides a hierarchical identification of the problematic item.   
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This structure looks like: 

Item 
└ System 
  └ Subsystem 
    └ Assembly 
      └ Component 
Problem Type 
└ Catastrophic failure 
└ Failure to meet primary objective(s) 
└ etc. 
Mission Type 
└ Crewed (human) 
└ Uncrewed (robotic) 
└ etc. 
Vehicle/Spacecraft Type 
└ Shuttle 
└ International Space Station 
└ etc. 
Failure Mode 
Lifecycle phase 
└ Manufacture 
└ Assembly and integration 
└ etc. 

If we evaluate complex systems within specific missions, detailed types of taxonomies down to the 
component level may be found, for example, from 
http://nasataxonomy.jpl.nasa.gov/nasinst/index_tt.htm : 
 

Instruments 
. Accelerometers 
. Acoustic Sensors 
. Anemometers 
. Antennae 
. Barometers 
. Beta Detectors 
. Cameras 
. . CCD Cameras 
. . Framing Cameras 
. . Imaging Cameras 
. . Vidicon Camera 
. Charged Particle Analyzers 
. Cosmic Dust Analyzers 
. Dosimeters 
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Lastly, in NPR 7120.5D “NASA Space Flight Program and Project Management Requirements,” a 
hierarchy related to programs and their life cycles was defined. [NASA, 2007]  This hierarchy down to 
the project level appears as: 
 

Mission Directorate 
└ Program 
   └ Project 

 
where 

 
Program a strategic investment by a Mission Directorate or Mission Support Office that has a defined 

architecture, and/or technical approach, requirements, funding level, and a management 
structure that initiates and directs one or more projects. A program defines a strategic direction 
that the Agency has identified as needed to implement Agency goals and objectives. 

 
Project a specific investment identified in a Program Plan having defined requirements, a life-cycle cost, 

a beginning, and an end. A project also has a management structure and may have interfaces to 
other projects, agencies, and international partners. A project yields new or revised products that 
directly address NASA’s strategic needs. 

 
Also, within this NPR, the program life cycle is given by two general phases: 

• Formulation – The technical approach is derived and initial project planning is performed. 
• Implementation – The program acquisition in which the approval, implementation, integration, 

operation, and ultimate decommissioning are performed. 
 
Outside of NASA, a new standard, ISO 14224, focused on the collection and processing of equipment 
failure data has been produced.  Other guidance on data collection taxonomies may be found from the 
following sources: 

• ISO 6527:1982 Nuclear power plants -- Reliability data exchange -- General guidelines 
• ISO 7385:1983 Nuclear power plants -- Guidelines to ensure quality of collected data on 

reliability 
• ISO 14224:2006 Petroleum, petrochemical and natural gas industries -- Collection and 

exchange of reliability and maintenance data for equipment 
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3.6   Case Study System Description 
Future (hypothetical) spacecraft most likely will employ a crew module containing a variety of systems 
including avionics, thermal control, power, environmental control, and so on.  To demonstrate the 
methods applications described in Section 4 of this document, one of these systems – active thermal 
control – will be used as an expanded case study. 
 
3.6.1  Active Thermal Control System (ATCS)  
The ATCS reference architecture for this study is shown in Figure 3-2.  The system criteria and 
assumptions for the ATCS are given below. 
 
The ATCS provides the capability to remove heat from various components within the crew module. 
This system is a two-string system with a primary loop (Loop A) and a secondary (standby) loop (Loop 
B). The major components of the primary loop include: 

• Refrigerant tank (accumulator) 
• Coolant circulation pump 
• Radiators (two in parallel for each loop) 
• Mixing valve 
• Level sensor 
• Various check and manual (isolation) valves 

 
Electric power to the pump and sensor is provided by a separate system (the electric power system).  
The pump control signals come from the avionics system, which monitors the system via a variety of 
temperature and coolant level sensors.   
 
Two radiators, which are common to each loop, provide heat rejection. Heat rejection is assumed to be 
successful if one of the radiators is functional. 
 
The system is failed if coolant is not supplied to at least one of the radiators in either Loop A or Loop B.  
Loop A operates continuously, while Loop B provides backup capability but is normally in a quiescent 
condition.  Switchover to Loop B is controlled by crew personnel. 
 
The level sensor has on-board software that controls its functionality.  This sensor also interacts with 
the avionics system and is powered by the DC power system.  Crew personnel interact with the 
avionics system in order to set operational parameters for the ATCS. 
 
Other parts of the system include the relevant piping and electrical cabling. 
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• Figure 3-2.  Active thermal control system diagram. 
 

3.6.2  ATCS Component Taxonomy  

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 

 
Under the ATCS subsystem, we have identified two additional subsystems: 

└ Subsystem: Loop A 
└ Subsystem: Loop B 

 
Under each of these subsystems, a variety of components and parts exist.  For example, within the 
Loop A subsystem, we have: 
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Component: Refrigerant tank  
Component: Circulation pump 
Component: Radiator I 
Component: Radiator II 
Component: Mixing valve 
Component: Level sensor 
Component: Manual valve I 
Component: Manual valve II 
Component: Manual valve III 
Component: Manual valve IV 
Component: Check valve 
Component: Header 
Component: System piping 
Component: Power cabling 
Component: Control cabling 
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4. Parameter Estimation 
  

4.1  Preface to Chapter 4 
This chapter is not written in the typical style of other data analysis guides and textbooks, in the sense 
that it contains few equations and references to the technical literature.  Instead WinBUGS scripts are 
used in place of equations (for assistance in the “how to” of running these scripts, see Appendix C) in 
the hope that they will convey essential concepts to a more practically-oriented audience.  OpenBUGS, 
commonly referred to as WinBUGS, is an open-source Markov chain Monte Carlo (MCMC) based 
Bayesian updating software that will run on Microsoft Windows™, Linux, and Mac OS X™ (using the 
Wine emulator) platforms.  Furthermore, these scripts can be adapted to problems at hand by analysts 
in the various NASA Centers.  To complement the MCMC approach, we provide a mathematical basis 
of Sections 4.2.1, 4.2.2, and 4.2.3 in Appendix D.  Additional technical bases and mathematical details 
behind the remaining topics treated in Chapter 4 will be provided later in a supplemental report. 
 
For most of the example problems, the document uses the MCMC approach. MCMC methods work for 
simple cases, but more importantly, they work efficiently on very complex cases.  Bayesian inference 
tends to become computationally intensive when the analysis involves multiple parameters and 
correspondingly high-dimensional integration.  As noted by NUREG/CR-6823 (the Handbook of 
Parameter Estimation for Probabilistic Risk Assessment): 
 

"A practical consequence of the high dimension of [the parameter of interest] is that...numerical integration 
and simple random sampling methods do not work well.  More recently developed methods, versions of 
MCMC, must be used." 
 

MCMC methods were described in the early 1950s in research into Monte Carlo sampling at Los 
Alamos.  Recently, with the advance of computing power and improved analysis algorithms, MCMC is 
increasingly being used for a variety of Bayesian inference problems.  MCMC is effectively (although 
not literally) numerical (Monte Carlo) integration by way of Markov chains.  Inference is performed by 
sampling from a target distribution (i.e., a specially constructed Markov chain, based upon the inference 
problem) until convergence (to the posterior distribution) is achieved. 
 
The approach that is taken in the document is to provide analysis “building blocks” that can be 
modified, combined, or used as-is to solve a variety of challenging problems.  The MCMC approach 
used in the document is implemented via textual scripts similar to a macro-type programming 
language.  Accompanying each script is a graphical diagram illustrating the elements of the script and 
the overall inference problem being solved.  In a production environment, analysis could take place by 
running a script (with modifications keyed to the problem-specific information).  Alternatively, other 
implementation approaches could include:  (1) using an interface-driven front-end to automate an 
applicable script, (2) encapsulating an applicable script into a spreadsheet function call, or (3) creating 
an automated script-based inference engine as part of an information management system.  
 
To assist the analyst in maneuvering through Section 4.2 of this chapter, we describe key elements of 
the single parameter estimation process by way of the flow diagram shown in Figure 4-1. 
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• Figure 4-1.  Flow diagram to guide the selection of analysis methods for parameter estimation in 
Section 4.2. 

 
In this document, WinBUGS scripts are indicated by way of formatted text inside a shaded box, such 
as: 

model { x ~ dbin(p, n) # Binomial dist for number of failures in n demands… } 

 
Note that comments, inside the script, are preceded with the “#” character.  Additional detail on the 
parts of WinBUGS scripts and how to run the scripts are provided in Appendix C. 
 
 

4.2  Inference for Common Aleatory Models 
We begin with the most commonly encountered situations in PRA, which meet the following three 
assumptions: 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) 
contains a single unknown parameter. 

 The prior information is homogeneous and is known with certainty1. 
 The observed data are homogeneous and are known with certainty. 

 
More complicated inference, where one or more of these conditions are not satisfied, is described in 
later sections of this chapter.  We treat the three most common aleatory models in this section: 

• Binomial distribution for failures on demand  
• Poisson distribution for initiating events and failures in time 
• Exponential distribution for random durations, such as time to failure or time to recover 
 

Lastly, we close this section with guidance on selecting prior distributions for single-parameter 
problems. 

                                                      
1 For discussion and examples of uncertain priors and data, see Section 4.8. 
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Homogeneous A set of information made up of similar constituents. A homogeneous 
population is one in which each item is of the same type. 

 
4.2.1  Binomial Distribution for Failures on Demand  
This model is often used when a component must change state in response to a demand.  For 
example, a relief valve may need to open to relieve pressure upon receipt of a signal from a controller 
that an over-pressure condition exists.  The following assumptions underlie the binomial distribution: 

 There are two possible outcomes of each demand, typically denoted as success and failure. 
 There is a constant probability of failure (in PRA, this is typically success in reliability 

engineering) on each demand, denoted herein as p. 
 The outcomes of earlier demands do not influence the outcomes of later demands (i.e., the 

order of failures/successes is irrelevant). 
 

The unknown parameter in this model is p, and the observed data are the number of failures, denoted 
by x, in a specified number of demands, denoted as n.  Both x and n are assumed to be known with 
certainty in this section.  Cases in which x and n are uncertain are treated in a later section. 
 
Note that the binomial distribution describes the aleatory uncertainty in the number of failures, x.  The 
Bayesian inference describes how the epistemic uncertainty in p changes from the prior distribution, 
which describes the analyst’s state of knowledge about possible values of p before data are collected, 
to the posterior distribution, which reflects how the data have altered the analyst’s state of knowledge. 
 

4.2.1.1 Binomial Inference with Conjugate Prior—The simplest type of prior distribution 
from the standpoint of the mathematics1 of Bayesian inference is the so-called conjugate prior, in 
which the prior and posterior distribution are of the same functional type (e.g., beta, gamma), and the 
integration in Bayes’ Theorem is circumvented.  Not every aleatory model will have an associated 
conjugate prior, but the four most commonly used models do.  For the binomial distribution, the 
conjugate prior is a beta distribution. 
 
Two parameters are needed to describe the beta prior distribution completely, and these are denoted 
alphaprior and betaprior.  Conceptually, alphaprior can be thought of as the number of failures contained in 
the prior distribution, and the sum of alphaprior and betaprior is l ke the number of demands over which 
these failures occurred.  Thus, small values of alphaprior and betaprior correspond to less information, and 
this translates into a broader, more diffuse prior distribution. 
 
With the data consisting of x failures in n demands, the conjugate nature of the prior distribution and 
likelihood function allows the posterior distribution to be determined using arithmetic.  The posterior 
distribution is also a beta distribution, with newly adjusted (labeled “post”) parameters given by: 

alphapost = alphaprior + x 
betapost = betaprior + n – x. 
 

From the properties of the beta distribution (see Appendix B), the prior and posterior mean of p are 
given by: 

Prior mean = alphaprior/(alphaprior + betaprior) 
Posterior mean = alphapost/(alphapost + betapost) 
 

Credible intervals (e.g., see Figure 4-2) for either the prior or the posterior can be found using the 
BETAINV() function built into modern spreadsheets. 

                                                      
1 Discussion of the mathematical details may be found in Appendix D. 
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Credible Interval Bayesian inference produces a probability distribution.  The “credible 
interval” consists of the values at a set (one low, one high) of specified 
percentiles from the resultant distribution.  For example, a 90% credible 
interval ranges from the value of the 5th percentile to the value of the 95th 
percentile. 

   
Percentile A percentile, p, is a specific value x such that approximately p% of the 

uncertainty is lower than x and (100-p)% of the uncertainty is larger than x.  
Common percentiles used in PRA include the lower-bound (5th percentile), 
the median (50th percentile), and upper-bound (95th percentile). 

 
In summary, for conjugate distributions (e.g., beta prior when using a binomial aleatory model), we can 
solve the Bayesian inference problem by: 

1. Knowing that the posterior distribution is the same type, but with “updated” parameters, as the 
prior. 

2. Numerically integrating Equation 2-2 (via tools like Mathematica or Maple) with the applicable 
prior distribution and aleatory model.  Note that when using a conjugate prior, numerical 
integration is not needed since the posterior can be found directly (using the equations above), 
but numerical integration is a general method for Bayesian inference. 

3. Numerically simulating Equation 2-2 using MCMC (via tools like OpenBUGS) with the 
applicable prior distribution and aleatory model. Note that when using a conjugate prior, 
numerical simulation is not needed since the posterior can be found directly, but numerical 
simulation is a general method for Bayesian inference. 

 
• Figure 4-2.  Representation of a probability distribution (epistemic uncertainty), where the 90% 
credible interval (0.04 to 0.36) is shown. 
 

We demonstrated (above) method #1 for the beta/binomial case by noting that the posterior is a beta 
distribution with parameters alphapost = alphaprior + x and betapost = betaprior + n – x.  Note that properties 
of the beta distribution may be found in Appendix B. 
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• Example 1. Relief valve fails to open (binomial model) and beta prior. 
The prior distribution for failure of a relief valve to open on demand is given (from an industry 
database) as a beta distribution with 

• alphaprior = 1.24 
• betaprior = 189,075. 

Assume two failures to open have been seen in 285 demands.  Find the posterior mean of p, 
the probability that the valve fails to open on demand and a 90% credible interval for p. 

 
Solution 
We begin by noting that the mean of the beta prior distribution is 1.24/(1.24 + 189,075) = 6.56 × 10-6.  
Because alphaprior is relatively small, the prior distribution expresses significant epistemic uncertainty 
about the value of p.  This can be quantified by calculating a 90% credible interval for p based on the 
prior distribution.  We use the BETAINV() function to do this.  The 5th percentile of the prior distribution is 
given by BETAINV(0.05, 1.24, 189075) = 5.4 × 10-7 and the 95th percentile is given by BETAINV(0.95, 
1.24, 189075) = 1.8 × 10-5, a spread of almost two orders of magnitude. 
 
With two failures to open in 285 demands of the valve, and the assumption that these failures are 
described adequately by a binomial distribution, the posterior distribution is also a beta distribution, with 
parameters alphapost = 1.24 + 2 = 3.24 and betapost = 189,075 + 285 – 2 = 189,226.  The posterior mean 
of p is given by 3.24/(3.24 + 189,226) = 1.7 × 10-5.  The 90% posterior credible interval is found using the 
BETAINV() function, just as was done for the prior interval above.  The posterior 5th percentile is given by 
BETAINV(0.05, 3.24, 189226) = 5.0 × 10-6 and the 95th percentile is given by BETAINV(0.95, 3.24, 
189226) = 3.5 × 10-5.  Note how the epistemic uncertainty in the prior distribution has been reduced by 
the observed data.  This is shown graphically in Figure 4-3, which overlays the prior and posterior 
distribution for this example. 
 

 
• Figure 4-3.  Comparison of prior and posterior distributions for Example 1. 
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Inference for conjugate cases can also be carried 
out using MCMC approaches (such as with 
OpenBUGS).  Script 1 implements the 
binomial/beta conjugate analysis.  For problems 
such as this, where there is only one unknown 
parameter to be estimated, the analyst should use 
100,000 iterations, discarding the first 1,000 to 
allow for convergence to the posterior distribution.  
Monitoring node p will display the desired 
posterior results. 

 
Within Script 1 (and the remaining scripts), the following notation is used: 

• “~” indicates that the variable to the left of “~” is distributed as the distribution on the right of “~.”  
Examples of distributions include binomial (dbin), beta (dbeta), gamma (dgamma), Poisson 
(dpois), normal (dnorm), and lognormal (dlnorm). 

• “#” indicates that the text to the right of “#” is a comment. 
• “<-” indicates that the variable to the left of “<-” is equivalent to the expression on the right of 

“<-.” 
 

• Script 1.  WinBUGS script for Bayesian inference with binomial likelihood and beta conjugate prior. 
 

A directed acyclic graph (DAG) is a common way of displaying a Bayesian inference problem and is the 
underlying model used by WinBUGS (in script form).  In a DAG, observed aleatory variables (such as x 
for the binomial inference problem above) are displayed as ovals that contain no children nodes (i.e., 
the “lowest” level in the diagram).  Uncertain variables that influence x are shown at a higher level in the 
DAG, and are connected by arrows to the variables they influence (i.e., they are parents of the node 
they influence).   Constant parameters (such as n above) are also shown in the DAG as diamonds.  We 
will display the DAG associated with each WinBUGS script in this document; however, it is not 
necessary to develop the DAG, as WinBUGS uses the script representation for its analysis. 
 
For relatively simple problems, a DAG can be an aid in understanding the problem, particularly for an 
analyst who is new to WinBUGS.  However, as the complexity of the problem increases, most analysts 
will find that the script representation of the problem is clearer.  We will use the following conventions 
for DAGs in this document.  Note that all variables, which are referred to as nodes by WinBUGS, can 
be scalars, vectors, matrices, or arrays. 

• Ovals represent stochastic variables whose uncertainty (either aleatory or epistemic) is 
represented by a probability distribution. 

• Diamonds represent constant parameters (no uncertainty). 
• Rectangles represent calculated parameters.  As such, their probability distribution is not 

specified by the analyst but is calculated by WinBUGS from an equation within the script.1 

                                                      
1 Note that within WinBUGS, rectangles always represent constant (nonstochastic) nodes.  We have deviated from this convention 
to more clearly indicate which variables, stochastic or constant, are being calculated inside a WinBUGS script.  

In many problems, fewer iterations 
would suffice.  However, it is prudent to 

take more samples than the absolute 
minimum, so for problems involving one 
parameter, we recommend 1,000 burn-in 
iterations, followed by 100,000 iterations 

to estimate parameter values. 

model {    # A Model is defined between { } symbols 
x ~ dbin(p, n)    # Binomial dist. for number of failures in n demands 
p ~ dbeta(alpha.prior, beta.prior)  # Conjugate beta prior distribution for p 
} 
 
data 
list(x=2, n =285)     # Data for Example 1 
list(alpha.prior=1.24, beta.prior=189075)  # Prior parameters for Example 1 
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• Dashed lines are sometimes used for clarification when certain parameters are entered or 
calculated in the script as part of other nodes.   
o In cases where the node is used as inference, the arrow will be connected to the dashed 

symbol.   
o In cases where the parameter within the node is used as inference, the arrow will be 

connected to the symbol within the dashed node. 
 
Figure 4-4 shows the DAG corresponding to the WinBUGS Script 1.  This DAG illustrates that x is the 
observed variable, because it is a node with no children node.  This node (x) is an uncertain variable, 
indicated by its oval shape.  Its value is influenced by p (p is a parent node to x), which is the 
parameter of interest in this problem; we observe x (with n specified), and use this information to infer 
possible values for p.  The dashed region at the top of the DAG, labeled “Beta Prior,” clarifies the type 
of prior distribution used for p, and indicates that the parameters of this distribution (alpha and beta) 
are entered by the analyst. 

 
• Figure 4-4.  DAG representing Script 1. 
 
4.2.1.2 Binomial Inference with Noninformative Prior—As the name suggests, a 

noninformative prior distribution contains little information about the parameter of interest, which in this 
case is p.  Such priors originated in a (continuing) quest to find a mathematical representation of 
complete uncertainty.  This has led some to conclude that they should be used when one knows 
nothing about the parameter being estimated.  As discussed in earlier sections, this is almost never the 
case in practice, and use of a noninformative prior in such a case can lead to excessively conservative 
results.  Therefore, there are two situations in which a noninformative prior may be useful: 

1. The first is where the observed data are abundant enough to dominate the information 
contained in any reasonable prior, so it does not make sense to expend resources developing 
an informative prior distribution. 

2. The second is where the analyst wishes to use a prior that has little influence on the posterior, 
perhaps as a point of reference.1 

 

                                                      
1 Note that the numerical results of a Bayesian analysis with noninformative priors will typically be similar (in numerical values) to a 
frequentist analysis. 

p

x

Beta Prior

n

alpha beta
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Noninformative priors are also known as formal 
priors, reference priors, diffuse priors, and vague 
priors.  For clarity, we will refer to them as 
noninformative priors in this document, as that is 
the name most commonly employed in PRA.  
Unfortunately, there are many routes that lead to 
slightly different noninformative priors, and the 
intuitive choice of a uniform prior is not what is 
usually used in PRA.  The most common 
noninformative prior for single-parameter inference 
in PRA is the Jeffreys prior (see Appendix B.7.8 
for the Jeffreys prior for the binomial model). 

The Jeffreys functional form is dependent upon the likelihood function, so there is not a single “Jeffreys 
prior” for all cases.  Instead, there is a different Jeffreys prior for each likelihood function.  For the case 
here, where the likelihood function is the binomial distribution, the Jeffreys prior is a beta distribution 
with both parameters equal to 0.5.  Thus, inference with the Jeffreys prior is a special case of inference 
with a beta conjugate prior.  Consequently, all of the results described in Section 4.2.1.1 apply in the 
case of the Jeffreys prior, but with alphaprior and betaprior both equal to a value of 0.5.  Using the Jeffreys 
prior with the binomial model leads to a posterior mean of (x + 0.5) / (n + 1). 
 

Note that if x and n are small (sparse data), then 
adding “half a failure” to x may give a result that is 
felt to be too conservative.  In such cases, a 
possible alternative to the Jeffreys prior is like a 
beta distribution with both parameters equal to zero 
(the “zero-zero” beta distribution).  This is not a 
proper probability distribution, but as long as x and 
n are greater than zero, the posterior distribution 
will be proper and the posterior mean will be x / n. 
Conceptually, adjusting the beta prior so that 
alphaprior and betaprior both have small values (in the 
limit, zero) tends to reduce the impact of the prior 

and allows the data to dominate the results.  Note, though, that when alphaprior and betaprior are equal, 
the mean of this beta prior is 0.5.  The prior should reflect what information, if any, is known 
independent of the data. 
 

4.2.1.3 Binomial Inference with Nonconjugate Prior—A nonconjugate prior is one in which the 
prior and posterior distribution are not of the same functional form.  In such cases, numerical integration is 
required for the denominator of Bayes’ Theorem.  In the past, this has been a limitation of Bayesian inference, 
and is one reason for the popularity of conjugate priors.  However, cases often arise in which a nonconjugate 
prior is desirable, despite the increased mathematical difficulty.  As an example, generic databases often 
express epistemic uncertainty in terms of a lognormal distribution, which is not conjugate with the binomial 
l kelihood function.  In this section, we describe how to carry out inference with a lognormal prior, which is a 
commonly-encountered nonconjugate prior, and with a logistic-normal prior, which is similar to a lognormal prior 
but is more appropriate when the values of p are expected to be nearer one.1 

 
Although spreadsheets can be used to carry out the required numerical integration for the case of a 
single unknown parameter, another way to deal with nonconjugate priors is with WinBUGS.  We 
illustrate the case of a lognormal prior with the following example. 

                                                      
1 Note that in a reliability analysis, as opposed to a PRA, the unknown parameter of interest might be q = 1 – p, in which case q 
would be close to one for many components. 

With lots of observed data, the 
prior will have little influence on 
the posterior.  So why not just 

use the data alone?  Remember 
that a probability distribution is 

required to propagate 
uncertainty, so Bayes’ Theorem 
is still used to obtain a posterior 

distribution. 

Caution: 
When using the “zero-zero” non-

informative prior (a beta 
distribution with both parameters 

set to zero) as an alternative to 
the Jeffreys prior, the number of 
failures x must be one or more 
(or the posterior will not be a 

proper distribution). 
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• Example 2. Relief valve fails to open (binomial model) and lognormal prior. 

Continuing with the relief valve from Example 1, assume that instead of the conjugate prior in that 
example, we are using a generic database that provides a lognormal prior for p. 

 
Assume the generic database lists the mean failure probability as 10-6 with an error factor of 10.  As in 
Example 1, assume that our observed data are two failures in 285 demands.  The WinBUGS script 
shown below is used to analyze this example. 

 
 

• Script 2.  WinBUGS script for Bayesian inference with binomial likelihood function and lognormal prior. 
 

• Figure 4-5.  DAG representing Script 2. 
 
 
 
 
 
 
 
 
 

model { 
x ~ dbin(p, n)     # Binomial model for number of failures 
p ~ dlnorm(mu, tau)    # Lognormal prior distribution for p 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
# Calculate mu from lognormal prior mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF) / 1.645, 2) / 2 
} 
data 
list(x=2, n=285, prior.mean=1.E-6, prior.EF=10) 

p

x

mu tau

Lognormal Prior

EFmean

n
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Solution 
Running this script for 100,000 iterations, discarding the first 1,000 iterations to allow for 
convergence to the posterior distribution, gives a posterior mean for p of 4.7 × 10-5 and a 90% 
credible interval of (1.9 × 10-6, 1.8 × 10-4).  Note that when the prior distribution is not conjugate, 
the posterior distribution cannot be written down in closed form.  In such cases, an analyst may 
replace the numerically defined posterior with a distribution of a particular functional form (e.g., 
lognormal), or may use the empirical results of the WinBUGS analysis to construct a histogram. 

 
Generic databases may not always describe the lognormal 
distribution in terms of a mean value and an error factor; quite 
often the median (50th percentile) is specified rather than the 
mean value.  This may also be the case when eliciting 
information from experts as an expert may be more 
comfortable providing a median value.  In this case, the 
analysis changes only slightly.  In Script 2, the line that 
calculates mu from the lognormal prior mean and error factor 

is replaced by the following line: 

mu <- log(prior.median) 

and prior.median is loaded in the data statement instead of prior.mean. 
 

Cases may arise where the value of p could be approaching 
unity.  In such cases, using a lognormal prior is problematic 
because it allows for values of p greater than unity, which is not 
meaningful since p is a probability (either failure probability or 
reliability, depending on the context).  In such cases, a logistic-
normal prior is a “lognormal-l ke” distribution, but one that 
constrains the values of p to lie between zero and one.  The 
WinBUGS Script 3 (and associated DAG shown in Figure 4-6) 

uses the lognormal mean and error factor (e.g., from a generic database), but “constrains” the 
distribution to lie between zero and one by replacing the lognormal distribution with a logistic-normal 
distribution. 
 

• Script 3.  WinBUGS script for Bayesian inference with binomial likelihood function and logistic-normal prior. 
 

When working with a lognormal 
prior distribution from a generic 

database, be sure to know 
whether the distribution is 

expressed in terms of the prior 
mean or median value. 

Beware of lognormal priors 
for p when p is expected to 
be near one since the tail of 

a lognormal distribution may 
exceed a value of 1.0. 

model { 
x ~ dbin(p, n)     # Binomial distribution for number of failures 
p <- exp(p.constr)/(1 + exp(p.constr)) # Logistic-normal prior distribution for p 
p.constr ~ dnorm(mu, tau) 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
 
# Calculate mu from lognormal prior mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF)/1.645, 2)/2 
} 
 
data 
list(x=2,n=256, prior.mean=1.E-6, prior.EF=10) 
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• Figure 4-6.  DAG representing Script 3. 
 
4.2.2  Poisson Distribution for Initiating Events or Failures in Time  
The Poisson model is often used for failures of normally operating components, failures of standby 
components that occur at some point in time prior to a demand for the component to change state, and 
for initiating events.  In the ATCS example, we might use a Poisson distribution as our aleatory model 
for failures of the operating circulation pump.  The following assumptions underlie the Poisson 
distribution: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval.  The constant of proportionality is denoted by lambda. 

 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 
The unknown parameter in this model is lambda, and the 
observed data are the number of events, denoted x, in a 
specified time period, denoted t.  Both x and t are 
assumed to be known with certainty in this section.  
Cases in which x and t also have epistemic uncertainty 
are treated in a later section.  Note that the Poisson 
distribution describes the aleatory uncertainty in the 
number of failures, x.  The Bayesian inference describes 
how the epistemic uncertainty in lambda changes from 

the prior distribution, which describes the analyst’s state of knowledge about possible values of lambda 
before empirical data are collected, to the posterior distribution, which reflects how the observed data 
have altered the analyst’s prior state of knowledge. 

Note that lambda is a rate and has 
units of inverse time. 

 
Also note that lambda is not a 
function of time, so the simple 
Poisson distribution cannot be 

used for reliability growth or aging. 

p
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4.2.2.1 Poisson Inference with Conjugate Prior—As was the case with the binomial 

distribution, a conjugate prior is sometimes chosen for purposes of mathematical convenience.  For the 
Poisson distribution, the conjugate prior is a gamma distribution.  Two parameters are needed to 

describe the gamma prior distribution completely, and these are 
denoted alphaprior and betaprior.  Conceptually, alphaprior can be 
thought of as the number of events contained in the prior 
distribution, and betaprior is like the period of time over which 
these events occurred.  Thus, small values of alphaprior and 
betaprior correspond to little information, and this translates into a 
broader, more diffuse prior distribution for lambda. 

With the observed data consisting of x failures in time t, the conjugate nature of the prior distribution 
and likelihood function allows the posterior distribution to be 
written down immediately using simple arithmetic:  the 
posterior distribution is also a gamma distribution, with new 
(adjusted) parameters given by: 

alphapost = alphaprior + x 
betapost = betaprior + t. 

 
From the properties of the gamma distribution (see Appendix 
B.7.6), the prior and posterior mean of lambda are given by 
alphaprior/betaprior and alphapost/betapost, respectively.  Credible 
intervals for either distribution can be found using the 
GAMMAINV() function built into modern spreadsheets. 
 
 

• Example 3.  Circulating pump fails to operate (Poisson model) and gamma prior. 
The prior distribution for the circulating pump is given as a gamma distribution with parameters 
alphaprior = 1.6 and betaprior = 365,000 hours.  No failures are observed in 200 days of 
operation. 
 
Find the posterior mean and 90% interval for the circulating pump failure rate.  Use the 
posterior mean to find the probability that the pump will operate successfully for a mission time 
of 1,000 hours. 

 
Solution 
Because the gamma prior distribution is conjugate with the Poisson likelihood function, the posterior 
distribution will also be a gamma distribution, with parameters alphapost = 1.6 + 0 = 1.6 and betapost = 
365,000 hours + (200 days)(24 hours/day) = 369,800 hours.  The posterior mean is the ratio of alphapost 
to betapost, which is 4.3 × 10-6/hour. 
 
The 90% credible interval is found using the gamma inverse (GAMMAINV) function.  Note that most 
spreadsheet1 software uses the reciprocal of beta as the second parameter.  This can be dealt with 
either by entering 1/beta as the argument, or entering one as the argument, and dividing the overall result 
of the function call by beta.  Thus, the 5th percentile is given by either GAMMAINV(0.05, 1.6, 1/369800) or 

[GAMMAINV(0.05, 1.6, 1)]/369800.  Either way, the 
answer is 5.6 × 10-7/hour.  Similarly, the 95th 
percentile is given by either GAMMAINV(0.95, 1.6, 
1/369800) or [GAMMAINV(0.95, 1.6, 1)]/369800.  
The answer either way is 1.1 × 10-5/hour. 

                                                      
1 For this Handbook, we used Microsoft Excel™ to illustrate the spreadsheet-based examples. 

Do not confuse alphaprior and 
betaprior here with the 

parameters of the beta 
distribution above. 

Note that betaprior has units of 
time, and the units have to be the 

same as for t. 

Caution:  Be sure to know 
how your spreadsheet 

software parameterizes the 
gamma distribution.  Most 

packages use the reciprocal 
of beta as the parameter. 

WinBUGS, unlike most spreadsheets, 
uses beta rather than 1/beta to 

parameterize the gamma distribution. 
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Using the posterior mean failure rate of 4.3 × 10-6/hour, the probability that the pump operates 
successfully for 1,000 hours is just exp[-(4.33 × 10-6/hour)(1000 hours)] = 0.996. 
The plot below shows how little the prior distribution has been affected by the relatively sparse data in 
this example. 

 
• Figure 4-7.  Comparison of prior and posterior distributions for Example 3. 

 
Bayesian inference can also be carried out using WinBUGS.  The script below implements the 
analysis.  Monitoring node lambda will display the desired posterior results. 

• Script 4.  WinBUGS script for Bayesian inference with Poisson likelihood and gamma conjugate prior. 
 

model { 
x ~ dpois(mean.poisson)   # Poisson likelihood function 
mean.poisson <- lambda*time.hr # Parameterize in terms of failure rate, lambda 
time.hr <- time*24    # Convert days to hours 
lambda ~ dgamma(1.6, 365000)   # Gamma prior for lambda 
} 
data 
list(x=0, time=200) 
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• Figure 4-8.  DAG representing Script 4. 
  
4.2.2.2 Poisson Inference with Noninformative Prior—As was the case for the binomial 

distribution, there are many routes to a noninformative prior for lambda, with the most commonly used 
one in PRA being the Jeffreys prior (see Appendix B.7.6).  In the case of the Poisson likelihood the 
Jeffreys noninformative prior is like a gamma distribution with alphaprior = 0.5 and betaprior = 0.  This is not 
a proper distribution, as the integral over all possible values of lambda is not finite.  However, it always 
yields a proper posterior distribution, with parameters alphapost = x + 0.5 and betapost = t.  Thus, the 
posterior mean of lambda is given by (x + 0.5)/t.  Inference with the Jeffreys prior can be thought of as a 
special case of inference with a gamma conjugate prior, with Section 4.2.2.1 applicable. 

 
Note that if x and t are small (sparse data), then adding “half 
an event” to x may give a result that is felt to be too 
conservative.  In such cases, a possible alternative to the 
Jeffreys prior is like a gamma distribution with both parameters 
equal to zero.  This is not a proper probability distribution, but 
as long as x and t are greater than zero, the posterior 
distribution will be proper and the posterior mean will take on 
the value (x / t). 

 
4.2.2.3 Poisson Inference with Nonconjugate Prior—As was the case for the parameter p in the 

binomial distribution, a lognormal distribution is a commonly encountered nonconjugate prior for lambda in the 
Poisson distribution.  The analysis can be carried out with WinBUGS, exactly as was done for p in the 
binomial distribution.  Here, however, there is no concern about values of lambda greater than one, because 
lambda is a rate instead of a probability, and can take on any positive value, in principle. 

Caution:  When using the 
“zero-zero” noninformative 
prior as an alternative to the 
Jeffreys prior, the number of 
failures (x) must be one or 

more. 

lambda

x

Gamma Prior

t
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• Example 4.  Circulating pump fails to operate (Poisson model) and lognormal prior. 

Assume that the prior distribution for the failure rate of the circulating pump is lognormal 
with a median of 5 × 10-7/hour and an error factor of 14.  Again, assume the observed data 
are no failures in 200 days.  The WinBUGS script below can be used to find the posterior 
mean and 90% interval for lambda. 

 
 

• Script 5.  WinBUGS script for Bayesian inference with Poisson likelihood function and lognormal prior. 
 

 
• Figure 4-9.  DAG representing Script 5. 

 
Running this script for 100,000 iterations, discarding the first 1,000 iterations to allow for 
convergence, gives a posterior mean for lambda of 1.6 × 10-6/hour and a 90% credible interval of 
(3.5 × 10-8/hour, 6.5 × 10-6/hour). 
  

model { 
x ~ dpois(mean.poisson)   # Poisson distribution for number of events 
mean.poisson <- lambda*time.hr # Poisson parameter 
time.hr <- time*24    # Convert days to hours 
lambda ~ dlnorm(mu, tau)   # Lognormal prior distribution for lambda 
tau <- 1/pow( log(prior.EF)/1.645, 2)  # Calculate tau from lognormal error factor 
mu <- log(prior.median)   # Calculate mu from lognormal median  
} 
 
data 
list(x=0, time=200, prior.median=5.E-7, prior.EF=14) 
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x
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4.2.3  Exponential Distribution for Random Durations  
There are cases where the times at which random events occur are observed, instead of the number of 
such events in a specified period of time.  Examples are times to failures of components, times to 
suppress a fire, etc.  If the assumptions for the Poisson distribution as described in Section 4.2.2 are 

met, then the times between events are 
exponentially distributed with unknown parameter 
lambda; this is the same lambda that appears as 
the unknown parameter in the Poisson distribution. 
 
 
 

The following assumptions underlie the Exponential distribution: 
 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 

the length of the interval.  The constant of proportionality is denoted by lambda. 
 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 The random event that is observed is the time to an event. 

 
Because the observed data consist of n number of failure times (with n specified), the form of the 
likelihood function changes from a Poisson distribution to a product of n exponential distributions.  
However, much of the analysis is very similar to the analysis done for the Poisson distribution in 
Section 4.2.2.  In this section we treat only the case in which all failure times are observed and known 
with certainty.  In later sections we will cover cases in which not all components fail (i.e., censored 
data), and in which observed failure times have epistemic uncertainty (i.e., the times are uncertain). 
 

4.2.3.1 Exponential Inference with Conjugate Prior— As was the case for the Poisson distribution 
in Section 4.2.2.1, the conjugate prior for the exponential likelihood is again a gamma distribution, with 
parameters denoted alphaprior and betaprior.  Once again, betaprior has units of time, and these units must match 
the units of the observed times that constitute the data.  The posterior distribution will again be a gamma 
distribution with parameters alphapost = alphaprior + n (the number of observed times), and betapost = betaprior + 
ttotal, where ttotal is the sum of the observed times.  From the properties of the gamma distribution (see Appendix 
B), the prior and posterior mean of lambda are given by alphaprior / betaprior and alphapost / betapost, respectively.  
Credible intervals for either distribution can be found using the GAMMAINV() function built into modern 
spreadsheets. 
 
• Example 5.  Circulating pump fails to operate (exponential model) and gamma prior. 

The following seven times to failure (in hours) have been recorded for ATCS circulating water 
pumps:  55707, 255092, 56776, 111646, 11358772, 875209, and 68978.  Using the gamma prior 
for lambda from Example 3 find the posterior mean and 90% credible interval for the circulating 
water pump failure rate lambda. 

 
Solution                     
The prior distribution was given in Example 3 as gamma with 
alphaprior =  1.6 and betaprior = 365,000 hours.  In this example, we 
have n = 7 and ttotal = 12782181 hours.  Thus, the posterior 
distribution is gamma with parameters alphapost = 1.6 + 7 = 8.6 and 
betapost = 365000 hours + 12782181 hours = 13147181 hours.  The 
posterior mean is given by alphapost/betapost = 6.5 × 10-7/hour.  The 
5th percentile is given by [GAMMAINV(0.05, 8.6, 1)]/13147181 
hours = 3.4 × 10-7/hour.  The 95th percentile is given by 
[GAMMAINV(0.95, 8.6, 1)]/13147181 hours = 1.1 × 10-6/hour. 

If the times at which Poisson-distributed 
events occur are observed, then the 

likelihood function is now based on the 
exponential distribution. 

Remember to be careful 
about how your 

spreadsheet software 
parameterizes the gamma 

distribution. 

Note the use of the FOR 
loop to model the n data 

points in Script 6. 
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WinBUGS can also be used for this example.  The WinBUGS Script 6 shows how to do this. 
 

• Script 6.  WinBUGS script for Bayesian inference with exponential likelihood and gamma conjugate prior. 
 

 
• Figure 4-10.  DAG representing Script 6. 

 
4.2.3.2 Exponential Inference with Noninformative Prior—The Jeffreys noninformative 

prior for the exponential likelihood is like a gamma distribution with both parameters equal to zero.  This 
might seem odd, given the relationship between the 
exponential and Poisson distributions mentioned above.  In 
fact, it is odd that the Jeffreys prior changes, depending on 
whether one counts failures or observes actual failure times.  
However, we will not delve into the reasons for this difference 
and its philosophical implications here.  Again, the Jeffreys 
prior is an improper distribution, but it always results in a 
proper posterior distribution.  The parameters of the posterior 
distribution will be n and ttot, resulting in a posterior mean of 
n/ttot.  This mean is numerically equal to the frequentist MLE, 
and credible intervals will be numerically equal to confidence 
intervals from a frequentist analysis of the data.  

model { 
 for(i in 1:n) { 
  time[i] ~ dexp(lambda) # Exponential likelihood function for n failure times 
 } 
lambda ~ dgamma(alpha, beta)   # Gamma prior for lambda 
} 
 
data     # Note the nested () for the time array 
list(time=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), n=7, alpha=1.6, 
beta=365000) 

WinBUGS can only accept 
proper distributions, so enter 

the Jeffreys prior for 
exponential data as 

dgamma(0.0001, 0.0001).  An 
initial value for lambda will have 

to be provided, as WinBUGS 
cannot generate an initial value 

from this distribution. 

lambda

t[i]

Gamma Prior

alpha beta

For i = 1 to n
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4.2.3.3 Exponential Inference with Nonconjugate Prior— Again, the lognormal distribution is a 

commonly encountered nonconjugate prior for a failure rate.  The only thing that changes from the earlier 
discussion in Section 4.2.2.3 is the lkelihood function, which is now a product of exponential distributions.  We 
again use WinBUGS to carry out the analysis. 

 
• Example 6.  Circulating pump fails to operate (exponential model) and lognormal prior. 

Using the prior distribution from Example 4 and the failure times from Example 5, find the 
posterior mean and 90% interval for the failure rate lambda. 

 
Solution 
The WinBUGS script for this example is shown below. 
 

• Script 7.  WinBUGS script for Bayesian inference with exponential likelihood function and lognormal prior. 

• Figure 4-11.  DAG representing Script 7. 
 
 
 

model { 
 for(i in 1:n) { 
  time[i] ~ dexp(lambda) # Exponential likelihood function for n failure times 
 } 
lambda ~ dlnorm(mu, tau)   # Lognormal prior for lambda 
tau <- 1/pow( log(prior.EF)/1.645, 2)  # Calculate tau from lognormal error factor 
mu <- log(prior.median)   # Calculate mu from lognormal mean  
} 
 
Data     # Note the nested () for the time array 
list(time=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), n=7, 
prior.median=5.E-7, prior.EF=14) 

lambda

t[i]

mu tau

Lognormal Prior

prior.EFprior median

nFor i = 1 to n
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Using 100,000 iterations, with 1,000 burn-in iterations discarded to allow for convergence to the 
posterior distribution, the posterior mean is found to be 5.5 × 10-7/hour, with a 90% credible interval of 
(2.6 × 10-7/hour, 9.2 × 10-7/hour). 
 
 
4.2.4  Multinomial Distribution  
The multinomial distribution generalizes the binomial distribution to more than two possible outcomes.  
The remaining binomial assumptions continue to apply. 

 There are multiple possible outcomes. 
 There is a constant probability of the ith outcome. 
 The outcomes of earlier trials do not influence the outcomes of later trials. 

 
A common application of the multinomial distribution in PRA is for common-cause failure (CCF), where 
it serves as an aleatory model for failure of a group of redundant components.  Given that a failure 
occurs in the group, the possible outcomes are one component fails, two fail due to common cause, 
three fail due to common cause, etc., up to all of the components in the group fail due to common 
cause.  This model can be parameterized in different ways, with the most common being one in which 
the parameters represent the fraction of failures of the group that involve a specific number of 
components in the group.  These parameters are denoted alphak, and thus this parameterization is 
referred to as the alpha-factor model for CCF.  See [Mosleh, 1991] for additional details on CCF 
modeling in PRA. 
 
Alphak represents the fraction of failures that involve k components of the group.  The prior distribution 
for alpha, which is now a vector of dimension equal to the component group size, is almost always 
assumed to be a Dirichlet distribution, which is conjugate to the multinomial l kelihood.  Like alpha, the 
parameter of the Dirichlet distribution, which we will denote as theta, is a vector of dimension equal to 
that of alpha.  Because the Dirichlet distribution is conjugate to the multinomial likelihood, the posterior 
distribution for alpha will also be Dirichlet, with parameter theta + n, again a vector, with kth component 
equal to thetak + nk. 
 
If a vector theta has a Dirichlet distribution, then each constituent of theta has a beta distribution, each 
with parameters thetak and thetatot – thetak, with thetatotal = Σ thetak.  A noninformative prior for the 
multinomial likelihood is a Dirichlet prior with each thetak = 1. 
 
The observed data consist of failure counts, nk, with nk being the number of failures in the group that 
involve k components.  Often in CCF analysis, it can be difficult to judge the exact values of the nks, 
leading to epistemic uncertainty about the observed data.  Here, we will assume that the nks are known 
with certainty; in a later section, we will examine the more usual case in which the nks are subject to 
epistemic uncertainty. 
 
• Example 7.  Multinomial model for common-cause failure – estimating CCF parameters. 

A group of three redundant components has suffered 33 failures.  Of these 30 failures 20 
involved 1 component, 5 involved 2 components, and 1 involved all 3 components.  Estimate 
alpha factors and corresponding parameters of another common CCF model, the Multiple Greek 
Letter (MGL) model, given this data. 
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Solution 
We will assume a noninformative prior for alpha, which will 
be a Dirichlet distribution with all three parameters equal to 
1.  The WinBUGS script shown in Script 8 updates this 
distribution with the given data, and also transforms the 
posterior distribution for each component of alpha into the 
corresponding parameter (beta, gamma) of the MGL model.  
Running the script in the usual way gives the results shown 
in Table 2. 
 
 

• Table 2.  CCF example parameter results. 
Parameter Mean 90% Interval 

Alpha-1 0.72 (0.58, 0.85) 
Alpha-2 0.21 (0.10, 0.34) 
Alpha-3 0.07 (0.01, 0.16) 

Beta 0.28 (0.15, 0.42) 
Gamma 0.25 (0.05, 0.52) 

 

• Script 8.  WinBUGS script for estimating alpha factors and MGL parameters for a component group of size 
3, no data uncertainty. 

The MGL model does not have a 
well-defined likelihood function, 

making it hard to do direct 
Bayesian inference for the 

parameters of this model.  The 
easiest way is to estimate the 

alpha-factor parameters and use 
WinBUGS to transform to the 

MGL parameters, as done here. 

model { 
n[1:group.size] ~ dmulti(alpha[1:group.size], N)  
# The variable group.size is loaded via data block 
N <- sum(n[1:group.size])  # N is the total number of ‘group failure events’ 
alpha[1:group.size] ~ ddirch(theta[]) # The noninformative prior for alpha 
theta[1] <- 1    # A noninformative prior for the multinomial 
theta[2] <- 1   #  likelihood is a Dirichlet prior with each thetak = 1 
theta[3] <- 1 
# Calculate MGL parameters (from Table A-2 in NUREG/CR-5485) 
beta <- alpha[2] + alpha[3] 
gamma <- alpha[3]/(alpha[2] + alpha[3]) 
} 
data 
list(n=c(20, 5, 1), group.size=3) 
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• Figure 4-12.  DAG representing Script 8. 

 
4.2.5  Developing Prior Distributions  
In practice, the analyst must develop a prior distribution from available engineering and scientific 
information, where the prior should reflect (a) what information is know about the inference problem at 
hand and (b) be independent of the data that is collected.  This section provides some high-level 
guidance and examples for doing this in single-parameter problems.  In this section we consider only 
priors developed from a single source of information; later sections will deal with developing priors from 
multiple sources of information. 
 

4.2.5.1 Developing a Conjugate Prior—The beta and gamma distributions used as conjugate 
priors in the earlier sections each have two parameters that specify the distribution.  Therefore, two 
pieces of information are generally needed to select such a conjugate prior.  Common information from 
which the analyst must develop a prior is: 

1. A measure of central tendency (e.g., median or mean) and an upper bound (e.g., 95th 
percentile) 

2. Upper and lower bound (e.g., 95th and 5th percentile) 
3. A mean and variance (or standard deviation). 
 

We discuss each of these three cases below. 
 

4.2.5.1.1 Using Mean or Median and Upper Bound—When the information provided1 
takes the form of a mean or median value and an upper bound, numerical analysis is required in order to find a 
gamma or beta distribution satisfying this information.  Fortunately, modern spreadsheet tools make such 
analysis feasible.  Note that “bound” is not usually interpreted in an absolute sense as a value that cannot be 
exceeded.  Instead, it is interpreted as an upper percentile of the distribution.  The 95th percentile is the most 
common choice in PRA, but other percentiles, such as the 85th, can be chosen.  We illustrate the numerical 
solution with some examples. 

                                                      
1 The “information provided” represents the analyst’s state of knowledge for the system or component being evaluated and is 
independent from any data to be used as part of the Bayesian inference. 

Dirichlet Multinomial

theta1 theta3theta2

Alpha[1:3]

n[1:3]

MGL
Beta

MGL
Gamma
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• Example 8.  Developing a gamma prior for transistor failure rate in avionics portion of ATCS 
using point estimate and upper bound. 

The failure rate of a bipolar transistor in the avionics control circuit of the ATCS is to be 
estimated.  The information in MIL-HDBK-217F is used to develop a gamma conjugate prior 
distribution for the failure rate, lambda. 
 
MIL-HDBK-217F provides a point estimate of 2 × 10-10/hour.  The analyst does not have much 
confidence in the accuracy of this estimate and therefore decides to select a 95th percentile tha
is ten times the point estimate (i.e., 2 × 10-9/hour).  Develop a gamma prior distribution 
assuming: 

• The point estimate is a median value. 
• The point estimate is a mean value. 

 
Solution 
Part 1. There are two equations that must be solved numerically to find alpha and beta(the parameters 
of the gamma prior distribution).  First, using the median value, we can write GAMMAINV(0.5, alpha, 
1)/beta = 2 × 10-10/hour.  Second, using the 95th percentile, we can write GAMMAINV(0.95, alpha, 
1)/beta = 2 × 10-9/hour.  We set up the spreadsheet as shown below to allow use of the SOLVER 
function. 

 
 
Now bring up the SOLVER menu from the Tools drop-down menu. 

 
 
We are telling SOLVER to adjust alpha and beta until the median value in cell C2 is equal to 2 × 10-

10/hour.  As constraints, we tell SOLVER that the 95th percentile in cell E2 should be 2 × 10-9/hour.  
Further, alpha and beta must both be greater than zero.  To avoid numerical problems, it is a good idea 
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to limit alpha to values greater than about 0.1, as shown above.  The user can change the precision of 
the solution by choosing the Options button on the screen above.  The answers above were attained by 
setting the initial alpha and beta values to 0.1 and 0.01 respectively and setting the precision to 1E-10.  
Higher precision (e.g., 1E-11) leads to numerical problems, so the closest we can come to reproducing 
the desired median and upper bound is a gamma distribution with alpha equal to about 0.6 and beta 
equal to about 1.2 × 109 hours. 
 
Part 2.  Again, there are two equations to solve numerically.  From Appendix B, we know the mean of a 
gamma distribution is given by alpha/beta.  The second equation is the same as we used above in 
terms of the 95th percentile.  However, in this case we can use the properties of the gamma distribution 
to simplify the problem.  Taking the ratio of the 95th percentile to the mean, we find this ratio is equal to 
GAMMAINV(0.95, alpha, 1)/alpha.  We set up the spreadsheet as shown below to allow use of either 
the SOLVER or Goal Seek function. 

 
Unfortunately, we find that we cannot make the ratio of the 95th 

percentile to the mean larger than about 5.8; this is an inherent property of the gamma distribution.  
Therefore, in this case we cannot treat the point estimate as a mean value.  One way around this 
problem is to treat the upper bound as a 99th percentile.  If we do this, and use SOLVER to set the ratio 
to a value of 10, we find that alpha is about 0.24.  We would then use the equation for the mean to find 
beta equal to about 1.2 × 109 hours. 
 

• Example 9.  Developing a beta prior mixing valve failure probability in ATCS system using point 
estimate and upper bound. 

We are estimating the probability that the mixing valve in the ATCS system fails to change 
position in response to a signal from the avionics unit.  Our past experience with similar valves 
in similar applications suggests a point estimate failure probability of 10-4, with an upper bound 
of 5 × 10-4.  
 
Assuming the upper bound is the 95th percentile, find the beta conjugate prior that encodes this 
information assuming 1) the point estimate is the median, and 2) assuming the point estimate 
is the mean. 

 
Solution 
1.  Again, there are two equations in two unknowns, which we must solve numerically to find alpha and 

beta, the parameters of the beta prior distribution that encodes 
the information provided.  Using the median value, we can write 
BETAINV(0.5, alpha, beta) = 10-4.  Then, using the upper bound, 
we can write BETAINV(0.95, alpha, beta) = 5 × 10-4.  
Unfortunately, SOLVER cannot find a solution to these two 
equations; the beta distribution is numerically difficult to work with.  
However, there is an approximation that can be used.  When p is 

small, the beta distribution can be approximated by a gamma distribution, allowing us to analyze 
the problem as in Example 8 above.  Therefore, we set up the spreadsheet as shown below. 

Note that beta, 
although shown in the 

spreadsheet, is not 
relevant to this 

calculation.  Only 
alpha affects the 

spread of the gamma 
distribution. 

Note the lack of units in this 
case, since we are dealing 
with a failure probability, 

not a failure rate. 
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Using SOLVER gives the results shown. Note the use of the GAMMAINV function rather than the 
BETAINV() function. So how good was the approximation? Substituting the estimated values of 
alpha and beta into the BETAINV() function, we find a median of 9.4 × 10-5 and a 95th percentile of 
4.9 × 10-4, so the approximation of the beta distribution by a gamma distribution was quite good. 
 

2. If the point estimate is treated as a mean value, we have as our first equation (from Appendix B), 
that alpha/(alpha + beta) = 10-4.  The second equation is the same as in part (1) above.  We set the 
spreadsheet up as shown below to allow use of the SOLVER function. 

 
 
Running SOLVER, we obtain the values shown in 
the spreadsheet.  Because one of the equations to 
be solved was algebraic, we did not need to 
approximate the beta distribution with a gamma 
distribution.  However, we could have used this 
approximation because p is small. 
 

4.2.5.1.2 Using Upper and Lower Bound—Sometimes information will be provided 
in the form of a range, from a lower bound to an upper bound.  As above, the bounds are not absolute 
bounds on the parameter value, but are lower and upper percentiles (e.g., 5th and 95th) of the prior 
distribution.  Again, we will have to resort to numerical methods to find the parameters of a conjugate 
prior distribution. 
 
• Example 10.  Developing gamma prior for circulation pump failure rate in ATCS system using 
upper and lower bounds. 

Assume the ATCS shown earlier is a new design, so that only very limited information is 
available.  Knowing only that the circulation pump is mechanical in nature, a generic 
information source provides a lower bound on the failure rate of 3 × 10-6/hour, and an upper 
bound of 10-3/hour. 
 
Treating these as 5th and 95th percentiles, respectively, find the gamma conjugate prior 
distribution that encodes this information. 

 
Solution 
For the gamma distribution, the ratio of the 95th to the 5th percentile can be written as GAMMAINV(0.95, 
alpha, 1)/GAMMAINV(0.05, alpha, 1).  We set up the spreadsheet as shown below and use either Goal 
Seek or SOLVER to find alpha such that the ratio is equal to 10-3/3 × 10-6 = 333.  The value of alpha is 
that shown, which is about 0.62. 

Always check the 
validity of 

approximations 
wherever possible. 

Although Bayesian inference with a 
conjugate prior is mathematically easy, it 
may not be so easy to find the conjugate 

prior in the first place. 
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After we have found alpha, we can use the equation for either the 5th or 95th percentile to find beta.  
Because PRA is usually more concerned with large failure rates, we will use the 95th percentile.  Thus, 
we have beta = GAMMAINV(0.95, 0.62, 1)/10-3 = 2,200 hours. 
 
• Example 11.  Developing beta prior for check valve in ATCS system using upper and lower 
bounds. 

Suppose one of the failure modes in our newly designed ATCS system is failure of the check 
valve to close to prevent reverse flow.  Again, since this is a new design, assume we have only 
bounds on the check valve failure probability, and that these bounds are 10-5 to 10-2.  Find a 
conjugate beta prior distribution that encodes this information, assuming these bounds are 5th 
and 95th percentiles, respectively. 

 
Solution 
We have two equations that must be solved numerically to find alpha and beta.  Treating the bounds as 
5th and 95th percentiles, the equations are BETAINV(0.05, alpha, beta) = 10-5 and BETAINV(0.95, 
alpha, beta) = 10-2.  Using SOLVER, we must decide which of these values is the target and which is 
the constraint.  Because PRA is more concerned with high failure probability, we will use the upper 
bound as the target and treat the lower bound as a constraint.  This is shown in the spreadsheet and 
SOLVER screenshots below. 
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Using the Options button, the precision and convergence were both set to 0.1 to avoid numerical 
problems.  This resulted in the values of alpha and beta shown above.  Because p is relatively small, 
we could have also approximated the beta distribution with a gamma distribution, as shown earlier.  
The spreadsheet for doing this is shown below. 

 
 
Using Goal Seek or SOLVER, we find that a value for alpha of 
about 0.5 gives the desired ratio of upper bound to lower 
bound.  We can then use the upper bound to find beta, using 
the equation beta = GAMMAINV(0.95, 0.5, 1)/0.01 = 192.  
Checking the approximation, we have BETAINV(0.05, 0.5, 
191.6) = 1.0E-05 and BETAINV(0.95, 0.5, 191.6) = 1.0E-02.  
In this case, because of the numerical difficulties caused by 
the beta distribution, the approximation gives a better result. 

 
4.2.5.1.3 Using Mean and Variance or Standard Deviation—This is the easiest situation to deal with, 
but perhaps the least frequently encountered in practice.  It is relatively easy because the equations are 
algebraic and do not require numerical solution.  Unfortunately, our information sources are not often 
encoded in terms of the mean and variance or standard deviation (the square root of the variance).  
However, some analysts in the past, in an attempt to avoid working with a nonconjugate prior, have 
converted the encoded information into a mean and variance in order to replace the nonconjugate prior 
with a conjugate prior using simple algebraic calculations.  This can lead to nonconservatively low 
estimates in some cases, however, and is not recommended in today’s environment where tools such 
as WinBUGS make Bayesian inference with a nonconjugate prior straightforward. 
 
For the gamma distribution (see Appendix B), the mean as alpha/beta and the variance as alpha/beta2.  
Thus, we find beta = mean/variance, and then we can substitute in the value of beta to find alpha = 
beta/mean.  If the standard deviation is given instead of the variance, we can square the standard 
deviation and proceed as above. 
 
The beta distribution is just a bit trickier algebraically.  From Appendix B, the mean is equal to 
alpha/(alpha + beta) and the variance is a complicated expression in terms of alpha and beta.  This 
expression can be rewritten in terms of the mean as mean(1 – mean)/(alpha + beta + 1), and a 
spreadsheet can be used to solve for alpha and beta, as shown below. 

 
 

Sometimes 
approximations can 
give better results 
when they help to 

avoid tricky numerical 
calculations. 
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4.2.5.2 Developing a Nonconjugate (Lognormal) Prior—One of the things that makes the 
lognormal distribution attractive as a prior in PRA is the ease with which it can encode information about a 
parameter that varies over several orders of magnitude.  As illustrated above (e.g., Script 2), the information 
encoded about the lognormal distribution is not usually provided in terms of the parameters (mu and tau) 
needed by WinBUGS.  More commonly, information is given in terms of a median or mean value and an 
error factor, or sometimes in terms of an upper and lower bound.  Using the properties of the lognormal 
distribution given in Appendix B, any of these sets of information can be translated into the mu and tau 
parameters needed by WinBUGS, as shown in the script excerpts below. 

• Script 9.  Excerpts of WinBUGS script used to find mu and tau for lognormal prior. 
 

4.2.5.3 Developing a Prior from Limited Information—In some cases, not enough information 
may be available to completely specify an informative prior distribution, as two pieces of information are 
typically needed.  For example, in estimating a failure rate, perhaps only a single estimate is available.  
This section describes how to use such limited information to develop a prior distribution, which encodes 
the available information with as much epistemic uncertainty as possible, reflecting the limited information 
available.  As expected, because the information on which the prior is based is very limited, the resulting 

# Use the following lines if median and error factor given 
mu <- log(median) 
tau <- pow(log(EF)/1.645, -2) 
 
# Use the following lines if mean and error factor given 
mu <- log(mean) - pow(log(EF)/1.645, 2) / 2 
tau <- pow(log(EF)/1.645, -2) 
 
# Use the following lines if median and upper bound given 
mu <- log(median) 
tau <- pow(log(upper/median)/1.645, -2) 
 
# Use the following lines if mean and upper bound given 
# Caution:  mean/upper must be > 0.258 
tau <- pow(sigma, -2) 
sigma <- (2*1.645 + sqrt(4*pow(1.645, 2) + 8*log(mean/upper))) / 2 
mu <- log(mean) – pow(sigma, 2)/2 
 
# Use the following lines if upper and lower bound given 
mu <- log(sqrt(upper*lower)) 
tau <- pow(log(sqrt(upper/lower)/1.645, -2) 
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prior distribution will be diffuse, encoding significant epistemic 
uncertainty about the parameter value.  However, it will not be as 
diffuse as the noninformative priors discussed in Sections 4.2.1.2, 
4.2.2.2, and 4.2.3.2.  The table below summarizes the results for 
commonly encountered cases. 

 
• Table 3.  Prior distributions encoding limited information about parameter values. 

Information Available Suggested Prior Distribution 
Mean value for lambda in Poisson 

distribution 
Gamma distribution with alpha = 0.5 and 

beta = 1/(2 × mean) 
Mean value for p in binomial distribution Beta distribution with alpha ≈ 0.5 and 

beta = (1 – mean)/( 2 × mean) 
Mean value for lambda in exponential 

distribution 
Gamma distribution with alpha = 1 and beta = 

1/mean 
p in binomial distribution lies between a 

and b 
Uniform distribution between a and b 

 
4.2.5.4 Ensure Prior is Consistent with Expected Data—Preposterior Analysis—For the 

final step in selecting an informative prior distribution, use the candidate prior distribution to generate 
potential data; if it turns out to be extremely unlikely that the prior distribution can produce data that is 
expected, then the prior has not encoded the analyst’s state of knowledge adequately.  In the past, such 
a check was difficult because it requires numerical calculations.  However, modern tools such as 
WinBUGS make the analysis straightforward.  We illustrate the method with a couple of examples. 

 
• Example 11.  Preposterior analysis for refrigerant tank in ATCS system. 

In Example 1, the prior for the relief valve on the refrigerant tank in the ATCS failing to open on 
demand was given as a beta distribution with alpha = 1.24 and beta = 189,075. 
Suppose the analyst thinks that seeing 2, 3, or possibly even 4 failures over 350 demands 
would not be surprising.  Is this belief consistent with the stated beta prior distribution? 

 
Solution 
To solve this problem, we need to calculate the probability 
of seeing 2 or more failures to open in 350 demands on the 
relief valve (since we expect to see at least 2 failures).  The 
probability of seeing x failures in n demands is given by the 
binomial distribution, but this probability is conditional upon 
a value of p, and p is uncertain.  The specified beta prior 
distribution is a candidate for describing the analyst’s 
epistemic uncertainty about p.  If it is compatible with his 
belief that 2 or more failures in 350 demands are likely, then 
a weighted-average probability of seeing at least 2 failures 

in 350 demands, with the weights supplied by the candidate prior distribution, should not be too small. 
We use the WinBUGS script shown below to estimate the unconditional probability of seeing 2 or more 
failures in 350 demands, based on the candidate beta prior distribution.  Note that this script tests the 
prior [beta(1.24, 189,075)] since we are not assigning any data to node x. 
 

All of these distributions 
are conjugate except 

the last one. 

This example, which involves a 
conjugate prior, could be done in 

a spreadsheet.  However, 
WinBUGS can do the same 

calculation with a nonconjugate 
prior, a calculation which cannot 

be done quite so easily with a 
spreadsheet. 
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• Script 10.  WinBUGS script for preposterior analysis. 
 
 

 
• Figure 4-13.  DAG representing Script 10. 

 
Running this script for 100,000 iterations with 1,000 burn-in iterations for convergence gives a mean for 
the p.value node of 0.0, indicating that the expected data are very incompatible with the candidate beta 
prior distribution.  The concept of a Bayesian “p-value” is shown in Figure 4-14, where results with a low 
(less than 0.05) p-value represents cases where the posterior is much lower than the expected – or 
predicted – distribution.  The converse, when the p-value is high (greater than 0.95), represents cases 
where the posterior is larger than expected.  The ideal case is obtained when the p-value is close to 0.5 
– this case represents the posterior being close to the expected results.  Note that the “expected 
results” could be a constant instead of a distribution and we could check against the prior instead of the 
posterior, as was the case in Script 10, where we tested the prior against the possibility of seeing two 
failures (given by x.exp). 

model { 
x ~ dbin(p, n)   # Binomial likelihood function 
p ~ dbeta(alpha, beta)  # Beta prior distribution for p 
p.value <- step(x - x.exp)  # If mean value of this node is < 0.05, prior is incompatible 
}    # with expected data 
 
data 
list(alpha=1.24, beta=189075, x.exp=2, n=350) 

p

x

Beta Prior

n

alpha beta

x.exp

p.value
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• Figure 4-14.  Illustration of the Bayesian p.value calculation used to test on prior, posterior, or 
model validity. 
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4.3   Model Validation 
In this section, we examine the predictions of our Bayesian inference model (“model” for short) as a test 
of how good the model is.  Recall that the Bayesian inference model comprises the prior distribution, 
(representing epistemic uncertainty in parameter values) and the likelihood function (representing 
aleatory uncertainty in our probabilistic model of the world).  We will primarily examine how well our 
model can replicate the observed data; models for which the observed data are highly unlikely to be 
replicated are problematic and will lead us to alternative prior distributions or to more complicated 
likelihood functions, such that the resulting model is better able to replicate the observed data.  Our tool 
for this analysis is WinBUGS. 
 
4.3.1  Checking the Validity of the Binomial Model  
Recall that the binomial distribution, used as an aleatory model for failures on demand, is derived from 
underlying assumptions: 

 There are two possible outcomes of each demand typically denoted success and failure. 
 There is a constant probability of failure (typically in PRA; typically success in reliability 

engineering) on each demand, denoted herein as p. 
 The outcomes of earlier demands do not influence the outcomes of later demands. 
 The model contains a single unknown parameter. 
 The prior information is homogeneous and is known with certainty1. 
 The observed data are homogeneous and are known with certainty. 

 
We have also selected a prior distribution for p, and Bayes’ Theorem has been used to combine this 
prior with observed data, producing a posterior distribution for p.  The probability of observing future 
data can be calculated by averaging the binomial distribution for the number of failures in n demands 
over the posterior distribution for p.  If this probability is small, then the model is suspect.  Perhaps the 
prior distribution is at fault, or perhaps one of the binomial assumptions listed above is grossly violated.  
Further investigation will be required to identify where the breakdown has occurred. 
 
• Example 12.  Posterior predictive check for relief valve in the ATCS. 

In Example 1, the prior for the relief valve on the refrigerant tank in the ATCS failing to open on 
demand was given as a beta distribution with alpha = 1.24 and beta = 189075. 
 
The observed data were 2 failures in 285 demands.  Find the probability of seeing at least this 
many failures in the next 285 demands. 

 
Solution 
In the WinBUGS script shown below, x.rep represents the predicted number of failures in the next n 
demands.  The p.value node calculates the probability that x.rep is at least as big as the observed 
value, x.  If the mean of this node is less than about 0.05, a problem may exist with the model, either in 
the prior distribution or in one or more of the assumptions underlying the binomial distribution. 
 
Running the script for 100,000 iterations, with 1,000 burn-in iterations for convergence, gives a mean 
for the p.value node of 10-5, indicating the model is not able to replicate the observed data; it severely 
under-predicts the number of failures.  At this point, the analyst may decide that the choice of prior 
distribution was overly optimistic because it puts high probability on small values of p, or perhaps an 
engineering investigation may reveal that the two observed failures were not independent, violating one 
of the assumptions behind the binomial distribution.  This could be the case, for example, if the cause 
of the first failure was not completely repaired.  However, in this example the probability of seeing 1 or 
more failure in 285 demands is only about 0.005, suggesting that the prior distribution for p is 
inconsistent with the actual performance of the relief valve. 

                                                      
1 For discussion and examples of uncertain priors and data, see Section 4.8. 
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• Script 11.  WinBUGS script to generate replicate data from binomial distribution. 
 

• Figure 4-15.  DAG representing Script 11. 
 
 
• Example 13.  Check for time trend in relief valve leakage probability in the ATCS. 

Consider a case where we are concerned about the relief valve on the refrigerant tank in the 
ATCS system leaking, a new failure mode not considered earlier.   Assume that a check is 
performed once a week on this valve and a notation is made of whether or not the valve is 
leaking.  The analyst decides to use a binomial distribution for the number of times the valve is 
leaking in a year, so that n is 52.  The unknown parameter of interest is p, the probability that 
the valve is leaking in any given week.  Assume that over time, the data below has been 
collected for this valve. 

model { 
x ~ dbin(p, n)   # Binomial likelihood function 
x.rep ~ dbin(p, n)  # Likelihood function for replicated data 
p ~ dbeta(alpha, beta)  # Beta prior distribution for p 
p.value <- step(x.rep - x) # If the mean value of this node is < 0.05, there is a 
problem with the model 
} 
 
data 
list(alpha=1.24, beta=189075, x=2, n=285) 

Beta Prior

beta

p

alpha

nxx.repn

p.value



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS    

 
MODEL VALIDATION 59

Year Failures Demands 

1 4 52 
2 2 52 
3 3 52 
4 1 52 
5 4 52 
6 3 52 
7 4 52 
8 9 52 
9 6 52 

 

The analyst decides to use a Jeffreys prior with the data pooled across the nine years of leak-
testing (36 failures in 486 demands).  This results in a posterior mean for p of 0.08 and a 90% 
credible interval of (0.06, 0.099).  Investigate the validity of the analyst’s approach. 

 
 
Solution 
One of the assumptions underlying the binomial distribution is that p does not change from one 
demand to the next.  In our example, where data has been collected over a period of time, this also 
implies that p should not change over time.  A qualitative way to check this assumption is to calculate a 
95% credible interval for each of the nine years, plot them side by side, and look for overlap.  If the 
intervals all overlap with one another, this is evidence that p is not varying significantly over time.  Note 
that p could exhibit a time trend, perhaps increasing over time due to wearout of the valve, or it could 
vary significantly from one year to the next.  Either situation could make the simple binomial likelihood a 
poor model. 
 
The WinBUGS script used to construct a side-by-side plot of the credible intervals for each year (using 
a Jeffreys noninformative prior) is shown in Script 12.  The block data is loaded by highlighting the first 
letter of the block data, in this case “x”, and clicking load data in the specification tool.  The second data 
list is loaded separately.  
 

• Script 12.  WinBUGS script to generate caterpillar plot for p with block data entry. 

model  { 
 for (i in 1:N) { 
 x[i] ~ dbin(p[i], n[i])   # Binomial distribution for failures in each year 
 p[i] ~ dbeta(0.5, 0.5) # Jeffreys prior for p, used in developing interval plot of p 
 } 
} 
Data # Illustrate the use of “block data” entry format for x failures in n demands 
x[] n[] 
4 52 
2 52 
3 52 
1 52 
4 52 
3 52 
4 52 
9 52 
6 52 
END 
list(N=9) 
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• Figure 4-16.  DAG representing Script 12. 

 
This script was run for 100,000 iterations, discarding the 
first 1,000 iterations to allow for convergence.  The 
caterpillar plot created through the inference comparison 
tool produced Figure 4-17 which shows the 95% credible 
intervals for p in each year.  The plot suggests that p 
might be increasing with time, but there is a lot of 
uncertainty, so it is difficult to judge whether a trend may 

actually be present.  A more quantitative measure is needed. 
 

 
• Figure 4-17.  Side-by-side plot of 95% credible intervals for p in each of the 9 years.  Dots indicate 
posterior mean, and red line is the average of the posterior means. 

 

Note the use of the block format for 
entering data.  Also, there are now 
two steps to loading data, first the 

data block then the list. 

p[i]

x[i]

Beta Prior

alpha beta

n[i]

For i = 1 to N
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The WinBUGS Script 13 is used to generate a quantitative measure of how well a model that pools the 
data can replicate the observed data in each year.  A Jeffreys prior is used for the single parameter 
(p.constant) that is estimated.  Running this script in the usual way gives a mean for the p.value node of 
0.18.  If the model were good at replicating the observed data, we would expect the mean of this node 
to be near 0.5.  Monitoring the x.rep node shows that the constant-p model tends to predict too many 
failures in early years and too few in later years, suggesting that a trend model might be better at 
replicating the observed data.  We will examine this model in Section 4.4.1 below. 
 

• Script 13.  WinBUGS script for testing assumption that p in binomial distribution does not vary 
over time. 

model { 
 for (i in 1:N) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial distribution for failures in each year 
  x.rep[i] ~ dbin(p[i], n[i]) # Replicate value from posterior predictive distribution 
  diff.rep[i] <- pow(x.rep[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) # chi-square-type metric 
  diff.obs[i] <- pow(x[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) # chi-square-type metric 
  p[i] <- p.constant  # Constant parameter in each year, resulting in pooling 
 }    # of data 
chisq.rep <- sum(diff.rep[])  # Sum the “replicated” chi-square-type metric 
chisq.obs <- sum(diff.obs[])  # Sum the observed chi-square-type metric 
p.value <- step(chisq.rep - chisq.obs) # If the “replicated” metric is larger than 
      # observed add 1 to p.value (for each iteration) 
      # otherwise add 0 
p.constant ~ dbeta(0.5, 0.5)   # Jeffreys prior for p.constant 
 } 
Data 
x[] n[] 
4 52 
2 52 
3 52 
1 52 
4 52 
3 52 
4 52 
9 52 
6 52 
END 
list(N=9) 
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• Figure 4-18.  DAG representing Script 13 and Script 14. 
 
 
• Example 14.  Check for source-to-source variability for circuit breaker failure data in the ATCS. 

In this example we have data from multiple sources that we would like to use to estimate p for 
the circuit breaker connecting electric power to the pump in our ATCS system.  The data are 
from similar circuit breakers in similar systems and we need to decide if the information from the 
various sources can be pooled.  If it can be pooled, then we could start with a noninformative 
prior for p, update with the pooled data, and then use the resulting posterior distribution as the 
prior distribution for the circuit breaker in our specific system.  However, if the data cannot be 
pooled a more sophisticated analysis is required, as described in a later section. 

 
The data in this example consist of failure counts and demands, and are shown below. 

Source Failures Demands 
1 0 164 
2 1 322 
3 0 13 
4 2 186 
5 2 6151 
6 0 3264 
7 1 4747 
8 1 3211 
9 4 457 
10 4 456 
11 3 277 

 
We first examine the data qualitatively, by plotting the credible intervals for each source, based on 
updating a Jeffreys prior.  This is done using Script 12 above, with the data in that script replaced by the 
data shown above.  The lack of overlap of intervals in the caterpillar plot displayed in Figure 4-19 shows 
that there is apparently significant variability in p from source to source. 
 

Beta Prior
p.constant

betaalpha

x[i]x.rep[i]

p.value

n[i] n[i]

diff.rep[i] diff.obs[i]

p[i]

For i = 1 to N
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• Figure 4-19.  Side-by-side plot of 95% credible intervals for circuit breaker data, illustrating source-
to-source variability in p. 

 
We can quantify our judgment about source-to-source variability with the WinBUGS Script 14.  Run this 
script in the usual way and monitor the mean of the p.value node.  A mean for the p.value node near 0 
or 1 is evidence that the sources should not be pooled. 
 
In our example, the mean value is 7.0 × 10-5, a very small value, providing strong quantitative evidence 
that the data should not be pooled.  A Bayesian approach that preserves this source-to-source 
variability is described in Section 4.5.1. 
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• Script 14.  WinBUGS script to generate caterpillar plots and perform quantitative test for 
poolability of binomial data. 
 
Figure 4-18 showed the DAG that represents Script 14. 
 
 
4.3.2  Checking the Validity of the Poisson Model  
Recall the three underlying assumptions for the Poisson distribution: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval.  The constant of proportionality is denoted by lambda. 

 The probability of simultaneous events in a short interval of time is approximately zero.  Thus, 
common-cause failures are not considered. 

 The occurrence of an event in one time interval does not affect the probability of occurrence in 
another, non-overlapping time interval. 

We have also selected a prior distribution for lambda, and Bayes’ Theorem has been used to combine 
this prior with observed data, producing a posterior distribution for lambda.  The probability of observing 
future data can be calculated by averaging the Poisson distribution for the number of events in time t 
over the posterior distribution for lambda.  If this probability is small, then the model is suspect.  
Perhaps the prior distribution is at fault, or perhaps one of the Poisson assumptions listed above is 
grossly violated.  Further investigation will be required to identify where the breakdown has occurred. 
 

model { 
 for (i in 1 : N) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial for number of failures in each source 
  p[i] <- p.constant   # Use this line to test for poolability 
  # p[i] ~ dbeta(0.5, 0.5) # Use this line to generate caterpillar plot of credible intervals 
  x.rep[i] ~ dbin(p[i], n[i])  # Replicate from posterior predictive distribution 
  diff.obs[i] <- x[i] - p[i]*n[i] # Difference between observed and expected x 
  chisq.obs[i] <- pow(diff.obs[i], 2)/(n[i]*p[i]*(1-p[i])) #Observed chi-square 
  diff.rep[i] <- x.rep[i] - p[i]*n[i] # Difference between replicated and expected x 
  chisq.rep[i] <- pow(diff.rep[i], 2)/(n[i]*p[i]*(1-p[i]))  #Replicated chi-square 
 } 
p.constant ~ dbeta(0.5, 0.5)  # Jeffreys prior for p.constant, use for poolability test 
chisquare.obs <- sum(chisq.obs[]) 
chisquare.rep <- sum(chisq.rep[]) 
p.value <- step(chisquare.rep - chisquare.obs)  # Mean of this node should be near 0.5 
} 
data 
x[] n[] 
0 164 
1 322 
0 13 
2 186 
2 6151 
0 3264 
1 4747 
1 3211 
4 457 
4 456 
3 277 
END 
list(N=11) 
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• Example 15.  Posterior predictive check for circulating pump failure in the ATCS. 
In Example 3 the prior distribution for the circulating pump was given as a gamma distribution with 
parameters alphaprior = 1.6 and betaprior = 365000 hours. 
Suppose that the observed data had been 2 failures in 200 days.  As a check on the validity of the 
model find the probability of seeing at least 2 failures in the next 200 days. 

 
Solution 
In the WinBUGS script shown below, x.rep represents the predicted number of failures in the next 200 
days.  The p.value node calculates the probability that x.rep is at least as big as the observed value, x.  
If the mean of this node is less than about 0.05, a problem may exist with the model, either in the prior 
distribution or in one or more of the assumptions underlying the Poisson distribution. 

• Script 15.  WinBUGS script to generate replicate data from Poisson distribution. 
 

 
• Figure 4-20.  DAG representing Script 15. 
 

Running the script for 100,000 iterations, with 1,000 burn-in iterations for convergence, gives a mean 
for the p.value node of 0.001, indicating the model is not able to replicate the observed data; it severely 

model { 
x ~ dpois(mean.poisson)   # Poisson distribution for number of events 
x.rep ~ dpois(mean.poisson)   # Replicate value of x from posterior predictive 
      # distribution 
mean.poisson <- lambda*time.hr # Poisson parameter 
time.hr <- time*24    # Convert days to hours 
lambda ~ dgamma(alpha, beta)  # Gamma prior distribution for lambda 
p.value <- step(x.rep - x)  # If mean of this node is < 0.05, there is a 
}      # problem with the model 
 
data 
list(x=2, time=200, alpha=1.6, beta=365000) 
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lambda

alpha

txx.rep

p.value

t
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under-predicts the number of failures.  At this point, the analyst may decide that the choice of prior 
distribution was overly optimistic because it puts high probability on small values of lambda, or perhaps 
an engineering investigation may reveal that the two observed failures were not independent, violating 
one of the assumptions behind the Poisson distribution.  This could be the case, for example, if the 
cause of the first failure was not completely repaired.  However, in this example the probability of 
seeing 2 or more failure in 200 days is only about 3.5 × 10-4, suggesting that the prior distribution for 
lambda is inconsistent with the actual performance of the circulating pump. 
 
• Example 16.  Check for time trend in initiating event frequency for heat load on ATCS system. 

Consider the following data for an initiating event that places a heat load on the ATCS.  The analyst 
decides to use a Jeffreys prior with the data pooled across the seven years.  This results in a posterior 
mean for lambda of 0.08 and a 90% credible interval of (0.06, 0.099).  Investigate the validity of the 
analyst’s approach. 

Year Number of Events Exposure Time 
1 16 14.63 
2 10 14.15 
3 7 15.75 
4 13 17.77 
5 9 17.11 
6 6 17.19 
7 2 17.34 

 

 
Solution 
One of the assumptions underlying the Poisson distribution is that lambda does not change over time.  
A qualitative way to check this assumption is to calculate a 95% credible interval for each of the seven 
years, plot them side by side, and look for overlap.  If the intervals all overlap with one another, this is 
evidence that lambda is not varying significantly over time.  Note that lambda could exhibit a time trend, 
perhaps increasing over time due, or it could vary significantly from one year to the next.  Either 
situation could make the simple Poisson likelihood a poor model. 
 
Script 17 (see page 69) can be used to construct a side-by-side plot of the credible intervals for each 
year (using a Jeffreys noninformative prior), replacing the data with the data for this example.  The side-
by-side interval plot is shown in Figure 4-21. 
 

 
• Figure 4-21.  Side-by-side interval plot illustrating decreasing trend in lambda over time. 
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The WinBUGS Script 16 provides a quantitative measure of how well 
a model that pools the data can replicate the observed data in each 
year.  A Jeffreys prior is used for the single parameter 
(lambda.constant) that is estimated.  Running the script gives a mean 
for the p.value node of 0.018.  If the model were good at replicating 
the observed data, we would expect the mean of this node to be near 
0.5.  Monitoring the x.rep node shows that the constant-lambda 

model tends to predict too few failures in early years and too many in later years, suggesting that a 
trend model might be better at replicating the observed data.  We will examine this model in Section 
4.4.2. 
 

• Script 16.  WinBUGS script to test for poolability of Poisson data. 
 

Because WinBUGS can 
have difficulty 

generating initial values 
from the Jeffreys prior, 

we give it a starting 
value. 

model { 
 for(i in 1:N) { 
  x[i] ~ dpois(mu[i])  # Poisson distribution for failures in each source 
    x.rep[i] ~ dpois(mu[i])  # Replicate value from posterior predictive distribution 
   mu[i] <- lambda[i]*t[i]  # Parameter of Poisson distribution 
    lambda[i] <- lambda.constant  # Use this line to test for poolability 
    diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i] 
  diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i] 
 } 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs)  # Mean of this node should be near 0.5 
lambda.constant ~ dgamma(0.5, 0.0001)  # Jeffreys prior for lambda 
} 
data 
x[] t[] 
16 14.63 
10 14.15 
7 15.75 
13 17.77 
9 17.11 
6 17.19 
2 17.34 
END 
list(N=7) 
inits 
list(lambda.constant=0.001) 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS    

 
MODEL VALIDATION 68

 
• Figure 4-22.  DAG representing Script 16 and Script 18. 

 
• Example 17.  Check for source-to-source variability in circuit board failure rate data in the ATCS. 

The following data are available for failure of a particular circuit board in the avionics control package of 
the ATCS system.  These data are from circuit boards in similar applications and we need to decide if 
the information from the various sources can be pooled.  If we can pool the data, then we could start 
with a noninformative prior for lambda update this with the pooled data and then use the resulting 
posterior distribution from that update as the prior distribution for the circuit board in our specific system. 
However if the data cannot be pooled a more sophisticated analysis is required as described in a later 
section. 

 
 
The data in this example consist of failure counts and exposure times, and are shown below. 

Source Failures Exposure Time (hrs)
1 0 87600 
2 7 525600 
3 1 394200 
4 0 87600 
5 8 4555200 
6 0 306600 
7 0 394200 
8 0 569400 
9 5 1664400 
10 1 3766800 
11 4 3241200 
12 2 1051200 

 
 
We first examine the data qualitatively, by plotting the credible intervals for each source, based on 
updating a Jeffreys prior.  This is done using the WinBUGS Script 17.  The lack of overlap of intervals in 
the caterpillar plot displayed in Figure 4-24 shows that there is apparently significant variability in 
lambda from source to source. 

Gamma Prior
lambda.constant

betaalpha

x[i]x.rep[i]

p.value

t[i] t[i]

diff.rep[i] diff.obs[i]

lambda[i]

For i = 1 to N
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• Script 17.  WinBUGS script to generate caterpillar plots for lambda with multiple data sources (block data 
entry). 
 
 

 
• Figure 4-23.  DAG representing Script 17. 

 

model { 
 for(i in 1:N) { 
    x[i] ~ dpois(mu[i])  # Poisson dist. for number of failures in each source 
    mu[i] <- lambda[i]*t[i]    # Parameter of Poisson distribution 
  lambda[i] ~ dgamma(0.5, 0.0001)  # Jeffreys prior for caterpillar plot 
 } 
} 
data 
x[] t[] 
0 87600 
7 525600 
1 394200 
0 87600 
8 4555200 
0 306600 
0 394200 
0 569400 
5 1664400 
1 3766800 
4 3241200 
2 1051200 
END 
list(N=12) 

lambda[i]

x[i]

Gamma Prior

alpha beta

t[i]

For i = 1 to N
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• Figure 4-24.  Side-by-side plot of 95% credible intervals for circuit board data, illustrating source-to-
source variability in lambda. 

 
We can quantify our judgment about source-to-source variability with the following WinBUGS script.  
Run this script in the usual way and monitor the mean of the p.value node.  A mean near 0 or 1 is 
evidence that the sources should not be pooled.  In our example, the mean value is 0.002, a very small 
value, providing strong quantitative evidence that the data should not be pooled.  A Bayesian 
approach that preserves the source-to-source variability is described in Section 4.5.2. 
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• Script 18.  WinBUGS script to generate caterpillar plots and perform quantitative test for poolability of 
Poisson data. 
 
Refer to Figure 4-22 for the DAG representing Script 18. 
 
4.3.3  Checking the Validity of the Exponential Model  
With the exponential distribution, the observed data are a set of times (e.g., times to failure, times to 
recovery) and have the following assumptions: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval.  The constant of proportionality is denoted by lambda. 

 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 The random event that is observed is the time to an event. 

model { 
 for(i in 1:N) { 
  x[i] ~ dpois(mu[i])  # Poisson dist. for number of failures in each source 
  x.rep[i] ~ dpois(mu[i])  # Replicate value from posterior predictive distribution 
  mu[i] <- lambda[i]*t[i]   # Parameter of Poisson distribution 
  lambda[i] <- lambda.constant  # Use this line to test for poolability 
    # lambda[i] ~ dgamma(0.5, 0.0001)  # Jeffreys prior for waterfall plot 
  diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i] 
  diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i]        
 } 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs)   # Mean of this node should be near 0.5 
lambda.constant ~ dgamma(0.5, 0.0001)  # Jeffreys prior for lambda 
} 
data 
x[] t[] 
0 87600 
7 525600 
1 394200 
0 87600 
8 4555200 
0 306600 
0 394200 
0 569400 
5 1664400 
1 3766800 
4 3241200 
2 1051200 
END 
list(N=12) 
inits 
list(lambda.constant=0.001) 
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WinBUGS can be used to generate replicate 
times from the posterior predictive distribution, 
and these replicate times can be compared with 
the observed times to check for model validity.  
For the exponential distribution, it is possible to 
compare the sums of the observed and 
replicated times.  The sum of the observed 
times is a single number, while the sum of the 
replicated times is a random variable having a 
distribution.  If the Bayesian inference model is 
valid, we expect the sum of the observed times 
to be near the center of the distribution for the 

sum of the replicated times. 
 
• Example 18.  Posterior predictive check for observed failure times of ATCS circulating water 
pumps. 

In Example 5 we had the following times to failure (in hours) for ATCS circulating water pumps: 
55707, 255092, 56776, 111646, 11358772, 875209, and 68978.  The prior distribution was 
gamma with alpha = 1.6 and beta = 365000 hours.  The sum of the observed failure times is ttot
= 12782181 hours. 
Use the script below to compare the observed total time with the distribution of the sum of the 
replicated times. 

 
 

• Script 19.  WinBUGS script for posterior predictive check of times to failure against exponential likelihood 
assumption. 
 

With an assumed exponential likelihood 
and a Jeffreys prior on lambda, this test of 

the assumed exponential likelihood 
cannot be used, as the mean value of the 

percentile node will be about 0.5 
regardless of which aleatory model 

generates the data.  We illustrate another 
test below that can be used for this 

situation. 

model { 
 for(i in 1:n) { 
  time[i] ~ dexp(lambda)  # Exponential likelihood function for n failure times 
  time.rep[i] ~ dexp(lambda)  # Replicate times from posterior predictive  
 }     # distribution 
sum.rep <- sum(time.rep[]) 
percentile <- step(sum.rep - sum(time[ ]))  # Mean value should be near 0.5 
lambda ~ dgamma(alpha, beta)   # Gamma prior for lambda 
} 
 
data 
list(time=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), n=7, alpha=1.6, 
beta=365000) 
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• Figure 4-25.  DAG representing Script 19. 

 
Running this script in the usual way and monitoring the percentile node, we see a mean value of 0.36, 
meaning the observed total time is at the 64th percentile of the posterior predictive distribution for the 
replicated total time.  This value means that our Bayesian inference model is under-predicting times to 
failure somewhat.  The prior distribution may be placing too much weight on small values of lambda, or 
the exponential likelihood may not be adequate, because lambda is not the same for each of the 
components for which we have observed a failure time. 
 
To check the influence of the prior distribution, we can use a Jeffreys prior, which gives a posterior 
distribution that is influenced only by the observed data.  However, in this case, we cannot use the test 
in Script 19 because the mean value of the percentile node will be about 0.5 regardless of which 
aleatory model generates the data.  The script below implements another test, which does not have this 
failing. 
 

Gamma Prior

beta

lambda[i]

alpha

time[i]time.rep[i]

percentile

For i = 1 to n

Σ Σ
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• Script 20.  WinBUGS script to test for the assumption of exponential times. 
 

 
• Figure 4-26.  DAG representing Script 20. 

 
Running this script in the usual way and monitoring the mean of the p.value node gives a result of 
0.009.  Such a small value strongly indicates that the exponential model is not an adequate aleatory 
model for these observed times.  Alternatives to the exponential distribution are covered in Section 
4.6.1. 

model { 
 for (i in 1 : N) { 
  time.supp[i] ~ dexp(lambda)   # Exponential dist. for suppression times 
  time.supp.ranked[i] <- ranked(time.supp[ ],i) 
  time.rep[i] ~ dexp(lambda) 
  time.rep.ranked[i] <- ranked(time.rep[ ], i) 
  F.obs[i] <- 1 - exp(-lambda*time.supp.ranked[i]) 
  F.rep[i] <- 1 - exp(-lambda*time.rep.ranked[i]) 
  diff.obs[i] <- pow(F.obs[i] - (2*i-1)/(2*N), 2) 
  diff.rep[i] <- pow(F.rep[i] - (2*i-1)/(2*N), 2) 
 } 
lambda ~ dgamma(0.0001,0.0001)  # Diffuse prior for exponential parameter 
CVM.obs <- sum(diff.obs[ ]) 
CVM.rep <- sum(diff.rep[ ]) 
p.value <- step(CVM.rep - CVM.obs)  # Small value indicates problem with exponential 
likelihood 
} 
data 
list(time.supp=c(55707, 255092, 56776, 111646, 11358772, 875209, 68978), N=7) 
init 
list(lambda=.001) 

Gamma Prior

beta

lambda[i]

alpha

time.supp[i]time.rep[i]

p.value

diff.obsdiff.rep

For i = 1 to N
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4.4   Time-Trend Models for p and Lambda 
Example 13 analyzed valve leakage data over a period of nine years and concluded that p might be 
increasing with time over that period.  In this section, we will see how to develop models in which p and 
lambda are explicit functions of time, relaxing the assumptions of constant p and constant lambda in 
the binomial and Poisson distribution, respectively.  This introduces new unknown parameters of 
interest and makes the Bayesian inference significantly more complicated mathematically.  However, 
modern tools such as WinBUGS make this analysis only slightly more complicated than the single-
parameter cases analyzed earlier. 
 
4.4.1  Time-Trend Model for p in the Binomial Distribution  
The standard way to allow for p to vary in time (monotonically) is by letting f(p) = a + bt, where f(p) is a 
user-defined function of p, a and b are constants, and t is time.  If b = 0, then this reduces to the 
constant-p model discussed earlier.  If b > 0, then p is increasing with time.  If b < 0, p is decreasing 
with time.  The new parameters to be estimated are a and b.  It is common to use diffuse prior 
distributions for these parameters.  Of course, if prior information is available about the parameters a 
and b, an informative prior can be used, but this is not common in practice.  In this subsection, the 
following assumptions apply: 

 The aleatory model of the world contains a single unknown parameter. 
 The prior information is homogeneous and is known with certainty. 
 The observed data are homogeneous and are known with certainty. 
 There are two possible outcomes of each demand typically denoted success and failure. 
 There is a probability of failure on each demand, denoted herein as p, that may vary from one 

demand (or time, if demands are tracked over time) to another. 
 

The WinBUGS Script 21 below carries out inference with a commonly used function for p – we used 

the logit function, logit(p(i)), in the script.  The logit is given as ⎟
⎠

⎞
⎜
⎝

⎛
− )(1

)(ln
ip

ip  where p(i) should be 

between a value of 0 and 1.  Other functions that may be used in place of the logit are shown in the 
script (e.g., probit and complementary log-log), but are commented out.  In many cases, changing the 
f(p) function will not make any practical difference in the inference results. 
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• Script 21.  WinBUGS script for modeling a time trend in p. 
 

model  { 
 for (i in 1:N) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial distribution for failures in each year 
  logit(p[i]) <- a + b*i  # Use of logit() link function for p[i] 
  #probit(p[i]) <- a + b*i  # Use of probit() link function for p[i] 
   #cloglog(p[i]) <- a + b*i  # Use of complementary loglog function for p[i] 
  x.rep[i] ~ dbin(p[i], n[i]) # Model validation section 
  diff.obs[i] <- pow(x[i] - n[i]*p[i], 2)/(n[i]*p[i]) 
  diff.rep[i] <- pow(x.rep[i] - n[i]*p[i], 2)/(n[i]*p[i]) 
 } 
logit(p[10]) <- a + b*10   # Used to predict p in 10th year 
a~dflat()    # Diffuse prior for a 
b~dflat()    # Diffuse prior for b 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs) # A small value for this node indicates a problem 
} 
 
Data 
x[] n[] 
4 52 
2 52 
3 52 
1 52 
4 52 
3 52 
4 52 
9 52 
6 52 
END 
list(N=9) 
 
Inits 
list(a=1, b=0) 
list(a=-1, b=0.1) 
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• Figure 4-27.  DAG representing Script 21. 

 
Because this is a more complicated model, we will run two chains, starting at different points, as an 
aid in deciding when convergence to the posterior distribution has occurred.  We do this by selecting 
two chains before pressing the compile button during the specification step.  Also, we must give starting 
values for each chain, as WinBUGS cannot generate initial values of a and b from the flat prior 
distributions we have used.  These are listed in the Inits portion of the script and are loaded one chain 
at a time.  Following the initial values load for the two chains, the generate inits button can be clicked to 
generate any other initial values required.  Running 1,000 iterations gives the following history plots for 
the parameters a and b.  It appears from these plots that we have convergence within the first 1,000 
iterations. 
 

 
• Figure 4-28. Plot of values of first 1,000 values for “a” parameter, illustrating convergence. 
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• Figure 4-29.  Plot of values of first 1,000 values for “b” parameter, illustrating convergence. 
 

 
We can also plot the BGR diagnostic, since we have run more than 
one chain.  The plots for both parameters are indicative of 
convergence. 

 
• Figure 4-30. BGR diagnostic for “a” parameter, indicating convergence. 

 

 
• Figure 4-31. BGR diagnostic for “b” parameter, indicating convergence. 

 
Now that we are confident of convergence, we run another 100,000 iterations to estimate parameter 
values.  Examining the posterior density for the “b” parameter will help us judge the significance of any 
trend that might be present:  if the posterior distribution is mostly to the right of zero, this indicates an 
increasing trend, and vice versa if the posterior distribution is mostly to the left of zero.  By monitoring 
the b node, we obtain a posterior probability of at least 0.975 that b > 0, suggesting a statistically 
significant increasing trend in p.  The plot of the posterior distribution for b below shows this graphically. 
 

For convergence, the red 
line in the BGR plot 

should be close to 1.0, 
and the blue and green 
lines should be stable. 
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• Figure 4-32. Posterior distribution for “b” parameter.  Values below zero are very unlikely, 
suggesting an increasing trend in p over time. 
 

We can also quantify the ability of this model to replicate the observed data by monitoring the mean of 
the p.value node.  As before, a mean near 0.5 indicates good replicative ability.  In this example, the 
mean is 0.47.  Comparing this with the value of about 0.18 obtained for a constant-p model, we see 
that a model in which p increases with time is much better at replicating the observed data. 
Finally, we can use this model to estimate p in the next year (year 10).  This is given by node p[10] in 
the script above, and would be what we would use in a PRA.  Monitoring this node, we find a posterior 
mean of 0.15 and a 90% interval of (0.085, 0.22).  Compare this with the estimates from the constant-p 
model of 0.08 for the mean and (0.06, 0.099) for the 90% interval.  These results are shown in Figure 
4-33. 

 
• Figure 4-33.  Comparison of time trend versus constant probability results for the binomial model. 
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Figure 4-34 shows the 95% credible intervals for each year, based on the trend model for p. 

 
• Figure 4-34.  Plot of 95% interval for p in each year based on a trend model in which p is increasing 
with time. 

 
4.4.2  Time-Trend Model for Lambda in the Poisson Distribution  
A standard way to allow for lambda to vary in time (monotonically) is by letting f(lambda) = a + (b t), 
where f(lambda) is a user-defined function of lambda, a and b are constants, and t is time.  If b = 0, 
then this reduces to the constant-lambda model discussed earlier.  If b > 0, then lambda is increasing 
with time.  If b < 0, lambda is decreasing with time.  The new parameters to be estimated are a and b.  
It is common to use diffuse prior distributions for these parameters.  Of course, if prior information is 
available, an informative prior can be used, but this is not common in practice.  WinBUGS Script 22 
carries out inference with a commonly-used function of lambda[loglinear, where log(lambda) = a + b t].  
In this subsection, the following assumptions apply: 

 The aleatory model of the world contains a single unknown parameter. 
 The prior information is homogeneous and is known with certainty. 
 The observed data are homogeneous and are known with certainty. 
 The probability of an event in a small time interval depends on the length of the interval and the 

time at which the event occurs.  In other words, lambda is a function of time. 
 The probability of simultaneous events in a short interval of time is approximately zero. 
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• Script 22.  WinBUGS script for modeling time trend in lambda. 
 

model { 
for(i in 1:N) { 
  x[i] ~ dpois(mu[i])   # Poisson dist. for number of failures in each source 
  x.rep[i] ~ dpois(mu[i])   # Replicate value from posterior predictive distribution 
  mu[i] <- lambda[i]*t[i]   # Parameter of Poisson distribution 
  log(lambda[i]) <- a + b*i # Loglinear model for lambda 
  diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i] 
  diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i] 
  } 
log(lambda[8]) <- a + b*8 # Used to predict lambda in 8th year 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs) # Mean of this node should be near 0.5 
a~dflat()     # Diffuse priors for a and b 
b~dflat() 
 } 
data 
x[] t[] 
16 14.63 
10 14.15 
7 15.75 
13 17.77 
9 17.11 
6 17.19 
2 17.34 
END 
list(N=7) 
Inits 
list(a=0.1, b=0) 
list(a=0.1, b=-0.01) 
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• Figure 4-35.  DAG representing Script 22. 
 
Because this is a more complicated model, we will run two chains, starting at different points, as an aid 
in deciding when convergence has taken place.  Also, we must give starting values for each chain.  
These are listed in the “Inits” portion of the script.  Running 1,000 iterations gives the following history 
plots for the parameters a and b.  It appears from these plots that we have convergence within the first 
1,000 iterations. 
 

 
• Figure 4-36.  Plot of values of first 1,000 values for “a” parameter, illustrating convergence. 

 

 
• Figure 4-37.  Plot of values of first 1,000 values for “b” parameter, illustrating convergence. 
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We can also plot the BGR diagnostic, since we have run more than one chain.  The plots for both 

parameters are indicative of convergence. 
 

 
• Figure 4-38.  BGR diagnostic for “a” parameter, indicating convergence. 
 

 
• Figure 4-39.  BGR diagnostic for “b” parameter, indicating convergence. 

 
Now that we are confident of convergence, we run another 100,000 iterations to estimate parameter 
values.  Examining the posterior density for the “b” parameter will help us judge the significance of any 
trend that might be present:  if the posterior distribution is mostly to the right of zero, this indicates an 
increasing trend, and vice versa if the posterior distribution is mostly to the left of zero.  By monitoring 
the b node, we obtain a posterior probability of at least 0.975 that b < 0, suggesting a statistically 
significant decreasing trend in lambda.  The plot of the posterior distribution for b below shows this 
graphically. 

 
• Figure 4-40.  Posterior distribution for “b” parameter.  Values above zero are very unlikely, 
suggesting a decreasing trend in lambda over time. 

 
We can also quantify the ability of this model to replicate the observed data by monitoring the mean of 
the p.value node.  As before, a mean near 0.5 indicates good replicative ability.  In this example, the 
mean is 0.46.  Comparing this with the value of about 0.018 obtained for a constant-lambda model, we 
see that a model in which lambda decreases with time is much better at replicating the observed data. 
Finally, we can use this model to estimate lambda in the next year (year 8).  This is given by node 
lambda[8] in the script above, and would be what we would use in a PRA.  Monitoring this node, we 
find a posterior mean of 0.21 and a 90% interval of (0.11, 0.34).  Compare this with the estimates from 

For 
convergence, the 

red line in the 
BGR plot should 
be close to 1.0, 

and the blue and 
green lines 

should be stable. 
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the constant-lambda model of 0.55 for the mean and (0.45, 0.68) for the 90% interval.  The figure below 
shows the 95% credible intervals for each year, based on the trend model for lambda. 
 

 
• Figure 4-41.  Plot of 95% interval for lambda in each year based on a trend model in which lambda 
is decreasing with time. 
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4.5   Population Variability Models 
4.5.1  Population Variability Model for p in the  Binomial Distribution  
In Example 14, we had data from multiple sources that we wanted to use to estimate p for the 
circulating pump circuit breaker in the ATCS.  The data were from similar breakers in similar systems, 
and we wanted to develop a prior distribution that captured both the central estimate from these 
sources and the variability in p indicated by the data.  Recall that the assumptions from Example 14 
were: 

 There are two possible outcomes of each demand typically denoted success and failure. 
 There is a constant probability of failure (typically in PRA; typically success in reliability 

engineering) on each demand, denoted herein as p. 
 The outcomes of earlier demands do not influence the outcomes of later demands. 
 The model contains a single unknown parameter. 
 The prior information is homogeneous and is known with certainty.  In this section, we will relax 

the assumption of homogeneity. 
 The observed data are homogeneous and are known with certainty. In this section, we will relax 

the assumption of homogeneity. 
 

The conclusions from Example 14 indicated that the mean of the “p.value” node was a very small 
value, providing strong quantitative evidence that the data should not be pooled.  Consequently, we 
need a Bayesian approach that preserves this source-to-source variability.  Such analysis is referred 
to as hierarchical Bayesian analysis, because the prior distribution is developed in stages or 
hierarchies.  We first specify a prior to represent the variability in the data sources (the “population 
variability curve”, or PVC) and then specify a second prior describing the epistemic uncertainty in the 
parameters of the first-stage prior.  The analysis is quite complicated mathematically, but WinBUGS 
makes the analysis straightforward. 
 

We must begin by choosing a functional form for the PVC.  Often a 
conjugate form is chosen (e.g., beta distribution if the parameter is p in a 
binomial distribution), but this is not a requirement.  In fact, in cases where 
there is extremely high variability in p, choosing a conjugate form can lead 
to suspect results.  In such cases, a distribution with a heavier tail, such 
as the lognormal, may be a better choice. Or it may be better to develop a 
weighted-average prior, where the analyst specifies subjective weights for 
each data source (see Section 4.8.4).  For our example, we will take the 

PVC to be a beta distribution with parameters alpha and beta. 
 
As the second stage in the hierarchy, we must specify a second-stage prior distribution for alpha and 
beta (alpha and beta are called hyperparameters and the second-stage prior is referred to as a 

hyperprior).  This is usually done by choosing independent, diffuse 
distributions for both parameters.  Choosing hyperpriors that are 
diffuse, yet that avoid numerical difficulties can be a bit of an art, and 
this is one of the reasons why analysis of population variability 
should always be reviewed by an expert analyst. 
 
The WinBUGS Script 23 is used to perform the PVC analysis.  Node 
p.avg will represent variability in p across the sources.  It will be the 
prior distribution for inference about the circuit breaker failure 
probability in the ATCS, and will be updated with data collected from 

operation or testing of our system.  Note that this script also calculates a node called p.value, which is 
used to check the ability of the model to replicate the observed data. 

Sensitivity to the 
functional form of 
the PVC should 

always be 
checked. 

Because of potential 
convergence and other 
numerical difficulties, 
population variability 

analysis should always 
be reviewed by an 

expert. 
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• Script 23.  WinBUGS script for analyzing population variability in p. 

model { 
for(i in 1:N) { 
 x[i] ~ dbin(p[i], n[i])   # Binomial model for number of events in each source 
 p[i] ~ dbeta(alpha, beta)  # First-stage beta prior 
 x.rep[i] ~ dbin(p[i], n[i])  # Replicate value from posterior predictive 
distribution 
 #Generate inputs for Bayesian p-value calculation 
 diff.obs[i] <- pow(x[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) 
 diff.rep[i] <- pow(x.rep[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) 
 } 
p.avg ~ dbeta(alpha, beta)   # Average beta population variability curve 
# Calculate Bayesian p-value 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs) # Mean of this node should be near 0.5 
# Hyperpriors for beta first-stage prior 
alpha ~ dgamma(0.0001, 0.0001) 
beta ~ dgamma(0.0001, 0.0001) 
} 
data 
x[] n[] 
0 164 
1 322 
0 13 
2 186 
2 6151 
0 3264 
1 4747 
1 3211 
4 457 
4 456 
3 277 
END 
list(N=11) 
inits 
list(alpha=0.5, beta=200)  # Chain 1 
list(alpha=2, beta=100)  # Chain 2 
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• Figure 4-42.  DAG representing Script 23. 

 
The initial values for each chain are estimates distributed around what are felt to be likely values of 
alpha and beta.  Often, accurate estimates are not needed.  However, in some cases, more care will 
have to be used in picking initial values, and more than two chains may be needed.  Such problems will 
require expert assistance, but should not be too common in practice. 
 
We run this script for 2,000 iterations, and check for convergence by examining history plots and BGR 
diagnostics for each parameter.  These are shown below, and indicate convergence within the first 
2,000 iterations, so we will discard these as burn-in samples. 
 

 
•  Figure 4-43.  Plot of first 2,000 values of alpha, indicating convergence. 
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• Figure 4-44.  BGR diagnostic for alpha, indicating convergence. 
 

 

 
•  Figure 4-45.  Plot of first 2,000 values of beta, indicating convergence. 

 

 
• Figure 4-46.  BGR diagnostic for beta, indicating convergence. 
 

 

 
• Figure 4-47.  Plot of first 2,000 values of p.avg, indicating convergence. 
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• Figure 4-48.  BGR diagnostic for p.avg, indicating convergence. 

 
This script runs slower than earlier scripts we have used, so we may want to make parameter 
estimates with less than the usual 100,000 iterations.  Let us try 10,000 additional iterations and 
examine the Monte Carlo error for each parameter to judge if enough samples have been taken to 
accurately estimate each parameter.  The results are listed below. 

 mean sd MC_error val5.0pc median val95.0pc  start sample 
alpha 0.5 0.2635 0.007467 0.1872 0.4438 1.01 2001 20000 
beta 149.9 125.8 3.676 22.23 116.2 387.4 2001 20000 
p.avg 0.005016 0.01399 1.219E-4 1.767E-6 0.001569 0.0197 2001 20000 
 

A heuristic to decide if more samples are needed is that the Monte Carlo error should be no more than 
about 5% of the mean value.  This is satisfied for all three parameters, so we can stop after 10,000 
iterations (12,000 including burn-in).  The posterior mean of p.avg is 0.005, with a 90% credible interval 
of (1.8 × 10-6, 0.020).  This is a very wide range of variability. 
 
Note that the distribution of node p.avg is not a beta distribution, despite what one might be led to 
believe by looking at Script 23.  It is a weighted average of beta distributions, with the weights provided 
by the posterior distribution of alpha and beta.  Thus, it cannot be written in closed form.  However, if 
desired, it can be approximated by a distribution of known form to aid in further analysis, although this is 
not necessary in WinBUGS.  Let us explore these “approximation” options, assuming that the observed 
data for the circuit breaker in our system is 1 failure in 403 demands on the breaker. 
 
Option 1:  Replace average PVC with beta distribution having same mean and variance 
This option might be taken by an analyst who desires a conjugate prior for further updates with binomial 
data, and who wants to use simple algebra to estimate the parameters of the beta conjugate prior.  The 
algebra was illustrated in Section 4.2.5.1.3.  The resulting estimates for alpha and beta are 0.12 and 
24.3, respectively.  The corresponding 90% credible interval is (5.5 × 10-13, 0.029).  Because of the 
small value of alpha, this distribution places considerable weight on very small values of p.  Updating 
this conjugate prior with our observed data of 1 failure in 403 demands gives a beta posterior 
distribution with alphapost = 1.12 and betapost = 426.3.  The posterior mean is 2.6 × 10-3 and the posterior 
90% credible interval is (1.8 × 10-4, 7.5 × 10-3). 
 
Option 2:  Replace average PVC with lognormal distribution having same mean and 95th percentile 
This option might be taken by an analyst who is concerned about the high weight that the beta 
conjugate prior obtained in Option 1 places on very small values of p.  If zero failures were observed, 
this would lead to a posterior mean that is too low, perhaps by a large enough amount to distort the risk 
importance of the circuit breaker in the overall PRA.  We will use WinBUGS to perform the Bayesian 
inference, since the lognormal distribution is not a conjugate prior, and the appropriate lines from Script 
9 will be used to convert the mean and upper bound to mu and tau, the parameters needed by 
WinBUGS to describe the lognormal distribution.  The new script is shown as Script 24.  Note that the 
solution for sigma involves a quadratic equation, and the roots for this equation will not be real unless 
the ratio of the mean to the 95th percentile is greater than about 0.258.  In our case this ratio is 0.250, 
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so we need to adjust the value of “upper” until this constraint is satisfied.  This is achieved when “upper” 
< 0.0194, so we replace the estimated 95th percentile of 0.02 above with a value of 0.019. 
 

• Script 24.  WinBUGS script to replace average PVC with lognormal prior using mean and upper bound, 
and to update prior with observed data of 1 failure in 403 demands. 
 

 
• Figure 4-49.  DAG representing Script 24. 

 
Running Script 24 in the usual way gives a posterior mean for p of 
2.2 × 10-3 and a 90% credible interval of (2.3 × 10-4, 6.2 × 10-3), 
similar to the posterior results under Option 1 above. 
 
 

Option 3:  Use WinBUGS to update average PVC with observed data (exact approach) 
This option involves no approximations and is straightforward:  we just add a new data line (with the 1 
failure in 403 demands, and changing N to 12) to Script 23 and rerun the analysis, monitoring node 
p[12].  The results are shown below. 

model { 
x ~ dbin(p, n)   # Binomial distribution for number of failures 
p ~ dlnorm(mu, tau)  # Lognormal prior distribution for p 
 
#Calculate mu and tau from lognormal mean and upper bound 
tau <- pow(sigma, -2) 
sigma <- (2*1.645 + sqrt(4*pow(1.645, 2) + 8*log(mean/upper)))/2 
mu <- log(mean) - pow(sigma, 2)/2 
} 
data 
list(x=1,n=403, mean=0.005, upper=0.019) 

Sensitivity to the 
functional form of the PVC 
should always be checked. 

p

x

mu tau

Lognormal Prior

upper

n

mean
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 mean sd MC_error val5.0pc median val95.0pc  
p[12]  0.002747 0.002271 1.962E-5 3.212E-4 0.002155 0.007173 
  

 
In Figure 4-50, the comparison of the means and 90% credible intervals for the three options described 
in this section are plotted.  Also, the figure shows the results from the original Example 14 calculation 
where no population variability was assumed.  As can be seen in the figure, the two fitted results are 
comparable to the exact calculation.  However, the “no variability assumption” calculation has a lower 
mean value (as compared to the exact calculation) and the uncertainty on the probability is greatly 
underestimated. 

 
• Figure 4-50.  Comparison of binomial Example 14 results for the exact calculation, two fitted (to 
the exact) results, and the no population variability results. 
 

 
4.5.2  Population Variability Model for Lambda in the  Poisson Distribution  
In Example 17, we had data from circuit boards similar to one of concern in the avionics control portion 
of our ATCS system.  In that example, we decided that we could not pool the data from these sources 
to generate a prior distribution for lambda. Recall the following assumptions for the example: 

 The aleatory model of the world contains a single unknown parameter. 
 The prior information is homogeneous and is known with certainty. In this section, we will relax 

the assumption of homogeneity. 
 The observed data are homogeneous and are known with certainty. In this section, we will relax 

the assumption of homogeneity. 
 The probability of an event in a small time interval depends only on the length of the interval. 
 The probability of simultaneous events in a short interval of time is approximately zero. 

 
In this section, we need to develop a prior distribution that captures 
both the central estimate from the different data sources and the 
variability in lambda indicated by the data.  The approach is the 
same as for p in the binomial distribution described in Sec 4.5.1.  
We begin by specifying a first-stage prior describing the source-to-
source variability in lambda, and then a second-stage prior 
(hyperprior) for the parameters of the first-stage prior. 
 

Because of potential 
convergence problems and 
other numerical difficulties, 

population variability 
analysis should always be 

reviewed by an expert. 
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We will use a conjugate gamma distribution as the first-stage prior, although other functional forms can 
be used.  We will use independent diffuse priors for the parameters of the first-stage gamma prior.  The 
WinBUGS Script 25 is used to carry out the analysis. 
 

• Script 25.  WinBUGS script for analyzing population variability in lambda with Poisson likelihood. 
 

model { 
 for(i in 1:N) { 
  x[i] ~ dpois(mu[i])  # Poisson dist. for number of failures in each source 
  mu[i] <- lambda[i]*t[i]  # Parameter of Poisson distribution 
  lambda[i] ~ dgamma(alpha, beta)  # First-stage gamma prior 
  x.rep[i] ~ dpois(mu[i])  # Replicate value from posterior predictive distribution 
  diff.obs[i] <- pow(x[i] - mu[i], 2)/mu[i] # Inputs to calculate Bayesian p-value 
  diff.rep[i] <- pow(x.rep[i] - mu[i], 2)/mu[i]        
 }  
lambda.avg ~ dgamma(alpha, beta) #Overall avg. population variability for lambda 
chisq.obs <- sum(diff.obs[])  # Calculate Bayesian p-value 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs)  # Mean of node should be near 0.5 
alpha <- pow(CV, -2) #Reparameterize in terms of mean and coefficient of variation 
beta <- alpha/mean 
CV ~ dexp(1)    # Maximum entropy hyperprior for coefficient of variation 
mean ~ dgamma(0.0001, 0.0001)  # Diffuse hyperprior on mean 
} 
 
data 
x[] t[] 
0 87600 
7 525600 
1 394200 
0 87600 
8 4555200 
0 306600 
0 394200 
0 569400 
5 1664400 
1 3766800 
4 3241200 
2 1051200 
END 
list(N=12) 
 
inits 
list(CV=1, mean=0.00001) 
list(CV=2, mean=0.000001) 
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• Figure 4-51.  DAG representing Script 25. 

 
The initial values for each chain are estimates distributed around what are felt to be likely values of CV 
and the mean.  Often, accurate estimates are not needed.  However, in some cases, more care will 

have to be used in picking initial values, and more than 
two chains may be needed.  Such problems will require 
expert assistance, but should not be too common in 
practice. 
 
We run this script for 1,000 iterations, and check for 
convergence by examining history plots and BGR 
diagnostics for each parameter.  These are shown 
below, and indicate convergence within the first 1,000 
iterations, so we will discard these as burn-in samples. 

 

 
• Figure 4-52  Plot of first 1,000 values of CV, indicating convergence. 

 

Note that Script 25 changes the 
parameters from alpha and beta to 

different parameters to improve 
numerical performance.  This re-
parameterization is an example of 
where expert consultation may be 
necessary in complex problems. 

Gamma First-
Stage Prior

x[i]x.rep[i]

p.value

t[i] t[i]

lambda[i]

lambda.avg

diff.obsdiff.rep

For i = 1 to N

alpha beta
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• Figure 4-53  BGR plot for CV, indicating convergence. 

 
 

 
• Figure 4-54  Plot of first 1,000 values of mean parameter, indicating convergence. 
 

 

 
• Figure 4-55.  BGR plot for mean parameter, indicating convergence. 
 

 

 
• Figure 4-56.  Plot of first 1,000 values of lambda.avg, indicating convergence. 
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• Figure 4-57.  BGR plot for lambda.avg, indicating convergence. 
 

The sampling is much faster with a gamma first-stage prior distribution than for a beta distribution, so 
WinBUGS runs much faster than it did above when we were estimating a hierarchical model for p in the 
binomial distribution.  Running 100,000 iterations gives a posterior mean for lambda.avg of 3.2 × 10-

6/hour, with a 90% credible interval of (1.7 × 10-9, 1.2 × 10-5). 
 
Note that the distribution of node lambda.avg is not a gamma distribution, despite what one might be 
led to believe by looking at Script 25.  It is a weighted average of gamma distributions, with the weights 
provided by the posterior distribution of the hyperparameters, CV and the mean.  Thus, it cannot be 
written in closed form.  However, if desired, it can be approximated by a distribution of known form to 
aid in further analysis, although this is not necessary in WinBUGS.  To update the average PVC with 
additional data, add another line to the data block, change N to 13, and rerun the script.  Then, 
monitoring lambda[13] will give the posterior distribution for the circuit board in the ATCS. 
 
The p.value for this model, which captures source-to-source variability in lambda, is 0.48, compared 
with 0.002 for the model that pools the data.  Thus, the population variability model is much better able 
to replicate the data for the 12 sources under consideration. 
 
4.5.3  Population Variability Models for CCF Parameters  
In Example 7, we estimated the alpha-factors and MGL parameters for homogeneous failure data.  The 
assumptions from that calculation were: 

 There are multiple (1 to i =3) possible outcomes (single failure, two failures, three failures). 
 There is a constant probability of the ith outcome. 
 The outcomes of earlier trials do not influence the outcomes of later trials. 
 The prior information is homogeneous and is known with certainty. In this section, we will relax 

the assumption of homogeneity. 
 The observed data are homogeneous and are known with certainty. In this section, we will relax 

the assumption of homogeneity. 
 

In this section, we examine the case where is variability from source to source.  Analogous to the 
treatment of the binomial and Poisson cases above, we will start with a first-stage prior that describes 
the variability in the CCF parameters (the alpha factors) from source to source.  We will then use a 
second-stage prior (hyperprior) to describe the uncertainty in the parameters of the first-stage prior.  An 
average PVC will then be calculated for the CCF parameters. 
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• Example 19.  Estimating CCF parameters with population variability included. 
The data in the table below are failure counts for a component group of size 3 from 10 
sources.  Find the average PVC for the alpha factors and MGL parameters. 

 
Source # n1 n2 n3 

1 95 12 1 

2 86 4 13 

3 75 21 0 

4 81 3 0 

5 80 12 1 

6 79 6 18 

7 79 5 20 

8 75 3 0 

9 78 21 1 

10 97 9 2 

 
The WinBUGS Script 26 is used to carry out the analysis.  The first-stage Dirichlet prior has three 
parameters (hyperparameters).  Independent diffuse second-stage priors (hyperpriors) are placed on 
each of these three hyperparameters.  Running this script in the usual way, being careful to check for 
convergence, gives the following results for the average alpha factors and MGL parameters. 
 
 mean sd MC_error      val5.0pc1 val95.0pc  

alpha.avg[1] 0.8507 0.08525 3.023E-4      0.6914    0.9614  
alpha.avg[2] 0.1074 0.07363 2.616E-4      0.01793  0.2476  
alpha.avg[3] 0.04185 0.04788 1.605E-4      5.612E-4  0.1357  
beta.avg 0.1493 0.08525 3.023E-4      0.03856  0.3086  
gamma.avg 0.2801 0.2374 8.653E-4      0.00548  0.7538   

 

                                                      
1 “val5.0pc” is the 5th percentile while “val95.0pc” is the 95th percentile. 
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• Script 26.  WinBUGS script for modeling population variability in CCF parameters. 

model { 
 for(i in 1:K) { 
  n[i,1:group.size] ~ dmulti(alpha[i,1:group.size ], N[i]) 
  alpha[i, 1:group.size] ~ ddirch(theta[1:group.size]) 
  N[i] <- sum(n[i, 1:group.size]) 
 
  #Calculate MGL parameters (Table A-2 in NUREG/CR-5485) 
  beta[i] <- alpha[i,2] + alpha[i,3] 
  gamma[i] <- alpha[i,3]/(alpha[i,2] + alpha[i,3]) 
 } 
theta[1] ~ dunif(0,100) 
theta[2] ~ dunif(0,100) 
theta[3] ~ dunif(0,100) 
alpha.avg[1:group.size] ~ ddirch(theta[1:group.size])  #Average PVC 
beta.avg <- alpha.avg[2] + alpha.avg[3]  #Monitor these nodes for average MGL values 
gamma.avg <- alpha.avg[3]/(alpha.avg[2] + alpha.avg[3]) 
 } 
data 
list(K=10, group.size=3) 
n[,1]  n[,2]  n[,3] 
95     12      1 
86     4        13 
75     21      0 
81     3        0 
80     12      1 
79     6        18 
79     5        20 
75     3        0 
78     21      1 
97     9        2 
END 
inits 
list(theta=c(1,1,1)) 
list(theta=c(2,2,2)) 
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• Figure 4-58.  DAG representing Script 26. 

 
 
 

4.6   Modeling Time-to-Failure or Other Durations 
There are cases in which the simplest model for time duration, the exponential distribution, is not 
adequate in the sense that the Bayesian inference model with an exponential l kelihood function cannot 
replicate the observed data well.  In these cases, more complicated aleatory models may need to be 
used.  The mathematics of the Bayesian inference become more complex, but again tools like 
WinBUGS makes the analysis straightforward. 
 
The assumptions from the exponential analysis were: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval.  The constant of proportionality is denoted by lambda. 

 The probability of simultaneous events in a short interval of time is approximately zero. 
 The occurrence of an event in one time interval does not affect the probability of occurrence in 

another, non-overlapping time interval. 
 The random event that is observed is the time to an event. 

 
• Example 20.  Test for appropriateness of exponential model for time durations. 

The following times (in minutes) to suppress a fire in a vehicle assembly building have been 
collected: 
              1.6, 1.8, 13.8, 17.2, 19.2, 24.4, 30.2, 39.1, 49.1, 61.2. 
 
Is the exponential distribution a good choice as a likelihood function? 

 
Solution 
We cannot use Script 19 to do a posterior predictive check unless we have an informative prior for 
lambda.  Running Script 20 gives a p.value of 0.54, suggesting that an exponential aleatory model is 

Dirichlet Prior

alpha[i]

theta[1,2,3]

n[i,1]

Multinomial Prior

n[i,2] n[i,2]

beta.avg gamma.avg

alpha.avg[ ]

For i = 1 to K
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adequate.  However, another approach is to examine certain alternative distributions which reduce to 
the exponential distribution if their shape parameter equals one.  Therefore, we can perform Bayesian 
inference for one of these alternatives, and if the posterior distribution for the shape parameter is 
centered at one, we can conclude that the exponential model is adequate.  
 
 
4.6.1  Alternatives to Exponential Distribution for Random Durations  
There are three commonly used distributions that are alternative aleatory models to the exponential 
distribution: 
1. Gamma 
2. Weibull 
3. Lognormal 
 
There are other less commonly used possibilities, which we will not treat here. 
 

4.6.1.1 Gamma Distribution as Likelihood for Random Durations—As we saw earlier when 
we used the gamma distribution as a prior for lambda, two parameters are required to specify the 

distribution, so now we must perform Bayesian inference for 
both alpha and beta. 
 
We illustrate replacing the exponential model with a gamma 
model by using the times from Example 20.  In Script 27, we 
have specified a gamma distribution as the aleatory model 
(i.e., likelihood) for each fire suppression time, and we have 
placed independent diffuse priors on alpha and beta; if 
information about alpha or beta were available, an 
informative prior could be used.  Changed assumptions 

when using the gamma model (instead of exponential) are: 
 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval, but the constant of proportionality is a function of time. 

 

• Script 27.  WinBUGS script for Bayesian inference of random durations using gamma likelihood. 

In this section, the gamma and 
lognormal distributions are 
used as likelihood functions 
(i.e., aleatory models) for an 
observed time, instead of as 

prior distributions for a 
parameter in an aleatory model. 

model { 
 for(i in 1:n) { 
  time[i] ~ dgamma(alpha, beta)   # Gamma likelihood function for n times 
 } 
alpha ~ dgamma(0.0001, 0.0001)   # Diffuse priors for alpha and beta 
beta ~ dgamma(0.0001, 0.0001)   } 
 
data 
list(time=c(1.6, 1.8, 13.8, 17.2, 19.2, 24.4, 30.2, 39.1, 49.1, 61.2), n=10) 
 
inits 
list(alpha=1, beta=0.1) 
list(alpha=0.5, beta=1) 
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• Figure 4-59.  DAG representing Script 27. 

 
Running 1,000 iterations and checking alpha and beta for convergence using the history and BGR plots 

as we have done in earlier sections, we see that the model 
converges very rapidly.  We discard the first 1,000 iterations 
and run another 100,000 iterations to estimate parameter 
values, obtaining the posterior distribution for alpha shown 
below.  If alpha = 1, then the gamma distribution reduces to the 
exponential distribution, so this graph, with a median of about 
1, suggests the gamma distribution does not provide a better 
model than the exponential distribution, agreeing with the 

conclusion based on the p.value from Script 20. 
 

 
• Figure 4-60.  Posterior distribution for alpha indicates that values near 1 are likely, in which case 
gamma distribution reduces to exponential distribution. 
 

• Example 21.  Inference for gamma distribution as aleatory model for circulating pump failure 
times in ATCS system 

Consider now the following set of repair times for the circulating pump in the ATCS (in hours): 
        0.8, 1.7, 0.5, 11.4, 0.1, 5.7, 3.0, 1.1, 2.5, 0.04. 

 
 
Solution 
Running Script 20 with the data gives a p.value of 0.62, which suggests that an exponential model may 
be adequate.  We will use Script 27 to model a gamma likelihood function for these repair times.  
Proceeding in the usual way, we obtain the posterior distribution for the shape parameter (alpha) shown 
in Figure 4-61. 

 

With relatively few observed 
times, it can be difficult to 
discriminate between the 

exponential distribution and 
alternative models. 

Gamma Likelihood

alpha beta

For i = 1 to ntime[i]



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS    

 
TIME-TO-FAILURE OR OTHER DURATIONS 101

As can be seen, most of this distribution is to the left of 1 indicating that an exponential distribution may 
not be a good aleatory model for this set of data.  We will consider how to decide between these 
conflicting indications in Section 4.6.2. 

 
• Figure 4-61.  Posterior distribution of alpha for Example 21. 
 

When alpha is less than one, as is the case in this example, the rate at which repair is occurring is a 
decreasing function of time; the longer one goes without repair, the lower the conditional probability of 
successful repair in the next time interval.  Conversely, when alpha is greater than one, the repair rate 
increases with time.  If the observed variable were a time to failure, then these same conclusions would 
apply to the failure rate.  Thus, the gamma distribution allows us to relax the assumption of constant 
rate of occurrence that was one of the assumptions behind the exponential distribution. 
 

4.6.1.2 Weibull Distribution as Likelihood for Random Durations—The Weibull distribution 
is another two-parameter aleatory model for random durations.  L ke the gamma distribution, it has a 
shape parameter, which we will denote as alpha in this section.  If alpha = 1, the Weibull distribution 
reduces to the exponential distribution, just as did the gamma distribution in the previous section.  When 
alpha is less than (greater than) one, the rate of occurrence is decreasing (increasing) with time, 
analogously to the gamma distribution.  Changed assumptions when using the Weibull model (instead of 
exponential) are: 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval, but the constant of proportionality is a function of time. 

 
• Example 22.  Inference for Weibull distribution as aleatory model for circulating pump failure 
times in the ATCS. 

We will carry out Bayesian inference for the times in Example 21 under the assumption that 
the aleatory model is a Weibull (instead of exponential) distribution with parameters called 
alpha and scale.  The WinBUGS Script 28 is used for this analysis with diffuse priors on the 
Weibull parameters. 

 

• Script 28.  WinBUGS script for Bayesian inference of random durations using Weibull likelihood. 
 

model { 
 for(i in 1:n) { 
  time[i] ~ dweib(alpha, scale)  # Weibull likelihood function for n times 
 } 
alpha ~ dgamma(0.0001, 0.0001)  # Diffuse priors for alpha and beta 
scale ~ dgamma(0.0001, 0.0001)    
} 
data 
list(time=c(0.8, 1.7, 0.5, 11.4, 0.1, 5.7, 3.0, 1.1, 2.5, 0.04), n=10) 
inits 
list(alpha=1, scale=1) 
list(alpha=0.5, scale=10) 
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• Figure 4-62.  DAG representing Script 28. 

 
Running the script in the usual way produces the posterior distribution for alpha shown below.  As with 
the gamma model example, the posterior distribution indicates that values of alpha less than one are 
most likely, suggesting that the repair rate is decreasing with time, and that the exponential model (with 
constant repair rate) may not be adequate. 
 

 
• Figure 4-63.  Posterior distribution of alpha for Example 22. 

 
4.6.1.3 Lognormal Distribution as Likelihood for Random Durations—In addition to its use 

as a nonconjugate prior, the lognormal distribution is also a popular aleatory model for random durations.  
It has the interesting property that the rate of the process initially increases, and then decreases 
monotonically.  The period over which the rate increases is often very short, so that it can be used as an 
alternative to the gamma or Weibull distribution with shape parameter less than one.  It has a heavier tail 
than the gamma or Weibull distribution, and may therefore produce more conservative results.  The 
parameters of the lognormal distribution (mu and tau) cannot be interpreted in the manner of the gamma 
and Weibull shape parameter, and the lognormal distribution does not reduce to the exponential 
distribution for certain parameter values, as do the gamma and Weibull distribution.  Changed 
assumptions when using the lognormal model (instead of exponential) are: 
 

 The probability of an event (e.g., a failure) in a small time interval is approximately proportional to 
the length of the interval, but the constant of proportionality is a function of time. 

 
• Example 23.  Inference for lognormal distribution as aleatory model for circulating pump failure 
times in the ATCS. 

We will carry out Bayesian inference for the times in Example 21 under the assumption that the
aleatory model is a lognormal distribution with parameters called mu and tau.  The WinBUGS 
Script 29 is used for this analysis with diffuse priors on the lognormal parameters. 

 

Weibull Likelihood

alpha scale

time[i] For i = 1 to n
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• Script 29.  WinBUGS script for Bayesian inference of random durations using lognormal likelihood. 
 

 
• Figure 4-64.  DAG representing Script 29. 

 
Running Script 29 in the usual way produces the posterior mu of 3.6 × 10-2 with a 90% interval of -1.05 
to 1.12 and tau of 0.29 with a 90% interval of 0.10 to 0.57.  The posterior distributions on these two 
parameters are shown in Figure 4-65 and Figure 4-66.  As stated above, it is not possible to interpret 
these distributions in terms of evidence for or against an exponential model – however the next section 
does provide one method of quantitative interpretation. 

 
• Figure 4-65.  Posterior distribution of mu in Example 23. 

 

model { 
 for(i in 1:n) { 
  time[i] ~ dlnorm(mu, tau) # Lognormal likelihood function for n times  
 } 
mu ~ dflat()    # Diffuse priors for lognormal parameters 
sigma ~ dunif(0, 10) 
tau <- pow(sigma, -2) 
} 
 
data 
list(time=c(0.8, 1.7, 0.5, 11.4, 0.1, 5.7, 3.0, 1.1, 2.5, 0.04), n=10) 
 
inits 
list(mu=1, sigma=1) 
list(mu=0.5, sigma=0.5) 

Lognormal Likelihood

mu tau

time[i] For i = 1 to n
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• Figure 4-66.  Posterior distribution of tau in Example 23. 
 

4.6.2  Choosing Among Alternative Distributions—Deviance Information Criterion (DIC) 
In the examples from the previous section, we have developed four alternative aleatory models for the 
repair times given in Example 21:  exponential, gamma, Weibull, and lognormal.  By looking at the 
posterior distributions for the gamma and Weibull shape parameters, we have concluded that the 
exponential model may not be adequate, as it appears that the repair rate is a decreasing function of 
time.  How can we select among these models?  WinBUGS provides a quantitative measure called 
the deviance information criterion or DIC that can help in making this selection.  The DIC measures 
how well a model replicates the observed data, but penalizes models with more parameters, to avoid 

over-fitting, which can produce a model that is poor at extrapolating 
beyond the observed data. 
The model with the smallest DIC is the preferred model, although 
differences in DIC less than about five may not be significant.  Note 
that DIC can be negative in some cases; the model with the smallest 
DIC is still preferred.  As an example of this, if there were three 
models under consideration, with DICs of 10, -3, and -9, the model 
with a DIC of -9 would be the preferred model.  Note that DIC is a 
measure of relative goodness of fit; the model with the smallest DIC 
may still not be an adequate model. 

 
 
 

4.6.2.1 Calculating DIC in WinBUGS—First note that DIC must be calculated on the same 
data set for each of the alternative models.  Also, DIC should not be estimated until the sampling has 
converged to the posterior distribution.  Here are the steps for calculating DIC in WinBUGS: 

 
1. Estimate parameter values in the usual way. 
2. Set DIC as shown below (Inference -> DIC -> Click “Set”) 
3. Run iterations to calculate DIC 

 
 
 
We illustrate this option by calculating DIC for each of the four models using the data from Example 21.  
The results are listed below. 

To avoid getting an 
invalid DIC, do not 
calculate DIC until 

parameter values have 
been estimated.  This will 

ensure simulation has 
converged. 
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Exponential model:    Dbar Dhat DIC pD  

    time 40.8 39.8 41.8 1.02 
total 40.8 39.8 41.8 1.02 

Minimum deviance = 39.8 
 

Gamma model:   Dbar Dhat DIC pD  
    time 40.4 38.2 42.5 2.12 
    total 40.4 38.2 42.5 2.12 
     Minimum deviance = 38.2  
  

Weibull model:   Dbar Dhat DIC pD  
time 40.2 38.2 42.3 2.05 
total 40.2 38.2 42.3 2.05 

Minimum deviance = 38.2 
 

Lognormal model:  Dbar Dhat DIC pD  
time 41.8 40.1 43.6 1.75 
total 41.8 40.1 43.6 1.75 

Minimum deviance = 39.2 
 

Perhaps surprisingly, the exponential model has the lowest DIC, 
although the differences among the four models are small.  The 
choice of the exponential model based on DIC also agrees with the 
p.value of 0.62 from Script 20. With only 10 observed times, the data 
is relatively sparse, and the penalty paid for introducing a second 
parameter offsets the improved ability of the model to replicate the 
observed data.

Caution:  the value for 
pD in the DIC results 

reported by WinBUGS 
must be positive in 

order for DIC to be used 
to compare models. 
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4.7   Analyzing Failure Time Data from Repairable Systems 
In Sections 4.3 and 4.6, we analyzed times to occurrence of an event of interest.  Such an event could be 

failure of a component or system.  If the failure is not repaired, and 
the component or system is replaced following failure, then the earlier 
analysis methods are applicable.  However, in this section, we 
consider the case in which the failed component or system is repaired 
and placed back into service.  Analysis in this situation is more 
complicated.  The details will depend principally upon the state of the 
system or component after repair.  We will consider two cases:1 
 

1. Repair leaves the component or system the same as new 
(“reincarnated”), 

2. Repair leaves the component or system the same as old 
(“resuscitated”). 

 
Both of these cases are modeling assumptions that an analyst must make, and they lead to different 
aleatory models for the failure time.  We will provide some qualitative guidance for when each 
assumption might be appropriate, along with some qualitative and quantitative model checks that can 
be used to validate the assumption. 
 
In all of the following discussion, we assume that we can ignore the time it takes to actually repair a 
component or system that has failed.  This allows us to treat the failure process as a simple point 
process.  This assumption is typically valid either because repair time is short with respect to 
operational time, or because we are only concerned with operational time, so time out for repair is 
accounted for through component or system maintenance unavailability estimates. 

 
4.7.1  Repair Same as New—Renewal Process 
In this (same as new) case, repair leaves the failed component or system in the same state as a new 

component or system.  The times between failures are thus 
independent and will be assumed to be identically distributed.  If 
the times between failures are exponentially distributed, the 
methods of Section 4.3 can be applied.  If the times between 
failures are not exponentially distributed (e.g., Weibull or 
lognormal), then the methods of Section 4.6 can be applied.  Note 
in both cases that it is the times between failures that are 
analyzed, not the cumulative failure times. 

 
The assumption of repair same as new is plausible when the entire component or system is replaced or 
completely overhauled following failure.  Examples would be replacement of a failed circuit board or 
rewinding a motor.  The assumptions applicable to this section are: 

 Repair restores a component to a new (not degraded) state. 
 The random event that is observed is the time to an event and has a likelihood based on a 

shared (i.e., common) renewal distribution. 
 

                                                      
1Intermediate cases, in which repair leaves the component in an intermediate state between new and old, can also be modeled, 
along with imperfect repair, which leaves a component worse than old.  Such more general models are still an area of research and 
thus practical guidelines are difficult to give, so they are not included herein. 

Analyzing data from 
repairable systems can 
be complicated and may 

require expert 
consultation. 

 
Likewise, incorporating 
results into a PRA may 
not be straightforward. 

Repair to as good as new 
may be plausible when a 

component is replaced with a 
new one or completely 

overhauled. 
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4.7.1.1 Qualitative Check for Failure Rate in Renewal Process—If one assumes a renewal 
process, then a qualitative check on whether the failure rate is constant can be done using the times 

between failures.  If the failure rate is constant, then the times between 
failures are exponentially distributed.  If one plots the ranked times between 
failures on the x-axis, and 1/nt on the y-axis, where nt is the number of 
components still operating at time t, the result should be approximately a 
straight line due to the assumption of a constant failure rate (failures are not 
increasing or decreasing in time). 
If the slope is increasing (decreasing) with time, this suggests a renewal 
process whose failure rate is likewise increasing (decreasing) with time, 
thereby invalidating one of the assumptions in this section.  Such a plot is 
referred to as a cumulative hazard plot. 

 
• Example 24.  Servo motor failure example, with replacements. 

Consider the following 25 cumulative times of failure (in days) for a servo motor.  
Assume that the motor is replaced with a new one each time it fails, so the 
assumption of a renewal process seems reasonable.  Use a cumulative hazard plot 
to decide if the failure rate appears to be increasing or decreasing with time. 

 
Cumulative time 

(days) 
Time between failures 

(days) 
Sorted time between 

failures 
127.4920 
154.6884 
330.4580 
739.9158 
1153.074 
1470.720 
1809.616 
2118.147 
2289.570 
2365.790 
2757.970 
3154.409 
3448.874 
3941.777 
4143.426 
4217.706 
4359.670 
4483.473 
4570.51 
4763.892 
4924.371 
5360.967 
5619.06 
5971.551 
6448.062 

127.492 
27.1964 
175.7696 
409.4578 
413.1582 
317.646 
338.896 
308.531 
171.423 
76.22 
392.18 
396.439 
294.465 
492.903 
201.649 
74.28 

141.964 
123.803 
87.037 
193.382 
160.479 
436.596 
258.093 
352.491 
476.511 

27.1964 
74.28 
76.22 
87.037 
123.803 
127.492 
141.964 
160.479 
171.423 
175.7696 
193.382 
201.649 
258.093 
294.465 
308.531 
317.646 
338.896 
352.491 
392.18 
396.439 
409.4578 
413.1582 
436.596 
476.511 
492.903 

 

 
 

There are 25 times so the cumulative hazard plot increases by 1/25 at 27.1964, by 1/24 at 74.28, etc.  
The cumulative hazard plot is shown below, and appears to indicate an increasing failure rate with time. 

 

A cumulative 
hazard plot is only 
useful if repair is 
same as new, that 
is, failures are 
described by a 
renewal process. 
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• Figure 4-67.  Cumulative hazard plot for Example 24, suggesting increasing failure rate with 
operating time. 
 
 

Quantitative analysis of these times can be carried out using the methods in Sections 4.3 and 4.6.  
Another quantitative check will be described below, after we have discussed the other extreme:   repair 
same as old. 

 
4.7.2  Repair Same as Old—Nonhomogeneous Poisson Process (NHPP) 
In the case where repair only leaves the component in the condition it was in immediately preceding 

failure, then the times between failures may not be independent.  For 
example, if the component is wearing out over time (aging), then later 
times between failures will tend to be shorter than earlier times, and 
conversely if the component is experiencing reliability growth.  In these 
two cases, the times between failures will also fail to meet the assumption 
of being identically distributed.  The assumptions applicable to this section 
are: 

 Repair restores a component to an old (not new) state. 
 Times between failures are not independent and are not identically 

distributed. 
 

Repair to a state the same as old is a good default assumption for most components in a risk 
assessment, because a typical component is composed of subcomponents.  When failure occurs, only a 
portion of the component (one or more subcomponents) is typically repaired, so the majority of the 
subcomponents are left in the condition they were in at the time of failure. 

If repair is not to 
the same state as 
a new component, 
then the methods 
of Secs. 4.3 and 
4.6 cannot be 

applied. 
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 4.7.2.1 Qualitative Check for Trend When Repair is Same as Old—If the rate of occurrence 

of failures (ROCOF) is constant with time, then the times between failures 
will not tend to get shorter (aging) or longer (reliability growth) over time.  
If one plots cumulative number of failures on the y-axis versus cumulative 
failure time on the x-axis, the resulting plot will be approximately a straight 
line if ROCOF is constant.  If aging is occurring, the slope will increase 
with time, as the times between failures get shorter.  If reliability growth is 
occurring, the slope will decrease with time, as the times between failures 
get longer. 
 

 
 

• Example 25.  Cooling unit failure times. 
Consider the following 25 cumulative times in standby at which a cooling unit failed.  Because the 
cooling unit consists of a large number of subcomponents, and only one or two of these were replaced 
at each failure, assume repair leaves the cooling unit in the state it was in immediately prior to failure.  
Plot cumulative number of failures versus cumulative failure time to check if there appears to be a time 
trend in the ROCOF for the cooling unit. 

 
Cumulative time 

(days) 
116.0454 
420.8451 
523.1398 
538.3135 
585.581 
591.5301 
772.365 
868.7294 
912.3777 
1031.021 
1031.133 
1086.673 
1096.476 
1103.463 
1165.640 
1257.554 
1375.917 
1385.808 
1421.459 
1456.259 
1484.755 
1496.982 
1523.915 
1526.050 
1530.836 

 

 
The plot is shown below.  The slope appears to be increasing with time, suggesting that the ROCOF for 
the cooling unit is increasing as a function of calendar time. 

 

The cumulative failure 
plot is only useful if 
repair is same as old, 
that is, failures are not 
described by a renewal 
process. 
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• Figure 4-68.  Cumulative failure plot for Example 25, suggesting increasing ROCOF over time. 
 

An interesting exercise is to construct a cumulative failure plot for the data in Example 24, where the 
failure rate appeared to be an increasing function of operating time under the assumption that repair was 
same as new, a renewal process.  The plot, shown in Figure 4-69, does not suggest an increasing 
ROCOF under the assumption of repair same as old.  This plot illustrates a subtle point in analyzing 
repairable systems.  If repair is same as new after each failure, then times between failures will not 
exhibit a trend over calendar time.  Aging or reliability growth only occurs over the time between one 
failure and the next, because the system returns to new, and the clock is reset, after each failure.  On the 
other hand, when repair is same as old after each failure, then aging or reliability growth occurs over 
calendar time and one can then expect to see a trend in the slope of cumulative failures versus time.  
Therefore, absence of a trend in the cumulative failure plot may suggest no aging or reliability growth 
under the assumption of repair same as old, but there still may be aging or reliability growth between 
each failure under the assumption of repair same as new.  The cumulative hazard plot shown earlier can 
be used to check for that possibility. 
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• Figure 4-69.  Cumulative failure plot for data in Example 24, showing lack of trend in slope over 
calendar time. 
 
 

The plots below (Figure 4-70 to Figure 4-73 and Figure 4-75) show cumulative failures versus cumulative 
time for 1,000 simulated failure times from two different renewal processes, one in which reliability growth 
is occurring between each failure, the other where aging takes place between each failure.  Note in both 
cases that the cumulative failure plot produces a straight line, reinforcing the conclusion that this plot is 
useful for checking for aging or reliability growth under the same-as-old assumption for repair, but it 
cannot detect a time-dependent failure rate under the same-as-new repair assumption.  The 
corresponding cumulative hazard plots shown below are useful for this purpose when repair is same as 
new. 
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• Figure 4-70.  Cumulative failure plot for 1,000 simulated failure times from renewal process with 
decreasing failure rate. 

 
• Figure 4-71.  Cumulative hazard plot for 1,000 simulated failure times from renewal process with 
decreasing failure rate. 
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• Figure 4-72.  Cumulative failure plot for 1,000 simulated failure times from renewal process with 
increasing failure rate. 
 

 
• Figure 4-73.  Cumulative hazard plot for 1,000 simulated failure times from renewal process with 
increasing failure rate. 
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4.7.2.2 Quantitative Analysis under Same-as-Old Repair Assumption—As stated above, if 
there is an increasing or decreasing trend in the ROCOF over time, then the times between failures will 
not be independently and identically distributed, and thus the methods of Sections 4.3 and 4.6 cannot be 
applied (and invalidating one of the assumptions of this section). 

 
In particular, one cannot simply fit a Weibull, gamma, etc., distribution to the cumulative failure times or 
the times between failures.  Instead, the likelihood function must be constructed using the fact that each 
failure time, after the first, is dependent upon the preceding failure time.  One must also specify a 
functional form for the ROCOF. 
 
We will assume a power-law form for our analysis here.1   
 

Φ[j] = ln(β) - β * ln(α) + (β - 1)*ln[t(j)] – ([t(M) / α]β / M) 
 
In this form of the power-law function, there are two parameters to estimate, which we denote as alpha 
(α) and beta (β).  Beta determines how the ROCOF changes over time, and alpha sets the units with 
which time is measured. 
 
If beta is less than one, reliability growth is occurring, if it is greater than one, aging is taking place, and if 
beta equals one, there is no trend over time.  The WinBUGS script shown below is used to estimate 
alpha and beta.  It also provides a Bayesian p-value to check the validity of the model.2 

 

                                                      
1 The power-law ROCOF is also referred to as the Crow-AMSAA model in the reliability community. 
2 In Sec. 4.6, we used alpha for the shape parameter of the We bull distr bution.  We use beta in this section to conform to standard 
notation in the literature. 
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• Script 30.  WinBUGS script for analyzing data under same-as-old repair assumption (power-law 
process). 
 

Modeling NHPP (repair "as bad as old") 
Failure-truncated data 
model { 
 for(i in 1:M) { 
  zeros[i] <- 0 
  zeros[i] ~ dgeneric(phi[i]) 
  #phi[i] = log(likelihood) 
 } 
#Power-law model (failure-truncated) 
  for(j in 1:M) { 
  phi[j] <- log(beta) - beta*log(alpha) + (beta-1)*log(t[j]) - pow(t[M]/alpha, beta)/M 
 } 
#Model validation section 
 for(j in 1:M) { 
  z.obs[j] <- pow(t[j]/alpha, beta) 
 } 
z.inc.obs[1] <- z.obs[1] 
 for(k in 2:M) { 
  z.inc.obs[k] <- z.obs[k] - z.obs[k-1] 
 } 
for(j in 1:M) { 
 z.inc.rep[j] ~ dexp(1) 
 z.rep.ranked[j] <- ranked(z.inc.rep[], j) 
 z.obs.ranked[j] <- ranked(z.inc.obs[], j) 
 F.obs[j] <- 1 - exp(-z.obs.ranked[j]) 
 F.rep[j] <- 1 - exp(-z.rep.ranked[j]) 
 diff.obs[j] <- pow(F.obs[j] - (2*j-1)/(2*M), 2) 
 diff.rep[j] <- pow(F.rep[j] - (2*j-1)/(2*M), 2) 
 } 
CVM.obs <- sum(diff.obs[]) 
CVM.rep <- sum(diff.rep[]) 
p.value <- step(CVM.rep - CVM.obs) 
alpha ~ dgamma(0.0001, 0.0001) 
beta ~ dgamma(0.0001, 0.0001) 
} 
 
data 
list( t=c(116.0454, 420.8451, 523.1398, 538.3135, 585.581, 591.5301, 772.365, 
 868.7294, 912.3777, 1031.021, 1031.133, 1086.673, 1096.476, 1103.463, 
 1165.640, 1257.554, 1375.917, 1385.808, 1421.459, 1456.259, 1484.755, 
 1496.982, 1523.915, 1526.050, 1530.836)) 
list(M=25) 
 
inits 
list(alpha = 1, beta = 0.1) 
list(alpha = 0.5, beta = 1) 
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• Figure 4-74.  DAG representing Script 30 (omits model validation portion) 
 
Let us apply this script to the data given in Example 25.  Recall that Figure 4-68 suggested an increasing 
trend in ROCOF with time, corresponding to beta greater than one.  We will run two chains, one starting 
with an initial value of beta less than one, the other with an initial beta greater than one.  The initial values 
of the scale parameter (alpha) are not crucial; we will vary alpha across the chains.  Convergence to the 
joint posterior distribution appears to occur within the first 1,000 samples, so we discard the first 1,000 
samples for burn in.  We run another 10,000 samples to estimate parameter values, obtaining a posterior 
mean for beta of 1.94 with a 90% credible interval of (1.35, 2.65).  The posterior probability that beta is 
greater than one is near unity, suggesting a ROCOF that is increasing with time, corresponding to aging.  
The Bayesian p-value is 0.57, suggesting a model that is good at replicating the observed data.1 
 
4.7.3  Impact of Assumption Regarding Repair 
The assumption made regarding repair (same as old versus same as new) is crucial to the analysis.  
Consider times to failure being produced by a process with increasing ROCOF, corresponding to aging 
with repair same as old.  As (calendar) time progresses, times between failure will tend to decrease, and 
there will be a preponderance of short times between failures in a sample of failure times.  If the process 
is assumed to be a renewal process, with times between failures described by a Weibull distribution, as 
in Section 4.6, the preponderance of short times between failures will cause the Weibull shape 
parameter to be less than one, corresponding to apparent reliability growth between each failure, the 
opposite of what is actually happening. 
 
This can be illustrated by simulation.  First, we generated 1,000 cumulative failure times for a system 
whose repair is same-as-old, described by a power-law process with shape parameter of 2 and scale 
parameter of 350.  The cumulative failure plot below shows the increasing trend in ROCOF with time. 

 

                                                      
1 For reference, the data in Example 25 were simulated from a power-law process with beta = 2 and alpha = 350. 

alpha beta

time[i]

For i = 1 to n

Power-law 
likelihood
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• Figure 4-75  Cumulative failure plot for 1,000 times simulated from power-law process with shape 
parameter of 2, illustrating increasing ROCOF 
 

The histogram in Figure 4-76 of the times between failures shows the preponderance of short times 
between failures caused by the increasing ROCOF. 

 

 
• Figure 4-76.  Histogram of times between failures for simulated failure times from power-law 
process with increasing ROCOF. 
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If we had assumed the repair is same-as-new and fitted a Weibull distribution to these times between 
failures using the techniques of Section 4.6, one estimates a Weibull shape parameter of about 0.8, 
which would suggest reliability growth over time between each failure.  This result is caused by the fact 
that times between failures are tending to become shorter due to aging.  Consequently, treating the times 
between failures as independent and identically distributed leads to an erroneous conclusion about the 
process.  Unfortunately, the Bayesian p-value may not help much in deciding which model is better, 
because both models can replicate the observed data quite well. 
 
If the repair is same-as-new, and the failure rate increases with operating time or time in standby 
(whichever is being modeled), an assumption of same-as-old repair will, as suggested by Figure 4-72, 
lead to an estimate near one for the shape parameter of the power-law process.  In this case, the 
Bayesian p-value can be helpful, as a power-law process with shape parameter near one cannot 
replicate data from a renewal process with increasing failure rate very well. 
 
 
 

4.8   Treatment of Uncertain Data 
So far we have only analyzed cases where the observed data were known with certainty and 
completeness.  Reality is messier in a number of ways with respect to observed data.  For example, the 
number of binomial demands may not have been recorded and may have to be estimated.  Similarly, 
the exposure time in the Poisson distribution may have to be estimated.  One may not always be able 
to tell the exact number of failures that have occurred, because of imprecision in the failure criterion.  
For example, one of the ATCS component failure modes might be plugging of the radiators.  The 
analyst may have an established failure criterion expressed in terms of differential pressure across the 
radiator.  However, in examining failure records, the analyst may not be able to tell in all cases whether 
a putative plugging event has met the differential pressure failure criterion, leading to epistemic 
uncertainty as to the actual number of observed failures. 
 
When observing times at which failures occur (i.e., random durations), various types of censoring can 
occur.  For example, a number of components may be placed in test, but the test is terminated before 
all the components have failed.  This produces a set of observed data consisting of the recorded failure 
times for those components that have failed.  For the components that did not fail before the test was 
terminated, all we know is that the failure time was longer than the duration of the test.  As another 
example, in recording fire suppression times, the exact time of suppression may not be known; in some 
cases, all that may be available is an interval estimate (e.g., between 10 and 20 minutes). 
 
Finally, there is the issue of heritage1 or legacy data, in which data from an earlier design is available, 
but the designer has made changes intended to eliminate some early failure modes.  Thus, there is 
uncertainty as to the applicability of the earlier data to the latest revision of the design. 
 
All of these cases can be treated within the Bayesian framework, and MCMC approaches make the 
analysis straightforward. 
 

 
4.8.1  Uncertainty in Binomial Demands or Poisson Exposure Time 
A common approach for this situation is to input a distribution for the number of demands or the 
exposure time.  This distribution represents the analyst’s epistemic uncertainty as to the actual number 

                                                      
1 From [NASA 2007], “heritage” refers to the original manufacturer’s level of quality and reliability that is built into parts and which 
has been proven by (1) time in service, (2) number of units in service, (3) mean time between failure performance, and (4) number 
of use cycles. 
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of demands or exposure time.  Often this will be a uniform distribution between known lower and upper 
bounds.  The posterior distribution for the parameter of interest is then averaged over this distribution. 
Assumptions in the section include the usual binomial or Poisson assumptions with the following 
exception: 

 The observed data (specifically the number of demands or the exposure time) are not known 
with certainty. 

 
• Example 26.  Modeling uncertain demands in the binomial distribution. 

Assume in Example 1 that the number of demands is not known to be 285 but instead is only
known to be between 100 and 500. 
 
Find the posterior mean and 90% credible interval for p using a uniform distribution between 
100 and 500 to represent the uncertainty in the number of demands. 

 
Solution 
The prior distribution for p in Example 1 was a beta distribution with parameters 1.24 and 189,075.  The 
beta prior was conjugate to the binomial likelihood in that example, and WinBUGS was not needed to 
carry out the analysis.  Now, with a distribution on the number of demands, the answer cannot be 
written down by inspection, and a tool like WinBUGS or numerical integration is needed.  The script 
below shows the change that is needed to analyze this problem.  Note that this approach uses what is 
known as posterior-averaging, where (in this case) each possible posterior for the n number of 
demands is weighted equally.  This topic is addressed in more detail in Section 4.8.2.2. 
 

• Script 31.  WinBUGS script for modeling uncertainty in binomial demands. 
 

model {    # Model defined between { } symbols 
x ~ dbin(p, n)    # Binomial distribution for number of failures in n 
demands 
n ~ dunif(lower, upper)  # Uniform distribution for number of demands 
p ~ dbeta(alpha.prior, beta.prior) # Conjugate beta prior distribution for p 
} 
 
data 
list(x=2, lower=100, upper=500)   # Data for Example 1 
list(alpha.prior=1.24, beta.prior=189075)  # Prior parameters for Example 1 
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• Figure 4-77.  DAG representing Script 31 

 
Running Script 31 in the usual way, we find the posterior mean of p to be 1.7 × 10-5 and the 90% 
interval is (4.9 × 10-6, 3.5 × 10-5).  These are the same results obtained in Example 1, where the 
number of demands was known to be exactly 285.  Recall that the prior is highly inconsistent with 2 
failures in so few demands, even as many as 500, and the relatively sparse data are having little 
influence on the posterior results.  Thus, accounting for uncertainty in the demand count has little 
impact in this example. 
 
• Example 27.  Modeling uncertain exposure time in the Poisson distribution. 

In Example 3, the prior distribution was gamma with parameters 1.6 and 365,000 hours.  The 
observed data were 0 failures in 200 days, giving a posterior mean and 90% credible interval 
of 4.3 × 10-6/hour and (5.6 × 10-7, 1.1 × 10-5). 
 
Suppose 200 days was actually a lower bound on the exposure time and that it could have 
been as long as 300 days.  How does this epistemic uncertainty in the exposure time affect the
posterior mean and 90% credible interval? 

 
 

Solution 
We will use a uniform distribution between 200 and 300 days to represent the epistemic uncertainty in 
the exposure time.  Because of this, the analysis is no longer conjugate; a tool like WinBUGS or 
numerical integration is needed.  The script shown below was used to carry out the analysis.   

p

x

Beta Prior

alpha.prior

n

upper lower

beta.prior
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• Script 32.  WinBUGS script for modeling uncertainty in Poisson exposure time. 
 

 
• Figure 4-78.  DAG representing Script 32. 

 
The results of running this script show essentially no difference from the case where the exposure time 
was taken to be exactly 200 days.  Again, the difference could be significant in other problems; 
however, one often finds the results of the inference to not be very sensitive to epistemic uncertainties 
in binomial demand counts and Poisson exposure times.  Nonetheless, if uncertainties are present, it is 
straightforward to include them in the inference via WinBUGS.  
 
 
4.8.2  Uncertainty in Binomial or Poisson Failure Counts 
Assumptions in the section include the usual binomial or Poisson assumptions with the following 
exception: 

 The observed data (specifically the number of failures) are not known with certainty. 
 

model { 
x ~ dpois(mean.poisson)   # Poisson distribution for number of events 
mean.poisson <- lambda*time.hr  # Poisson parameter 
time.hr ~ dunif(lower.hr, upper.hr)  # Uniform distribution for exposure time 
lower.hr <- lower*24 #Convert to hours 
upper.hr <- upper*24 
lambda ~ dgamma(alpha.prior, beta.prior) # Gamma prior distribution for lambda 
} 
 
data 
list(x=0, lower=200, upper=300) 
list(alpha.prior=1.6, beta.prior=365000) 
 
inits 
list(lambda=0.000001, time.hr=6000) 

lambda

x

Gamma Prior

alpha.prior beta.prior

upper lower

time.hr
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In this instance it is the observed number of events that is not known with certainty.  There are two 
cases to consider: 

• The analyst knows that the failure count is in a particular interval, but does not have information 
from which to develop a subjective probability distribution for the actual failure count.  This will 
be referred to as the interval-censored case. 

• Information is available to be able to develop a distribution for the failure count. 
 
Bayesian analysis of the interval-censored case is straightforward.  For the second case, there are a 
variety of approaches that have been suggested.  We will illustrate three of these approaches, and list 
some salient insights about each. 
 

4.8.2.1 Interval-Censored Failure Counts—In this case, the available information allows the 
analyst to say with certainty that the actual failure count is in a particular interval, but is insufficient to use 
in developing a subjective distribution expressing the analyst’s belief as to the probability of the actual 
count.  Consequently, the likelihood function becomes the probability that the failure count is in the 
specified interval; it is a sum of binomial or Poisson probabilities (depending on the failure model), 
conditional upon the unknown parameter (p or lambda, respectively). 

 
• Example 28.  Modeling uncertainty in binomial failure counts for the ATCS mixing valve. 
Suppose an analyst is estimating the probability that the mixing valve in the ATCS fails to 
change position in response to a signal from the avionics controller. 
 
Assume the prior distribution of the failure probability is lognormal with a median value of 0.001 
and an error factor of 5.  Records for this valve indicate there has been 1 failure in 187 
demands.  However, personnel responsible for maintaining the system indicate that there may 
have been two other failures which were not recorded properly. 
 
Find the posterior mean and 90% credible interval for p assuming: 

• There was exactly 1 failure in 187 demands 
• There may have been as many as 3 failures in 187 demands. 

 
Solution 
The first part is solvable using existing binomial/lognormal script, modified for this example as shown in 
Script 33.  Running this script in the usual way gives a posterior mean of 2.3 × 10-3 and a 90% credible 
interval of (4.1 × 10-4, 6.3×10-3). 
 

• Script 33. WinBUGS script for first part of Example 28. 
 

model { 
x ~ dbin(p, n)     # Binomial distribution for number of failures 
p ~ dlnorm(mu, tau)    # Lognormal prior distribution for p 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
# Calculate mu from lognormal prior median and error factor  
mu <- log(prior.median) 
} 
data 
list(x=1,n=187, prior.median=0.001, prior.EF=5) 
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• Figure 4-79.  DAG representing Script 33. 
 

The WinBUGS script below implements the likelihood-based approach for the second part of the 
example, in which the analyst is not required to develop a discrete distribution representing uncertainty 
in the failure count.  Running this script in the usual way gives a posterior mean for p of 2.9 × 10-3 and a 
90% credible interval of (4.6 × 10-4, 8.1 × 10-3). 
 

• Script 34.  WinBUGS script for incorporating uncertainty in binomial failure count via likelihood-based 
approach. 
 

4.8.2.2 Uncertain Failure Count with a Subjective Probability Distribution—When 
information is available (e.g., from equipment records) that the analyst can use to make a judgment as to 
the likelihood that each possible failure count is the true value, Bayesian inference is less straightforward, 
as there is a lack of consensus as to the appropriate approach.  We will discuss three approaches that 
have been proposed.  We will begin with a simple example, which is helpful for illustrating some salient 
properties of each method.  We will then return to the ATCS mixing-valve example to compare the 
practical differences among the three approaches. 
 
Approach 1:  Posterior Averaging 
In this approach, a posterior distribution is found for each possible failure count, and then a weighted-
average posterior distribution is constructed by averaging over the analyst’s subjective probability for 
each failure count. 

model { 
x ~ dbin(p, n)C(lower, upper)  # Binomial distribution for number of failures 
p ~ dlnorm(mu, tau)    # Lognormal prior distribution for p 
tau <- 1/pow(log(prior.EF)/1.645, 2) # Calculate tau from lognormal error factor 
# Calculate mu from lognormal prior median and error factor 
mu <- log(prior.median)    
} 
data 
list(x=NA, lower=1, upper=3, n=187, prior.median=0.001, prior.EF=5) 

p
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mu tau

Lognormal Prior

prior.EFprior.
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Approach 2:  Likelihood Averaging 
In this approach, the analyst’s subjective probability for each failure count is used to construct a 
weighted-average likelihood function, which is then used to update the prior distribution in the usual 
manner.  Note that there is only one update performed in this approach. 
 
Approach 3:  Weighted Likelihood 
In this approach, the analyst’s subjective probability for each failure count is used to weight the 
likelihood of that failure count, with the weight appearing in the exponent of the likelihood function.  The 
effect of this approach is to discount the failure and demand counts by the weighting factor.  This 
approach always leads to a unimodal posterior distribution. 
 
Example Calculation 
We begin our discussion of these three approaches with a simple example:  a single demand in which 
the outcome is either success (X = 0) with probability 1 – p or failure (X = 1) with probability p.  Let the 
prior distribution for p be uniform(0, 1), which is a beta(1, 1) distribution.  Therefore, the posterior 
distribution of p will be a beta(x + 1, 2 – x) distribution due to the beta distribution being a conjugate to the 
Bernoulli model. 

 
If we were to treat this example as being interval-censored, all we would know is that the value of X is 
either 0 or 1; in other words, we have gained no information, because this was the original constraint on 
X.  We would thus expect the posterior distribution to be unchanged from the prior distribution.  The 
likelihood function is the probability that X = 0 plus the probability that X = 1, conditional upon a value of 
p.  Thus, the likelihood function is  

11)|1()|0( =+−=+ pppfpf . 
 

The prior distribution for p is uniform, so the posterior is also uniform, as expected since a uniform prior is 
conjugate with the Bernoulli model.  In fact, the posterior will be the same as the prior for any prior 
distribution. 

 
In the posterior-averaging approach, where we weight the two possible posteriors [g(p|0) and g(p|1)] with 
weight w, we can calculate the marginal posterior distribution for p by averaging over the possible values 
of X (which in this case has only two possible values, 0 and 1).  The averaging yields 

)1|()1()0|()( pgwpgwpg −+= . 
 

When the two values are judged equally likely (w = 0.5) and when x = 0, we have 
)1(2)2,1()0|( pbetapg −== . 

 
Alternatively, when x = 1, we have 

pbetapg 2)1,2()1|( ==  . 
 

 Therefore, the marginal (weighted-average) posterior is given by 

1
2

2)1(2)( =
+−

=
pppg  

 
So the marginal posterior distribution is a uniform(0, 1) distribution, just as we obtained in the interval-
censored case.  With unequal weights, the marginal posterior distribution in the posterior averaging 
approach will be given by 

2
)21(

2
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In the average-l kelihood approach, the likelihood function used to update the prior is a weighted average 
)21()|1()1()|0()|( wpwpfwpwfpxf −+=−+=  

 
In the case that the values are equally likely (w = 0.5) the l kelihood function reduces to 0.5.  In this case, 
the posterior distribution is equal to the prior, which is uniform(0, 1).  If the values are not equally likely, 
then the posterior will be given by g(p) = [w + p(1 – 2w)] / k, where 

2
1])21([

1

0
∫ =−+= dppwwk  

 
In the weighted-likelihood approach, the subjective probabilities developed by the analyst are used as 
exponential weighting factors for the likelihood function.  In the case here of a single trial of the Bernoulli 
model, the result is 

iii w

i

xx pppxf ])1([)|(
2

1

1∏
=
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The effect of this likelihood function is as if there are (wi • xi) failures in wi (1 – xi) demands.  In the case 
of a single trial with a uniform prior on p, this gives a beta(1.5, 1.5) posterior distribution.  Thus, the 
posterior mean is 0.5, as with the other approaches, but the 90% interval is (0.1, 0.9), narrower than in 
the other approaches.  The posterior density obtained from the weighted-likelihood approach is shown 
in Figure 4-80, and differs quite markedly from the uniform posterior density obtained in the other 
approaches. 

 
• Figure 4-80.  Posterior density for p in the weighted-likelihood approach for a single trial with a 
uniform prior on p and equal weights for X = 0 and X = 1 
 

Let us now consider the simple Bernoulli example, but with an informative prior for p.  We will examine 
what happens when the prior distribution favors small values of p.  We will use a beta(0.63, 123) 
distribution to illustrate this case.  The prior mean is 5.1E-3, with a 90% interval of (5.9E-5, 1.8E-2). 
 
With equal weights on the possible outcomes of a single trial for the Bernoulli model (i.e., 0 or 1), the 
interval-censoring and average-likelihood approaches give the same outcome, which is just the prior 
distribution.  The posterior-averaging approach gives a different result, because the weights are retained.  
The posterior mean increases to 9.1E-3, and the 90% interval shifts to (1.7E-4, 2.8E-2).  The weighted-
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likelihood approach gives a similar posterior mean, 9.0E-3, but a narrower 90% interval, (6.4E-4, 2.6E-2).  
In the interval-censoring approach, the probability of an outcome is either p or 1 – p, so the weights are 
irrelevant.  In the average-likelihood approach, the equal weights cancel in the numerator and 
denominator of Bayes’ Theorem, giving the same effect.  Thus, if an analyst’s reason for assigning equal 
weights is because he is expressing indifference to the two possible values of X, then the average-
likelihood approach will reflect this indifference, while the posterior-averaging approach will not. 

 
Now consider the case of unequal weights.  Recall that the beta(0.63, 123) prior distribution weights 
small values of p heavily, and so the most likely outcome of a trial is X = 0 (probability of this outcome is 
0.995).  Imagine that one such trial is performed, and the actual outcome is not certain, but information is 
available such that the analyst judges the outcome to be X = 1 with probability 0.9.  In this case, we 
would expect the posterior distribution for p to be close to what we would get by updating the prior with X 
= 1.  The posterior-averaging approach behaves as we would expect, giving a posterior mean of 0.012, 
compared to the value of 0.013 we would have obtained had the outcome been X = 1 with certainty.  The 
90% interval is (1.1E-3, 3.2E-2).  The outcome of the weighted-likelihood approach is similar, with a 
posterior mean of 0.012 and a somewhat narrower 90% interval of (1.5E-3, 3.1E-2).  In contrast, the 
average-likelihood approach gives a posterior mean of 0.005; the posterior distribution is essentially 
unchanged by the trial, even though the analyst’s probability that the outcome was X = 1 was quite high.  
This aspect of the average-likelihood approach, its tendency to over-rule the data and allow the prior 
distribution to dominate the outcome, should be kept in mind if it is to be used with relatively sparse data. 

 
We now return to our Example 1 with a total of 187 binomial demands on the ATCS mixing valve, and 
an uncertain failure count.  Earlier we treated the uncertain count as interval-censored between 1 and 
3.  Now we will illustrate the other three approaches.  We will first consider the case of equal weights for 
each of the possible outcomes.  The WinBUGS scripts for each approach are shown below, and the 
results are summarized in Table 4.  As expected from the simple Bernoulli example, the average-
likelihood approach with equal weights is equivalent to interval censoring, and the posterior-averaging 
and weighted-likelihood approaches give similar numerical results, with the weighted-likelihood 
approach capturing less of the uncertainty present in the problem. 
 

• Script 35. The WinBUGS script for the posterior-averaging approach. 
 

model { 
 for(i in 1:K) { 
  x[i] ~ dbin(p[i], n)  # Binomial distribution for number of failures 
  p[i] ~ dlnorm(mu, tau)  # Lognormal prior distribution for p 
 } 
p.avg <- p[r]    # Monitor this node 
r ~ dcat(p.analyst[]) 
 for(j in 1:3) { 
  p.analyst[j] <- 1/3 
 } 
# Calculate tau from lognormal error factor 
tau <- 1/pow(log(prior.EF)/1.645, 2) 
# Calculate mu from lognormal prior median and error factor 
mu <- log(prior.median) 
} 
data 
list(x=c(1,2,3) ,n=187, prior.median=0.001, prior.EF=5, K=3) 
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• Script 36. The WinBUGS script for average-likelihood approach. 
 

• Script 37. The WinBUGS script for weighted-likelihood approach. 
 
• Table 4.  Summary of results for ATCS mixing valve. 

Approach Posterior Mean 90% Interval 
Interval censoring 2.9E-3 (4.6E-4, 8.1E-3) 

Posterior averaging 4.4E-3 (6.4E-4, 1.2E-2) 
Average likelihood 2.8E-3 (4.6E-4, 8.0E-3) 
Weighted likelihood 4.2E-3 (8.7E-4, 1.0E-2) 

 
With unequal weights developed by the analyst, the interval-censoring approach is no longer 
applicable, as it does not use weights developed by the analyst.  Let us assume in our mixing valve 
example that the analyst has developed the following subjective probabilities for the possible failure 
counts: 
 

model { 
 for(i in 1:K) { 
 phi[i] <- w[i]*exp(logfact(n) - logfact(x[i]) - logfact(n-x[i]))*pow(p, x[i])*pow(1-p, n-x[i]) 
 w[i] <- 1/3 
 } 
phi.sum <- sum(phi[]) 
log.phi.sum <- log(phi.sum) 
zero <- 0 
zero ~ dgeneric(log.phi.sum) 
p ~ dlnorm(mu, tau)   #Lognormal prior distribution for p 
# Calculate tau from lognormal error factor 
tau <- 1/pow(log(prior.EF)/1.645, 2) 
# Calculate mu from lognormal prior median and error factor 
mu <- log(prior.median) 
} 
data 
list(x=c(1,2,3) ,n=187, prior.median=0.001, prior.EF=5, K=3) 

model { 
 for(i in 1:K) { 
  zeros[i] <- 0 
  zeros[i] ~ dgeneric(phi[i]) 
  #Phi is log-likelihood 
  phi[i] <- w[i]*(logfact(n) - logfact(x[i]) - logfact(n-x[i]) + x[i]*log(p) + (n-x[i])*log(1-p)) 
  w[i] <- 1/K 
 } 
p ~ dlnorm(mu, tau) #Lognormal prior distribution for p 
# Calculate tau from lognormal error factor 
tau <- 1/pow(log(prior.EF)/1.645, 2) 
# Calculate mu from lognormal prior median and error factor 
mu <- log(prior.median) 
} 
data 
list(x=c(1,2,3), n=187, prior.median=0.001, prior.EF=5, K=3) 
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• P(X = 1) = 0.1 
• P(X = 2) = 0.2 
• P(X = 3) = 0.7 

 
Note that the analyst has put a high probability on X = 3, which is a very unlikely outcome with the 
specified lognormal prior (probability = 0.01).  We enter these weights and rerun the scripts shown 
above to obtain the results shown in Table 5.  The average-likelihood results are somewhat 
nonconservative, and the weighted likelihood results are what would be obtained by updating the 
lognormal prior with the weighted-average failure count (2.6) and 187 demands, illustrating the 
equivalence of the weighted-likelihood approach and data-discounting.  When the possible outcomes 
are more consistent with the prior distribution, the posterior-average and average-likelihood 
approaches will generally be similar. 
 
• Table 5.  Summary of results for ATCS mixing valve with unequal weights. 

Approach Posterior Mean 90% Interval 
Posterior averaging 5.8E-3 (1.0E-3, 1.4E-2) 
Average likelihood 3.7E-3 (5.3E-4, 1.E-2) 
Weighted likelihood 5.6E-3 (1.3E-3, 1.3E-2) 

 
 

Summary 
When event counts are uncertain, there are various approaches that can be taken to Bayesian inference.  
In some limited cases, the outcomes of all the approaches will coincide; however in most cases they will 
not.  The remainder of the examples in the Guidebook that involve uncertainty in event counts will be 
solved using the posterior-averaging approach.  The reader should keep in mind that other approaches 
are available, and there is as yet no consensus on a single approach.  We summarize, in Table 6, some 
key aspects of each of the approaches. 

 
• Table 6.  Summary of four approaches to Bayesian inference with uncertain event counts. 

Approach Salient Features 
Interval censoring 1. Appropriate when data are known to lie in an interval, but 

information is not available to develop probability 
distribution for “true” event count 

Posterior-averaging 2. Can lead to multimodal posterior 
3. Not equivalent to interval censoring when weights are equal 

Average likelihood 4. Equivalent to interval censoring when all weights are equal 
5. Weights effectively ignored when data are sparse, leading 

to domination by the prior distribution 
6. Can lead to multimodal posterior 

Weighted likelihood 7. Always leads to unimodal posterior 
8. Under-estimates uncertainty 
9. Equivalent to data-discounting 

 
As a demonstration of the posterior-averaging approach, we will revisit the ATCS radiator plugging 
failure mode via an example. 
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• Example 29.  Modeling uncertainty in Poisson failure counts for radiator plugging in ATCS 
system. 

Consider plugging of the radiator in the ATCS. 
 
Assume that over the past 11,000 hours of operation, there have been 7 plugging events.  Two
of these events clearly met the failure criterion in terms of excess differential pressure across 
the radiator.  However, the event narratives for the other five events are less clear as to 
whether the failure criterion was met.  The analyst is pretty sure that three of the events met the
criterion, and is also pretty sure that one of the events did not.  For the other three events, she 
simply cannot tell. 
 
Assuming a prior on the radiator plugging rate that is a lognormal distribution with a mean of 
10-5/hour and an error factor of 7.6, find the posterior mean and 90% credible interval for the 
plugging rate 

• Using 2 failures in 11,000 hours. 
• Factoring in uncertainty in the failure count. 

 
Solution 
The first part is straightforward, using the existing Poisson/lognormal script, we have to modify the 
script somewhat for the specifics of this example.  The modified script is shown below.  Running this 
script with our prior and observed data, we find a posterior mean of 5.6 × 10-5/hour and a 90% credible 
interval of (7.7 × 10-6, 1.6 × 10-4). 
 

• Script 38. WinBUGS script for first part of Example 29. 
 

model { 
x ~ dpois(mean.poisson)   # Poisson distribution for number of events 
mean.poisson <- lambda*time.hr # Poisson parameter 
lambda ~ dlnorm(mu, tau)   # Lognormal prior distribution for lambda 
# Calculate tau from lognormal error factor 
tau <- 1/pow( log(prior.EF)/1.645, 2) 
# Calculate mu from lognormal mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF)/1.645, 2)/2 
} 
 
data 
list(x=2, time.hr=11000, prior.mean=0.00001, prior.EF=7.6) 
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• Figure 4-81.  DAG representing Script 38 
 
 
To factor in the uncertainty in the number of radiator plugging events, the analyst must specify a 
probability for each possible failure count from 2 to 7.  One convenient way of doing this is to work on a 
scale where 100 is very likely, 50 is indeterminate, and 10 is unlikely.  We can then normalize by 
dividing each possibility by the total point count, which in this case is 360.  Thus, in this example, 2 and 
3 failures would be assigned 100 points, because the analyst was pretty sure that three of the events 
met the PRA failure criterion.  Four, five, and six failures would each be assigned 50 points, because 
the analyst couldn’t tell, and seven failures would be assigned 10 points, because the analyst was 
pretty sure that one of the events had not met the failure criterion.  In the WinBUGS script below, the 
required normalization is carried out as part of the script. 
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• Script 39. WinBUGS script for incorporating uncertainty into Poisson event count. 
 

 

• Figure 4-82.  DAG representing Script 39. 
 
Note that the node lambda.avg in Script 39 reflects the posterior distribution for lambda, averaged over 
the analyst’s subjective distribution for the failure count.  In effect, WinBUGS estimates six different 
posterior distributions, corresponding to the possible failures (two to seven), and then averages these 
distributions over node p.analyst, which encodes the analyst’s epistemic uncertainty as to the actual 
number of failures. 
 

model {       
 for(i in 1:N) { 
     x[i] ~ dpois(mean.poisson[i])  # Poisson distribution for number of events 
     mean.poisson[i] <- lambda[i]*time.hr  # Poisson parameter 
     lambda[i] ~ dlnorm(mu, tau)   # Lognormal prior distribution for lambda 
 } 
lambda.avg <- lambda[r]  # Monitor this node for posterior average distribution 
 
r ~ dcat(p.analyst[]) 
p.analyst[1] <- 100/360    # Probability of 2 failures 
p.analyst[2] <- 100/360    # Probability of 3 failures 
p.analyst[3] <- 50/360    # Probability of 4 failures 
p.analyst[4] <- 50/360    # Probability of 5 failures 
p.analyst[5] <- 50/360    # Probability of 6 failures 
p.analyst[6] <- 10/360    # Probability of 7 failures 
 
# Calculate tau from lognormal error factor 
tau <- 1/pow( log(prior.EF)/1.645, 2) 
 
# Calculate mu from lognormal mean and error factor 
mu <- log(prior.mean) - pow(log(prior.EF)/1.645, 2)/2 
} 
data 
list(x=c(2,3,4,5,6,7), time.hr=11000, prior.mean=0.00001, prior.EF=7.6, N=6) 
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Running this script in the usual way gives a posterior mean for lambda.avg of 1.5 × 10-4/hour and a 
90% credible interval of (1.5 × 10-5, 4.3 × 10-4), a significant difference from the results above where the 
failure count was taken to be exactly two. 
 
4.8.3  Censored Data for Random Durations 
Consider the following example.  A programmable logic controller (PLC) in the avionics package for the 
ATCS is being tested.  Ten PLCs are placed in test, and each test is to be run for 1,000 hours.  If a PLC 
fails before the end of the test, its failure time is recorded.  Assume that two of the PLCs failed during 
the test, at 395 and 982 hours.  The other eight PLCs were still operating when the test was terminated 
at 1,000 hours.  How can we use this information to carry out Bayesian inference for the PLC failure 
rate, lambda, assuming that the time to failure can be described by an exponential distribution? 
 
The key to dealing with censored times, for any likelihood distribution, is the C(lower, upper) construct 
in WinBUGS.1  In cases where a failure time was not recorded, this tells WinBUGS to impute a failure 
time from the specified aleatory distribution, between the bounds specified by lower and upper in the 
construct.  For our example above, lower would be equal to 1,000 hours, and upper would be omitted, 
so we would have the following line in the WinBUGS script:  t[i] ~ dexp(lambda)C(1000, ). 
 
In the data portion of the script, a value of NA is entered for each censored failure time (time not 
recorded).  Because “lower” is a vector, the failure time is entered if a failure time is observed, 
otherwise NA is entered.  The script to analyze this example is shown below. 
 

• Script 40.  WinBUGS script for modeling censored random durations. 
 
 
 
 
 
 
 
 
 

                                                      
1 It is also possible to code this as I(lower, upper). 

model { 
 for(i in 1:N) { 
  # Define likelihood function with Type I censoring 
  t[i] ~ dexp(lambda)C(lower[i],) 
 } 
lambda ~ dgamma(0.0001, 0.0001)  # Jeffreys prior for lambda 
} 
 
data 
list(t=c(982,394.7,NA,NA,NA,NA,NA,NA,NA,NA),  
lower=c(982,394.7,1000,1000,1000,1000,1000,1000,1000,1000), N=10) 
 
Inits 
list(lambda=0.001) 
list(lambda=0.0001) 
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• Figure 4-83.  DAG representing Script 40. 
 

 
Running this script in the usual way gives a posterior mean for lambda of 2.1 × 10-4/hour and a 
90% credible interval of (3.8 × 10-5, 5.1 × 10-4). 
 
• Example 30.  Modeling uncertainty in fire suppression times (censored data). 

Consider the following data on time to suppress a fire (in minutes) in a critical area: < 1, 5, < 10
15, 4, 20, 30, 3, 30-60, 25.  Find the probability that a fire in this area will last longer than 20 
minutes, the assumed time to damage for critical components in the area. 

 
Solution 
We start by specifying an aleatory model for the time to suppress the fire.  The simplest model is the 
exponential distribution, so we will start with that, and examine alternative models later.  We will use a 
Jeffreys prior distribution for lambda, the suppression rate in the exponential distribution.  The 
WinBUGS script below illustrates how to encode the censored data for suppression time.  Node 
time.rep estimates the suppression time, unconditional upon lambda, and node prob.fail estimates the 
probability that the fire will last for at least 20 minutes without being suppressed. 
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BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS    

 
TREATMENT OF UNCERTAIN DATA 134

• Script 41.  WinBUGS script for Example 30, interval-censored random durations with exponential 
likelihood. 
 

• Figure 4-84.  DAG representing Script 41. 
 

 
Running this script in the usual way gives a mean non-suppression probability at 20 minutes of 0.25, 
with a 90% interval of 0.09, 0.46).  For later comparison with an alternative model, the DIC was found to 
be 51.3. 
 
The Weibull distribution is an alternative aleatory model to the exponential distribution, as described in 
Sec. 4.6.1.2.  The script below shows how to encode a Weibull likelihood function and estimate the 
probability of non-suppression at 20 minutes.  Recall that if the shape parameter, alpha, equals one, 
then the Weibull distribution reduces to the exponential distribution.  Running the script below in the 
usual way, gives the following posterior distribution for the Weibull shape parameter. 
 

model { 
 for (i in 1 : N) { 
  # Exponential dist. for suppression times 
  time.supp[i] ~ dexp(lambda)C(lower[i], upper[i]) 
 } 
time.rep ~ dexp(lambda) 
lambda ~ dgamma(0.0001,0.0001)  # Diffuse prior for exponential parameter 
prob.fail <- exp(-lambda*time.crit)  # Probability of non-suppression by time.crit 
time.crit <- 20    
}   
 
data 
list(time.supp=c(NA, 5, NA, 15, 4, NA, 3, NA, 25), N=9) 
list(lower=c(0, 5, 0, 15, 4, 20, 3, 30, 25), upper=c(1, 5, 10, 15, 4, 30, 3, 60, 25)) 
 
inits 
list(lambda = 0.1) #initial values 

time.supp[i]

Gamma Prior

alpha.prior beta.prior

lower[i]

Constraint

upper[i]

prob.fail

time.crit time.rep

lambda

For i = 1 to N
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• Figure 4-85. Posterior distribution for alpha in Weibull distribution. 

 
As this distribution is centered about one, the exponential distribution is probably adequate.  The 
probability of non-suppression with the Weibull model has a posterior mean of 0.26 and a 90% credible 
interval of (0.09, 0.47).  These are essentially the same results as obtained with the simpler exponential 
model above.  Finally, the DIC for the Weibull model is 52.5, slightly larger than the exponential model, 
allowing us to conclude that the exponential is a better model than the Weibull distribution. 
 

• Script 42.  WinBUGS script for Example 30, interval-censored random durations with Weibull likelihood. 
 

model  {    
 for (i in 1 : N) { 
  # Weibull distribution for suppression times 
  time.supp[i] ~ dweib(alpha, scale)C(lower[i], upper[i]) 
 } 
time.rep ~ dweib(alpha, scale) 
alpha ~ dgamma(0.0001,0.0001)  # Diffuse prior for exponential parameter 
scale ~ dgamma(0.0001,0.0001) 
prob.fail <- exp(-scale*pow(time.crit, alpha)) # Probability of non-suppression by time.crit 
time.crit <- 20   
}   
 
data 
list(time.supp=c(NA, 5, NA, 15, 4, NA, 3, NA, 25), N=9) 
list(lower=c(0, 5, 0, 15, 4, 20, 3, 30, 25), upper=c(1, 5, 10, 15, 4, 30, 3, 60, 25)) 
 
inits 
list(alpha = 1, scale=10) #initial values 
list(alpha=0.5, scale=15) 
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• Figure 4-86.  DAG representing Script 42. 

 
4.8.4  Legacy and Heritage Data 
In this section we show how Bayesian inference methods can be used in reliability assessment of 
systems under development. The methodology provides the flexibility for engineers to incorporate 
reliability considerations into the design or redesign of systems, even when data on the actual system 
under design is lacking or very limited in quality and quantity. For instance, in many practical situations, 
systems are not designed from scratch, but evolve in a series of evolutionary designs and 
modifications. While the reliability of a system at different stages in such design evolutions is not 
necessarily identical, earlier designs typically provide a meaningful indication of the reliability behavior 
of future generations, on the basis that their design, manufacturing, and operation are largely the same. 
The reliability behavior observed for existing systems can therefore well serve as a useful source of 
information, as long as the differences between system designs are taken into account. 
 
The various types of information that might be available for assessing the reliability of a system during its 
life cycle include:   
 
Stage I: Initial Design: During the conceptual and early design phase of a new system reliability 
assessment can be informed by any combination of the following types of information:  

• Expert Opinion:  various forms of expert opinions are discussed in Section 4.11 
• Reliability Analysis:  estimates based on system modeling and probabilistic analysis of physics 
• Generic Data:  estimates or data from similar systems, other applications 
• Legacy or Heritage Data:  field and/or test data from the most representative previous system 

designs. These systems are called legacy or heritage systems.   
 
Stage II: Development Phase:  This Phase normally involves several rounds of design modifications, 
tests, and fixes. The tests may include accelerated-life tests, and the entire process constitutes what is 
commonly known as the reliability growth program. The types of information include: 

• Design credit,  
• Failure mode fix effectiveness,  
• Scaling of life data collected from accelerated-life testing. 

 
Stage III. Field Operation: Actual operational data collected during actual system mission and field 
use constitutes the most relevant data for assessing and updating the actual reliability of the system.  

time.supp[i]

Gamma Prior

alpha.prior beta.prior

lower[i]

Constraint

upper[i]

prob.fail

time.crit
time.rep

shape

Weibull

scale

For i = 1 to N
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This section focuses on Stages I and II in the system life-cycle; inference during Stage III has been 
addressed in previous sections. 
 

4.8.4.1 Inference for Initial Design (Stage I) —In developing “baseline” estimates from legacy 
system information the analyst needs to account for any differences in the designs to establish the 
degree of relevance or degree of applicability of the legacy information to the new system design. 

 
• Example 31.  Developing failure probability for new parachute design from legacy data. 

An evolutionary parachute design has been developed for a new mission.  Legacy data for 
parachute failure are available from the Apollo program and the Russian Soyuz program. 
 
In the Apollo program there was 1 failure of a parachute in 15 missions (3 parachutes are used 
for each mission).  The Soyuz program likewise experienced 1 parachute failure in 93 missions
(1 parachute for each mission). 
 
Use this legacy data to develop a prior distribution for p, the probability of parachute failure for 
the new design. 

 
Solution 
For both Apollo and Soyuz, we will assume that the number of parachute failures can be described by 
a binomial distribution.  We will first obtain the posterior distribution for p in each of these legacy 
programs by updating a Jeffreys prior.  Our prior for the new parachute design will then be a weighted 
average (as described in Section 4.8.2) of these legacy posterior distributions, with the weights 
representing the analyst’s judgment as to the applicability of the information from each of the two 
legacy programs. 
 
For this example, we assume that the judgment is that the Apollo information is more applicable, so it 
will have a weight of 0.7 (indicating higher applicability), giving a weight of 0.3 to the Soyuz information.  
The WinBUGS script shown below implements this analysis. 
 

• Script 43.  WinBUGS script to develop prior distribution as weighted average of legacy 
information. 

 

subscript 1 = Soyuz: 1 failure in 93 demands 
subscript 2 = Apollo: 1 failure in 45 demands (15 missions, 3 parachutes per mission) 
model { 
 for(i in 1:2) { 
  x[i] ~ dbin(p[i], n[i])   # Binomial likelihood for each legacy program 
  p[i] ~ dbeta(0.5, 0.5)   # Jeffreys prior for p 
   } 
p.new <- p[r]    # Prior distribution for new design is weighted average 
     # of posteriors from legacy programs 
r ~ dcat(w[])     
} 
 
data 
# Weights and observed failures c(Soyuz failures, Apollo failures) 
list(w=c(0.3,0.7), x=c(1,1), n=c(93, 45)) 
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• Figure 4-87.  DAG representing Script 43. 
 

Running this script in the usual way gives a prior mean for the new design of 0.028 with a 90% credible 
interval of (2.9 × 10-3, 0.076).  Note that the mean is the weighted average of the mean of each legacy 
posterior distribution.  
 
If desired, uncertainty about the weighting factors can be introduced simply by assigning a distribution 
to each weight.  For example, assume the analyst felt that the weighting factor for the Apollo 
information could be anywhere between 0.5 and 0.9.  The WinBUGS Script 44 encodes this belief.  
Running the script in the usual way gives a prior mean for the new design of 0.028 with a 90% credible 
interval of (2.9 × 10-3, 0.076).  Note that the results have not changed significantly. 
 

• Script 44.  WinBUGS script to develop prior distribution as weighted average of legacy information with 
uncertainty as to weighting factors. 
 
 
 

subscript 1 = Soyuz: 1 failure in 93 demands 
subscript 2 = Apollo: 1 failure in 45 demands (15 missions, 3 parachutes per mission) 
model { 
 for(i in 1:2) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial likelihood for each legacy program 
  p[i] ~ dbeta(0.5, 0.5)  # Jeffreys prior for p 
   } 
p.new <- p[r]    # Prior distribution for new design is weighted average 
     # of posteriors from legacy programs 
r ~ dcat(w[]) 
w[2] ~ dunif(0.5, 0.9)  # Uncertainty in Apollo weighting factor 
w[1] <- 1 - w[2]    # Weights must sum to 1 
} 
 
data 
# Weights and observed failures c(Soyuz failures, Apollo failures) 
list(x=c(1,1), n=c(93, 45)) 

p[1-2]

x[1-2]

Beta Prior

alpha beta

p.new r

n[1-2]
w[1-2]
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• Figure 4-88.  DAG representing Script 44. 
 

4.8.4.2 Inference During Development Phase (Stage II) —This phase normally involves 
several rounds of design modifications, tests, and fixes. The tests may include accelerated-life tests, and 
the entire process constitutes what is commonly known as the reliability growth program.  As problems in 
the design are encountered during testing, they are fixed, so that data may not be strictly applicable.  
Various ad hoc approaches to the problem exist, such as “failure-discounting1” and the so-called 
STRATCOM2 method, in which the designer specifies an anticipated lower bound on system reliability.  
In implementing either of these approaches, it is important to factor in uncertainty about the discounting 
factor or the lower bound in the STRATCOM approach in order to avoid nonconservatively low estimates 
of PRA parameters such as p.  We illustrate this by revisiting Example 31. 

 
• Example 31. continued, incorporating prototype test data. 

 
Assume that test data are available for a prototype of the new parachute design. 
There have been 3 failures of the prototype in 13 tests.  The analyst judges that a discount 
factor of 0.1 is appropriate.  Find the posterior mean and 90% credible interval for the prototype
using the prior developed in the second part of the example above, which accounted for 
uncertainty in the analyst’s weighting factors for the legacy information from Apollo and Soyuz.

 
Solution 
The WinBUGS script below is used to analyze this problem, with no uncertainty applied to the 
discounting factor.   Running this script in the usual way gives a posterior mean of 0.027 and a 90% 
credible interval of ((3.7 × 10-3, 0.067, nearly the same as the prior mean and 90% interval obtained 
earlier.  This is expected as the prototype data are sparse.  Note that had no discounting factor been 
applied, the posterior mean would have been 0.074 and the 90% credible interval would have been 
(0.026, 0.14). 

                                                      
1 Failure discounting is the process by which an integer number of failures is reduced to a lower, poss bly non-integer, value. 
2 See, for example, Guikema 2005. 
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• Script 45. WinBUGS script for discounting prototype failure data using discounting factor. 
 

 
• Figure 4-89.  DAG representing Script 45. 

 
 
The “failure-discounting” approach has been widely criticized within the PRA community, on a variety of 
grounds, including the non-conservative estimates it tends to produce, and the failure to account for 

subscript 1 = Soyuz: 1 failure in 93 demands 
subscript 2 = Apollo: 1 failure in 45 demands (15 missions, 3 parachutes per mission) 
model {     
 for(i in 1:2) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial likelihood for each legacy program 
  p[i] ~ dbeta(0.5, 0.5)  # Jeffreys prior for p 
  } 
p.proto <- p[r]    # Prior distribution for new design is weighted average 
     # of posteriors from legacy programs 
r ~ dcat(w[]) 
w[2] ~ dunif(0.5, 0.9)  # Uncertainty in Apollo weighting factor 
w[1] <- 1 - w[2]    # Weights must sum to 1 
x.disc <- x.proto*f.disc   # Apply discounting factor to prototype failures 
x.disc ~ dbin(p.proto, n.proto)  # Binomial distribution for discounted prototype failures 
} 
 
data 
# Weights and observed failures c(Soyuz failures, Apollo failures) 
list(x=c(1,1), n=c(93, 45)) 
list(x.proto=3, n.proto=13, f.disc=0.1) 

Beta Prior

alpha beta

p[1-2] p.proto

x[1-2]

n[1-2]

x.disc x.protof.disc
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uncertainty in the discounting factor, which is really the same criticism restated.  It is not possible to 
account for uncertainty in the discounting factor by assigning it a distribution, as WinBUGS will have 
conflicting information about the aleatory model for the observed prototype failures:  one model will be 
the observed number of failures (3 in our example) multiplied by the distribution for the discounting 
factor and the other will be a binomial distribution. 
 
We can avoid the problem of conflicting information by treating the observed prototype failures as 
uncertain, as described in Section 4.8.2.  The analyst must develop a discrete distribution for the 
number of prototype failures.  In this example, the possible failure counts are 0, 1, 2, or 3.  To simplify 
the scripting required in WinBUGS, we will replace the weighted-average prior from the Apollo and 
Soyuz legacy information with a lognormal distribution, preserving the mean and error factor.  In the 
WinBUGS script below, a probability of 0.6 has been assigned to 0 failures, 0.2 to 1 failure, and 0.1 to 2 
and 3 failures.  The values for prior.mean, upper, and lower were obtained using the results from Script 
45.  Running this script in the usual way gives a posterior mean for the prototype failure probability of 
0.036, with a 90% credible interval of (3.7 × 10-3, 0.12). 
 

• Script 46.  WinBUGS script for treating prototype failures as uncertain data. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

subscript 1 = Soyuz: 1 failure in 93 demands 
subscript 2 = Apollo: 1 failure in 45 demands (15 missions, 3 parachutes per mission) 
    
model { 
 for(j in 1:K) { 
  x.proto[j] ~ dbin(p.proto[j], n.proto)  # Binomial dist. for prototype failures 
  p.proto[j] ~ dlnorm(mu, tau)  # Lognormal approximation to prototype prior 
 } 
p.proto.avg <- p.proto[s]    # Monitor this node 
s ~ dcat(disc[]) 
mu <- log(prior.mean) - pow(log(sqrt(upper/lower))/1.645, 2)/2 
tau <- pow(log(sqrt(upper/lower))/1.645, -2) 
prior.mean <- 0.027 
upper <- 0.075 
lower <- 0.003 
} 
 
data 
list(x.proto=c(0,1,2,3), n.proto=13, K=4, disc=c(0.6, 0.2, 0.1, 0.1)) 
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• Figure 4-90.  DAG representing Script 46 

 
Uncertainty in the weighting factors can be added to the script above if desired.  The most 
straightforward way of doing this is by assigning a Dirichlet distribution to the weights.  The marginal 
distribution of each weight will then be a beta distribution with parameters alphai and alphatot – alphai, 
where alphatot is just the sum of each alphai.  The analyst can choose a value for alphatot, with smaller 
values leading to larger uncertainties for each weight; a value of 10 should work if there are only a few 
weights, as in this example.  We choose alphai so that the mean of each weight is equal to the point 
estimate in Script 46 above.  In our example, we will have the inputs shown below. 
 
• Table 7.  Alpha weighting factor parameter values for Example 31. 

Component of alpha Mean weight 5th percentile 95th percentile 
6 0.6 0.34 0.83 
2 0.2 0.04 0.43 
1 0.1 0.006 0.28 
1 0.1 0.006 0.28 

 
To simplify the scripting required in WinBUGS, we will replace the weighted-average prior from the 
Apollo and Soyuz legacy information with a lognormal distribution, preserving the mean and error 
factor.  This produces the WinBUGS script shown below.  Running this script in the usual manner gives 
a posterior failure probability for the prototype of 0.036, with a 90% credible interval of (3.7 × 10-3, 0.12).  
Thus, in this example, the uncertainty for the weights has had essentially no impact on the results. 
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• Script 47.  WinBUGS script for treating prototype failures as uncertain data, including uncertainty in 
weighting factors. 

 

 
• Figure 4-91.  DAG representing Script 47 

model { 
 for(j in 1:K) { 
  x.proto[j] ~ dbin(p.proto[j], n.proto) # Binomial dist. for prototype failures 
  p.proto[j] ~ dlnorm(mu, tau) # Lognormal approximation to prototype prior 
 } 
p.proto.avg <- p.proto[s]    # Monitor this node 
s ~ dcat(disc[]) 
disc[1:4] ~ ddirch(alpha[]) 
#Replace legacy prior with lognormal distribution to simplify script 
mu <- log(prior.mean) - pow(log(sqrt(upper/lower))/1.645, 2)/2 
tau <- pow(log(sqrt(upper/lower))/1.645, -2) 
prior.mean <- 0.027 
upper <- 0.075 
lower <- 0.003   
} 
 
data 
list(x.proto=c(0,1,2,3), n.proto=13, K=4, alpha=c(6,2,1,1)) 
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4.9 Bayesian Regression Models 
Sometimes a parameter in an aleatory model, such as p or lambda, can be described by observable 
quantities such as pressure, mass, and temperature.  For example, in the case of a pressure vessel, 
very high pressure and high temperature may be leading indicators of failures. In such cases, 
information about the explanatory variables can be used in the Bayesian inference paradigm to 
estimate p or lambda.  We illustrate the possibility of a Bayesian regression approach with an example 
that estimates the probability of O-ring failure in the solid-rocket booster motors of the space shuttle. 
 
• Example 32.  Modeling O-ring distress probability as a function of leak test pressure and launch 
temperature. 

Table 8 shows data on O-ring thermal stress collected during launches prior to the 1986 
launch of the Challenger that led to disastrous failure of the O-rings.  Each shuttle has three 
primary and three secondary O-rings, with one of each type having to fail to cause a disaster 
such as the Challenger. 

 
• Table 8. Space shuttle field O-ring thermal distress data. 

Flight Distress1 Temp (oF.) Press (psig) 
1 0 66 50 
2 1 70 50 
3 0 69 50 
5 0 68 50 
6 0 67 50 
7 0 72 50 
8 0 73 100 
9 0 70 100 

41-B 1 57 200 
41-C 1 63 200 
41-D 1 70 200 
41-G 0 78 200 
51-A 0 67 200 
51-C 2 53 200 
51-D 0 67 200 
51-B 0 75 200 
51-G 0 70 200 
51-F 0 81 200 
51-I 0 76 200 
51-J 0 79 200 
61-A 2 75 200 
61-B 0 76 200 
61-C 1 58 200 

 
1Thermal distress is defined to be erosion of the O-ring or blow-by of hot gases.  The table shows the 
number of distress events for each launch.  There are six field O-rings on the shuttle, so the number of 
distress events is an integer in the interval [0, 6]. 

 
Our aleatory model for O-ring distress during launch will be a binomial distribution with n = 6, since 
there are 6 O-rings on the shuttle.  The unknown parameter of interest is p, the probability of distress of 
an O-ring, assumed to be the same for each of the six O-rings. 
 
Engineering knowledge leads us to believe that p will vary as pressure and temperature vary (i.e., the 
leading indicators mentioned earlier), so we construct a model for p with pressure and temperature as 
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explanatory variables.  We consider the potential explanatory model [Dalal et al, 1989]: logit(p) = a + 
b*temp + c*press.  
 
The WinBUGS script (Script 48) shows how the regression model is encoded.  This script also predicts 
the probability of O-ring distress at the Challenger launch temperature of 31o F and pressure of 200 
psig, information that presumably would have been of great value in the Challenger launch decision. 

 

 
• Script 48.  WinBUGS script for logistic regression model of O-ring distress probability with pressure and 
temperature as explanatory variables. 

model { 
 for(i in 1:K) { 
  distress[i] ~ dbin(p[i], 6) 
  # Regression model by Dalal et al with temp and pressure 
  logit(p[i]) <- a + b*temp[i] + c*press[i]   
  distress.rep[i] ~ dbin(p[i], 6)  # Replicate values for model validation 
  diff.obs[i] <- pow(distress[i] - 6*p[i], 2)/(6*p[i]*(1-p[i])) 
  diff.rep[i] <- pow(distress.rep[i] - 6*p[i], 2)/(6*p[i]*(1-p[i])) 
 } 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs) 
distress.31 ~ dbin(p.31, 6) # Predicted number of distress events for launch 61-L 
logit(p.31) <- a + b*31 + c*200 # Regression model with temp and pressure 
     # from day of the accident 
# Prior distributions 
a ~ dnorm(0, 0.000001)  
b ~ dnorm(0, 0.000001) 
c ~ dnorm(0, 0.000001) 
} 
data 
list( 
   distress=c(0,1,0,0,0,0,0,0,1,1,1,0,0,2,0,0,0,0,0,0,2,0,1), 
   temp=c(66,70,69,68,67,72,73,70,57,63,70,78,67,53,67,75,70,81,76,79,75,76,58), 
   
press=c(50,50,50,50,50,50,100,100,200,200,200,200,200,200,200,200,200,200,200,2
00,200,200,200), 
   K=23 
   ) 
 
inits 
list(a=5, b=0, c=0) 
list(a=1, b=-0.1, c=0.1) 
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• Figure 4-92.  DAG representing Script 48. 

 
Running this script in the usual way gives the results in Table 9.  The expected number of distress 
events at 31o F is about four (indicating the distress of four of six O-rings) and the probability that one of 
the six O-rings experiences thermal stress during a launch at that temperature is about 0.71. 
 
• Table 9.  Results for shuttle O-ring distress model with temperature and pressure as explanatory 
variables. 

Parameter Mean 95% Interval 
a (intercept) 2.22 (-4.78, 9.91) 

b (temperature coeff.) -0.10 (-0.20, -0.02) 
c (pressure coeff.) 0.01 (-0.004, 0.03) 

p.31 0.71 (0.14, 0.99) 

temp
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4.10 Using Higher-Level Data to Estimate Lower-Level Parameters 
This section examines Bayesian inference in the case where we are interested in failure rates and 
probabilities for components that make up a system, but the observed data are at multiple “levels,” 
including the subsystem and system level (rather than just at the component level like in earlier 
sections).  We will use the system fault tree and the resulting expression of system failure probability in 
terms of constituent component failure probabilities to carry out the analysis in WinBUGS.  Consider the 
simple fault tree shown in Fig. 6-9 of the NASA PRA Procedures Guide, reproduced in Figure 4-93. 

 
• Figure 4-93.  Example fault tree from NASA PRA Procedures Guide. 

 
Assume we have data for Gate E (subsystem) and the Top Event (system).  Specifically, assume there 
have been: 

• Three failures at Gate E in 20 demands (of this subsystem, not the overall system) 
• One failure of the Top Event in 13 demands of the system.  Note that the subsystem (Gate E) 

was demanded during the 13 system demands (since the only way to have a system failure 
includes a component failure from this subsystem). 

 
Further assume that basic events “A” and “B” represent a standby component, which must change 
state upon a demand.  Assume that “A” represents failure to start of this standby component and “B” 
represents failure to run for the required time, which we will take to be 100 hours.  Assume basic events 
“C” and “D” represent normally operating components.  We will assume the information about the basic 
event parameters as shown in Table 10. 
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• Table 10.  Basic event parameters for the example fault tree. 

Basic Event Parameters of Interest Prior Distribution 
A p Lognormal, mean=0.001, EF=5 
B Lambda 

Mission time=100 hours 
Lognormal, median=0.005/hr, EF=5 

C Lambda 
Mission time = 100 hours 

Lognormal, mean=0.0005/hr, EF=10 

D Lambda 
Mission time = 100 hours 

Lognormal, mean=0.0005/hr, EF=10 

 
 
We are using the same distribution to represent epistemic uncertainty in the parameters for events C, 
and D, so we will have to account for this state-of-knowledge dependence in the Bayesian inference.  
The WinBUGS Script 49 (an associated DAG shown in Figure 4-94) will be used to find posterior 
distributions for p and lambda in this model, using the available operational data (specified on the 
previous page) at the subsystem and system level. 

 

• Script 49.  WinBUGS script for using higher-level information for fault tree shown in Figure 4-93. 
 

model { 
# This is system (fault tree top) observable (x.TE number of failures) 
x.TE ~ dbin(p.TE, n.TE)  
x.Gate.E ~ dbin(p.Gate.E, n.Gate.E) 
p.TE <- p.Gate.E *p.C*p.D  # Probability of Top Event (from fault tree) 
p.Gate.E <- p.A + p.B - p.A*p.B  # Probability of Gate E from fault tree 
p.C <- p.ftr   # Account for state-of-knowledge dependence between C & D 
p.D <- p.ftr  # by setting both to the same event 
p.B <- 1 - exp(-lambda.B*time.miss) 
p.ftr <- 1 - exp(-lambda.ftr*time.miss) 
 
# Priors on basic event parameters 
p.A ~ dlnorm(mu.A, tau.A) 
mu.A <- log(mean.A) - pow(log(EF.A)/1.645, 2)/2 
tau.A <- pow(log(EF.A)/1.645, -2) 
lambda.B ~ dlnorm(mu.B, tau.B) 
mu.B <- log(median.B) 
tau.B <- pow(log(EF.B)/1.645, -2) 
lambda.ftr ~ dlnorm(mu.ftr, tau.ftr) 
mu.ftr <- log(mean.ftr) - pow(log(EF.ftr)/1.645, 2)/2 
tau.ftr <- pow(log(EF.ftr)/1.645, -2) 
} 
 
data 
list(x.TE=1, n.TE=13, x.Gate.E=3, n.Gate.E=20, time.miss=100) 
list(mean.A=0.001, EF.A=5, median.B=0.005, EF.B=5, mean.ftr=0.0005, EF.ftr=10) 
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• Figure 4-94.  DAG representing Script 49. 

 
Running Script 49 in the usual way gives the results in Table 11, which are compared to the prior 
means.  These results (see Figure 4-95) show that the observed data has significantly increased the 
shared failure rate used for basic events C and D.  The estimate of the failure rate of component B has 
decreased from its prior mean value. 
 
• Table 11.  Analysis results for example fault tree model. 

Parameter Prior Mean Posterior Mean 90% Interval 
p.A 1.0 × 10-3 1.0 × 10-3 (1.2 × 10-4, 3.0 × 10-3) 

lambda.B 8.1 × 10-3/hr 2.4 × 10-3/hr (1.1 × 10-3, 4.3 × 10-3) 
lambda.ftr (shared by event C and D) 5 × 10-4/hr 3.7 × 10-3/hr (4.5 × 10-4, 1.0 × 10-2) 

 

• Figure 4-95.  Whisker plot of the prior and posterior failure rates for basic events B (lambda.B) 
and C/D (lambda.ftr). 
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4.11 Using Information Elicited from Experts 
The focus of this section is on methods for using information obtained from experts.  Whether one has 
information from one or several experts, one would usually need to develop a representative estimate 
for use in the analysis.  When the opinions of several experts are elicited, methods are needed to form 
the "aggregated” or “consensus” opinion.  The formulation is quite simple conceptually.  Expert opinion 
is simply treated as information about the unknown parameter of interest. The information is then used 
to update the analyst’s own (prior) estimate through Bayes theorem.  We will describe some of the 
basic techniques for a number of important classes of problems, but the coverage will not be 
exhaustive as the techniques for certain classes of problems tend to become very complicated without 
any assurance of significant improvement in the resulting estimates.  

 
4.11.1  Using Information from a Single Expert 
In this case the expert provides an estimate for an unknown parameter of interest, e.g., lambda in the 
Poisson distribution.  To use this information to update the analyst’s prior distribution for lambda via 
Bayes’ Theorem, a likelihood function is needed for the information obtained from the expert.  When 
the epistemic uncertainty in parameter values spans several orders of magnitude, as is common in 
PRA, a lognormal distribution is a convenient likelihood function.  The tau parameter (logarithmic 
precision) in the lognormal distribution will represent the analyst’s assessment of the expert’s expertise:  
small values of tau correspond to low confidence (high uncertainty) and vice versa.  A bias factor can 
also be introduced if desired, with bias less than one meaning the analyst believes the expert tends to 
underestimate the true value of lambda, and a factor greater than one means the expert tends to 
overestimate the true value. 
 
• Example 33.  Developing a prior for level sensor failure probability based on information from a 
single expert. 
The analyst’s prior estimate for the failure of a level sensor in the ATCS is 10-6/hour.  The analyst uses a
lognormal distribution with this estimate as the median, and an error factor of 10 to describe the 
uncertainty.  The level sensor vendor provides an estimate of the mean time to failure (MTTF) for the 
level sensor.  The vendor’s estimate for the MTTF is 500,000 hours. 
Develop a posterior distribution for the failure rate of the level sensor using these two sources of 
information. 

 
Solution 
The first step is to convert the MTTF estimate provided by the vendor into an estimate of the failure 
rate.  This is done by taking the reciprocal of the MTTF estimate.  The analyst must assess an 
uncertainty factor on the vendor’s estimate, representing their confidence in the estimate provided by 
the vendor.  Assume that the analyst is not very confident in the vendor’s estimate, and assesses an 
error factor of 10.  He also believes that the expert tends to overestimate the MTTF, that is, he 
underestimates the failure rate, so a bias factor of 0.75 is assessed by the analyst.  The WinBUGS 
script below is used to analyze this problem.  Running the script in the usual way gives a posterior 
mean for lambda of 2.7 × 10-6/hour with a 90% credible interval of (3.2 × 10-7, 8.4 × 10-6).  If the analyst 
thought the vendor tended to underestimate the MTTF, that is, overestimate lambda, he would use a 
bias factor greater than one.  Changing the bias factor to 5, for example, changes the posterior mean to 
1.0 × 10-6/hour with a 90% credible interval of (1.3 × 10-7, 3.2 × 10-6). 
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• Script 50.  WinBUGS script for lognormal (multiplicative error) model for information from single 
expert. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Figure 4-96.  DAG representing Script 50. 
 
 
4.11.2  Using Information from Multiple Experts 
Cases encountered in practice often involve more than one expert.  When multiple experts are involved 
the main question concerns the method of aggregation or pooling to form a single representative or 
aggregate estimate from the multiple expert estimates.  A number of ad hoc approaches have been 
used for combining information from multiple experts, such as taking the geometric average (arithmetic 
average of the logarithms) and taking the low and high estimates as the 5th and 95th percentiles of a 

model { 
lambda.star ~ dlnorm(mu, tau)    # Lognormal likelihood for information 
from expert 
lambda.star <- 1/MTTF 
mu <-log( lambda*bias) 
tau <- pow(log(EF.expert)/1.645, -2) 
lambda ~ dlnorm(mu.analyst, tau.analyst)  # Analyst's lognormal prior for lambda 
mu.analyst <- log(prior.median) 
tau.analyst <- pow(log(prior.EF)/1.645, -2) 
} 
data 
list(MTTF=500000, bias=0.75, EF.expert=10, prior.median=0.000001, prior.EF=10) 
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lognormal distribution.  A justification commonly given for these ad hoc approaches is that analytical 
techniques need not be more sophisticated than the pool of estimates (experts' opinions) to which they 
are applied.  Therefore, a simple averaging technique (equal weights) has often been judged 
satisfactory as well as efficient, especially when the quantity of information collected is large. 
 
The Bayesian approach of the previous section can be expanded to include multiple experts.  Basically, 
the methods of Section 4.5 can be used to develop a prior distribution representing the variability 
among the experts.  While mathematically cumbersome, this is straightforward to encode in WinBUGS, 
as the following example illustrates. 
 
• Example 34.  Developing a prior for pressure transmitter failure using information from multiple 
experts. 

Six estimates are available for failure rate of pressure transmitters.  These estimates along with 
the assigned measure of confidence are listed below.  The analyst wishes to aggregate these 
estimates into a single distribution that captures the variability among the experts. 

 
 

Expert Estimate (per hour) Confidence Measure 
(Error Factor) 

1 3.0 × 10-6 3 
2 2.5 × 10-5 3 
3 1.0 × 10-5 5 
4 6.8 × 10-6 5 
5 2.0 × 10-6 5 
6 8.8 × 10-7 10 

 
As in the previous section, the likelihood function for each expert will be assumed to be lognormal.  A 
diffuse prior is placed on lambda (actually on the logarithm of lambda).  The WinBUGS script below is 
used to develop a distribution for lambda, accounting for the variability among the six experts.  Running 
the script in the usual way gives a posterior mean for lambda of 6.5 × 10-6/hour, with a 90% credible 
interval of (3.4 × 10-6, 1.1 × 10-5). 
 

• Script 51.  WinBUGS script for combining information from multiple experts using multiplicative error model 
(lognormal likelihood). 
 

model { 
 for(i in 1:N) { 
  lambda.star[i] ~ dlnorm(mu, tau[i]) 
  tau[i] <- pow(log(EF[i])/1.645, -2) 
 } 
mu ~ dflat()   # Diffuse prior on mu 
lambda <- exp(mu)  # Monitor this node for aggregate distribution 
} 
 
data 
list(lambda.star=c(3.E-6, 2.5E-5, 1.E-5, 6.8E-6, 2.E-6, 8.8E-7), EF=c(3,3,5,5,5,10), N=6) 
inits 
list(mu=-10) 
list(mu=-5) 
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• Figure 4-97.  DAG representing Script 51. 
 
 
4.11.3  Bayesian Inference from Heritage Data 
Often, heritage data from prior hardware use is used to predict the performance of the hardware in a 
new mission.  The heritage data can be from prior missions, prototype testing, manufacturer’s claims, 
or terrestrial use.  The following example covers the process of predicting a failure rate of a hardware 
item using flight data from other missions.  

 
Assume mission experts determine that the hardware item’s reliability is sensitive to three attributes: 

 
1. Manufacturer 
2. Design process 
3. Hardware Qualification program 

 
A review of flight records identified four missions where the spacecraft flew the hardware item and had 
at least one attribute in common with the mission for which the PRA is being performed.  Data from 
other missions that the hardware item was used on are not considered.  Two of the missions are 
considered similar enough to call siblings and can be pooled (e.g. the two Mars Exploration Rovers).  
The mission experts deliberate as a team and determine the following: 
 

• Mission 1 is completely applicable to the new mission.  The same manufacturer, design, and 
qualification program were used. 

• Mission 2 is partially applicable to the new mission in that there was a different manufacturer 
and design process, but the qualification program was identical to the current mission. 

• Missions 3 and 4 are partially applicable to the new mission in that the same manufacturer and 
design process were used, but the qualification program was substantially different. 

 
The probabilities that the evidence from the four heritage missions apply to the new mission are elicited 
from the experts.  The hardware performance and probability that the evidence applies are summarized 
in Table 12. 
 
 
 
 
 
 
 

Lognormal Likelihood
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• Table 12.  Heritage component flight evidence and the probability that it applies to the new 
mission under consideration. 

Mission Flight Evidence Probability Evidence Applies
Failures Operating Hours 

1 0 6.41×105 100% 
2 1 5.98×106 40% 
3 0 2.73×104 60% 
4 0 2.73×104 60% 

 
There are sixteen evidence sets resulting from the four missions.  Each evidence set has a unique 
applicability to the current mission.  The following rules are agreed upon by the experts: 

• Mission 1 is completely applicable, therefore any evidence set that excludes Mission 1 is not 
considered. 

• Mission 2 is partially applicable and all sets in which it is included or excluded can be 
considered. 

• Missions 3 and 4 are pool-able information and partially applicable, therefore only evidence 
sets in which both are either included or excluded are considered. 

 
Using these rules, Table 13 summarizes the evidence sets and their calculated combined probabilities. 

 
• Table 13.  Evidence set applicability. 

 
 
 
The WinBUGS script below is used to determine the posterior failure rate based on the evidence set 
probabilities developed by the experts.  A Jeffreys prior is updated for each evidence set and the 
evidence set probabilities are used to average the resulting four posterior distributions. 
Running the script in the usual way gives a posterior mean for lambda of 5.4 × 10-7/hour, with a 90% 
credible interval of 7.1 × 10-9/hr to 2.2 × 10-6/hr. 

 

Evidence Sets (which Missions Apply) Evidence Set 
Probability Mission 1 Mission 2 Mission 3 Mission 4 

Yes Yes Yes Yes 24% 
Yes Yes Yes No 0% 
Yes Yes No Yes 0% 
Yes No Yes Yes 36% 
No Yes Yes Yes 0% 
Yes Yes No No 16% 
Yes No Yes No 0% 
No Yes Yes No 0% 
Yes No No Yes 0% 
No Yes No Yes 0% 
No No Yes Yes 0% 
Yes No No No 24% 
No Yes No No 0% 
No No Yes No 0% 
No No No Yes 0% 
No No No No 0% 
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• Script 52.  Posterior averaged predicted failure rate using heritage data. 
 

 
• Figure 4-98.  DAG representing Script 52. 
 

Four possibilities considered: 
1.  All four mission applicable, probability = 0.24 
2.  Second mission not applicable, probability = 0.36 
3.  Linked missions (3 and 4) not applicable, probability = 0.16 
4.  Only first mission applicable, probability = 0.24 
 
model { 
 for(i in 1:4) { 
  x[i] ~ dpois(mean.pois[i]) 
  mean.pois[i] <- lambda[i]*time[i] 
  lambda[i] ~ dgamma(0.5, 0.0001)  # Jeffreys prior 
 } 
lambda.avg <- lambda[r]    # Average posterior distribution 
r ~ dcat(p[]) 
# Formulate datasets 
x[1] <- sum(flight.failure[]) 
time[1] <- sum(flight.time[]) 
x[2] <- flight.failure[1] + sum(flight.failure[3:4]) 
time[2] <- flight.time[1] + sum(flight.time[3:4]) 
x[3] <- sum(flight.failure[1:2]) 
time[3] <- sum(flight.time[1:2]) 
x[4] <- flight.failure[1] 
time[4] <- flight.time[1] 
} 
 
data 
list(flight.failure=c(0, 1, 0, 0), flight.time=c(6.41E+5, 5.98E+6, 2.73E+4, 2.73E+4), p=c(0.24, 
0.36, 0.16, 0.24)) 
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4.12 Case Study 
Earlier, in Chapter 3, we described a thermal control system to be used as a case study.  This ATCS 
architecture is shown in Figure 4-99.  In this section, we will follow the system through its hypothetical 
life cycle, as defined in NPR 7120.5D “NASA Space Flight Program and Project Management 
Requirements,” in order to further demonstrate the methods described in Section 4. 

• Approval (initial design) 
• Implementation (final design and modifications)  
• Integration (final testing) 
• Operation 
• Decommissioning 

 

 
• Figure 4-99.  Active thermal control system diagram. 

 
4.12.1  Case Study Initial Design Phase 
During the initial formulation of even a relatively simple system such as the ATCS, a variety of 
information is known to different degrees.  For example, we may know that we need “a” system to 
remove heat loads, but we may initially have only a vague idea as to specifics of the system.  
Conversely, at the same time, we may know that the heat removal system will have one or more 
radiators – we may have years of experience applicable to radiator performance.  In any case though, 
we need to make inferences on the ATCS as it evolves from design to operation and these inferences 
should reflect what is known (and, by definition, what is not known). 
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Our initial design specification may simply reflect a set of minimal conditions for successful functionality 
of the ATCS, for example: 

The ATCS should be a dual-loop system capable of removing expected heat loads in the crew 
module. 

 
Given this limited specification and general knowledge of the design and operation of cooling systems, 
one might propose modeling the ATCS at the initial design phase as shown in Figure 4-100. 
 

Refrigerant
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Radiator
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Power Control

 
• Figure 4-100.  Initial simplified diagram for the ATCS 

 
In this design, we have two supporting systems (power and control) and five components.  For each of 
these components or supporting systems, we need three types of information: 

• Engineering information 
• Aleatory models 
• Data 
 

We will discuss a variety of differing degrees of information for these three categories as we evaluate 
each support system and component. 
 

4.12.1.1 DC Power Subsystem—The unreliability of the DC power subsystem affects the 
unreliability of the ATCS.  This subsystem may eventually be modeled as a more detailed system itself, 
but initially we do not have detailed information or design requirements for this subsystem.  
Consequently, we will represent power failure as a single failure entity (an undeveloped event in a fault 
tree of the ATCS) and collect information on the subcomponents most likely used in a full design. 
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The failure taxonomy for the DC power subsystem is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: DC Power 
                 └ Failure Mode: Fails to Operate 
                    └ Failure Mechanism:  Any Active Operational Failure in Time 
                       └ Failure Cause:  Any 

 
If we return to Figure 4-99 for guidance, we see that the component type is “operating” and the failure 
type is “fails to operate.”  This path through the flow chart is shown in Figure 4-101.  We are up to the 
question of data type.  For the DC power subsystem, we do not have data available.  One may believe 
that, at this point, we are finished with the inference process.  However, following the process described 
in this report, even in the case of no data, proves useful for the following reasons: 

• Knowledge of the types of data for future inference (in this case either failure times or failure 
counts and operating time) will help to guide data collection specific to this component. 

• Knowledge of the types of aleatory models (in this case either Poisson or exponential) will help 
to guide the probabilistic modeling of the DC power system in the ATCS within the context of a 
PRA. 

• Knowledge of the prior distribution will provide the epistemic uncertainty applicable to the PRA 
probabilistic modeling for the DC power subsystem. 

 
Not having data results in a Bayesian inference process where the posterior is equivalent to the prior.  
This posterior, though, is what is used in the PRA for the initial design. 
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• Figure 4-101.  Inference flow diagram path for the DC power subsystem components inference 
process. 
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Step 1:  The prior 
We gather information related to DC power systems.  We know that a DC power system consists of 
parts such as fuses, wiring, buses, batteries, and breakers.  Engineering information is collected and 
includes: 

• Fuse failures from GSFC database indicate 2 failures in 64,163 hours of satellite operation. 
• Fuse failures from the NUCLARR database indicate 6 failures in 48,577,000 hours of 

energized operation.  The estimates provided by these two sources are quite different, so the 
information on the fuses cannot simply be pooled. 

• GSFC AC bus data indicates zero failures in 64,163 hours of satellite operation. 
• Low voltage (<600 volt) AC bus fails to operate, NUCLARR, zero failures in 2,170,000 hours of 

energized operation.  With zero observed failures, the bus information can be pooled. 
• DC power circuit breaker spurious transfer open, NUCLARR, zero failures in 916,000 hours of 

energized operation. 
• DC power circuit breaker (indoor), IEEE-Std 500-1984, failures in 106 hours (low = 0.02, 

recommended = 0.14, high = 0.65). Since this is a standard, the information can be interpreted 
as a failure rate with the values of mean = 1.4E-7 per hour, lower bound = 2.0E-8 per hour and 
upper bound = 6.5E-7 per hour. 

• Dry cell battery failure, IEEE-Std 500-1984, failures in 106 hours (recommended = 27.0, high = 
31.0).  Again, this is a standard which can be interpreted as a failure rate, this time omitting the 
zero value lower bound (mean = 2.70E-5 per hour, upper bound = 3.10E-5). 

• Lithium battery failure, NASA non-proprietary data, 1.5x10-5 per hour. 
 

Step 2:  The data 
Operational data on the DC power system is not available.  Consequently, the posterior result for the 
failure-to-operate inference process will be equivalent to the prior information. 
 
Step 3:  Bayesian calculation to estimate DC power component failure rates 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) 
contains a single unknown parameter. 

 The prior information is heterogeneous for the fuses and homogeneous for the buses.  It is 
considered known with certainty for the fuses and buses but there is epistemic uncertainty for 
the circuit breaker and battery failure counts. 

 The fuse and the bus sets of information are both presented as failures over total operating 
hours. Script 53 shows the fuse analysis.  Running this script for the fuses in the usual manner 
produces the results shown in Figure 4-103. 

 
The categorical distribution is used to give a weighted value to the priors based on perceived 
applicability to the current model. Note that the result for lambda.avg is biased towards lambda[1] by 
giving the GSFC satellite information a 0.85 weight when compared to the NUCLARR information.  
This weighting was chosen due to the more applicable environment of the in-orbit operation.  The 
NUCLARR information is weighted at 0.15 and the sum of the weights must equal 1.0. 
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• Script 53. WinBUGS script for two weighted priors with failures in time of operation. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Figure 4-102.  DAG representing Script 53. 
 

 
• Figure 4-103.  ATCS fuse nodes results. 

 

Component : ATCS DC Power System Fuses 
Model  : Poisson 
Prior  : Noninformative 
subscript 1 = Fuses in GSFC, 2 failures in 64,163 hr 
subscript 2 = Fuses in NUCLARR, 6 failures in 48,577,000 hr 
 
model { 
for (i in 1:2) { 
x[i] ~ dpois(mean.pois[i]) 
mean.pois[i] <- lambda[i] * time[i] # Poisson parameter 
lambda[i] ~ dgamma(0.5, 0.0001) # Jeffreys Priors 
} 
lambda.avg <- lambda[r]  # Assigning weights to information 
r ~ dcat(p[]) 
} 
 
data 
list(x= c(2, 6), time= c(64163, 48577000), p= c(0.85, 0.15)) 

lambda[i]

x[i]

Jeffreys Prior
Gamma

0.5 0.0001
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p[i]

r

For i = 1 to 2

time[i]
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Even though both sources of bus information contain zero failures, and thus could be pooled, 
NUCLARR contains much more information than does the GSFC data.  Pooling the data may lead to 
an unrealistically low estimate and an overly narrow uncertainty range if the NUCLARR experience is 
not very representative of in-orbit operation.  Thus, the analyst may still wish to weight these two 
information sources in the same manner as for the fuses above.  In this case, Script 53 can be used for 
the bus component as well.  Changing the information to the bus data provides a mean of 6.7 × 10-6 per 
hour with a 90% credible interval of 1.0 × 10-8 to 2.8 × 10-5 per hour.  This is compared to a mean of 2.2 
× 10-7 per hour and 90% credible interval of (8.8 × 10-10, 8.6 × 10-7) from simply pooling the two sources. 
 
The circuit breaker information is both in the form of a number of failures in a time period and a failure 
rate with a mean and an upper and lower bound.  Script 54 shows the circuit breaker analysis with a 
0.60 weight given to the NUCLARR database over the standard due to the actual runtime of the 
NUCLARR information.  Running this script in the usual manner results in a lambda.avg of 4.1 × 10-7 
per hour with a 90% credible interval of 6.0 ×10-9 to 1.7 ×10-6 per hour. 
 

• Script 54. WinBUGS script for failures in a time period mixed with a lognormal of a given mean with upper 
and lower bounds. 

Component : ATCS DC Power System Circuit Breakers 
Model  : Poisson / Lognormal 
Prior  : Informative, Uncertain 
 subscript 1 = DC Power Circuit Breaker,NUCLARR, 0 failures in 916,000 hr. operation 
 subscript 2 = DC Power Circuit Breaker IEEE-Std 500-1984 (lower = 2.0E-8 per hour,  
   high = 6.5E-7 per hour) 
model { 
x ~ dpois(mean.pois) 
mean.pois <- lambda[1] * time  # Poisson parameter 
lambda[1] ~ dgamma(0.5, 0.0001) # Jeffreys priors for Poisson 
lambda[2] ~ dlnorm(mu, tau)  # Lognormal prior for given upper and lower limit 
mu <- log( sqrt(upper * lower)) 
tau <- pow(log(sqrt(upper/lower))/1.645, -2) 
lambda.avg <- lambda[r]  # Assignment of weights 
r ~ dcat(p[])    
} 
 
data 
list(p=c(0.60, 0.40), lower= 2.0E-8, upper = 6.5E-7, x= 0, time= 916000)  
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• Figure 4-104.  DAG representing Script 54. 
 
The battery has two information sources: one is presented as a failure rate with an assumed lognormal 
error factor of 10, and the other as a mean failure rate with an upper bound.  Script 55 shows the 
analysis for the batteries, giving a 75% weight to the NASA information over the IEEE standard.  
Running the script in the usual manner results in a mean value for lambda.avg of 1.2 × 10-5 per hour 
with a 90% credible interval of 1.0 ×10-8 to 3.0 ×10-5 per hour. 
 

• Script 55. WinBUGS script for failures in a time period and a lognormal (mean and upper bound) given. 
 

Component : ATCS DC Power System Batteries 
Model  : Lognormal 
Prior  : Informative, Uncertain 
 subscript 1 = Dry cell battery IEEE-Std 500-1984 (recommended = 2.70E-5 per hour, 
   high = 3.10E-5 per hour) 
 subscript 2 = Lithium battery failure, NASA non-proprietary data 1.5E-5 per hour. 
 
model { 
lambda[1] ~ dlnorm(mu[1], tau[1]) # Lognormal prior with mean and upper limit 
mu[1] <- log(mean[1]) - pow(sigma, 2)/2 
tau[1] <- pow(sigma, -2) 
sigma <- (2 * 1.645 + sqrt(4*pow(1.645,2) + 8*log(mean[1]/upper)))/2 
lambda[2] ~ dlnorm(mu[2], tau[2]) # Lognormal prior with mean and error factor 
mu[2] <- log(mean[2]) - pow(log(EF/1.645),2)/2 
tau[2] <- pow(log(EF)/1.645,-2) 
lambda.avg <- lambda[r]  # Assignment of weights 
r ~ dcat(p[]) 
} 
 
data 
list(p=c(0.25, 0.75), mean=c(2.70E-5, 1.5E-5), upper = 3.10E-5, EF = 10.0)  
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• Figure 4-105.  DAG representing Script 55. 

 
4.12.1.2 Control Subsystem—The control subsystem unreliability is directly related to the 

components of the Avionics system.  The avionics package of the ATCS is yet to be determined, but 
there are years of data based upon the performance of similar avionics systems used under similar 
conditions to use as a baseline analysis.  We will again estimate applicable subsystem performance. 

 
The failure taxonomy for the Control Subsystem of the ATCS is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: Control 
                 └ Failure Mode: Fails to Operate 
                    └ Failure Mechanism:  Communication Break, Control Failure 
                       └ Failure Cause:  Hardware Connection Loss, Software, Hardware Damage 

 
Referring to Figure 4-99 the avionics control system has a direct impact on operation of the pump and 
mixing valve.  The control system continually monitors and adjusts the performance of the ATCS; 
therefore it is continually operating.  It also has a single point of failure and the failure mode is again 
“Fails to Operate”.  This fits the inference flow diagram presented in Figure 4-101.  
 
Once again, since there are no data, the posterior is equal to the prior. 
 

mu[2] tau[2]

Lognormal Prior

mean[2] EF

mu[1] tau[1]

Lognormal Prior

mean[1] upper

lambda[1] lambda[2]lambda.avg

p[1-2]r



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS    

 
CASE STUDY 164

Step 1:  The priors 
We gather information on the Avionics Control systems relating to the ATCS control.  A NASA non-
proprietary database provides us with specific data for several subsystems used in prior spacecraft, any 
of which could cause a failure of the ATCS control: 

• Crew Critical Computer with a mean failure rate of 2.36 × 10-5 per hour. 
• Wiring failures noted with a mean failure rate of 2.07 ×10-7 per hour. 
• Electronic Control Unit with a mean failure rate of 1.26 ×10-5 per hour. 

 
GSFC information provides the following: 

• Data Processing Units related to thermal control never failed in 64,163 hours 
• Wiring failures occurred twice in 64,163 hours 
 

With no uncertainty provided for the failure rate information, a lognormal distribution with a conservative 
error factor of ten will be used to represent the uncertainty for each source.  Also, the data processing 
unit can be used for both the crew critical computer and the electronic control unit. 
 
Step 2:  The data 
Operational data on the Control System is not available.  Consequently, the posterior result for the 
failure-to-operate inference process will be equivalent to the prior information. 
 
Step 3:  Bayesian calculation to estimate Control System failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous. 
 
All components analyzed for the ATCS Control System have the same information input format:  one is 
in terms of number of failures in an operating time and another is expressed as a failure rate (with an 
assumed lognormal error factor).  Script 56 shows the analysis of the crew critical computer, but the 
same script can be used for the other two components by substituting their information into the proper 
lines.  The weighting of the information is chosen as equally important although the script lines are 
there to change the importance if the analyst should see fit to do so.  The weights must sum to a value 
of one.   Table 14 presents the three component’s results. 
 
• Table 14. ATCS Control System component analysis values. 

Component mean, per hr 90% Credible Interval, per hr 
Crew Critical Computer 1.6 × 10-5 1.3 ×10-7 to 5.6 ×10-5 
Electronic Control Unit 1.0 ×10-5 1.2 ×10-7 to 3.7 ×10-5 

Wiring 2.0 ×10-5 1.3 ×10-8 to 7.2 ×10-5 
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• Script 56. WinBUGS script for use with failures in time period with uninformed prior and a lognormal prior. 
 

 
• Figure 4-106.  DAG representing Script 56. 

 
 

4.12.1.3 Radiator—The unreliability of the radiator of the ATCS as a part of the system requires 
two analyses. One analysis must determine the unreliability of the radiator in an operating state and the 
other must determine the unreliability of the radiator in a standby mode. 

 

Component : ATCS Control System Crew Critical Computer 
Model  : Poisson 
Prior  : Uninformative 
  subscript 1 = Data Processing System GSFC, 0 failures in 64,163 hr 
  subscript 2 = Crew Critical Computer in NASA non-proprietary database 
   mean= 2.36E-5 per hr, EF = 10 
model { 
x ~ dpois(mean.pois) 
mean.pois <- lambda[1] * time  # Poisson parameter for prior 
lambda[1] ~ dgamma(0.5, 0.0001) # Jeffreys Priors 
lambda[2] ~ dlnorm(mu, tau) # Lognormal prior with mean and error factor given 
mu <- log(mean) - pow(log(EF)/1.645, 2)/2 
tau <- pow(log(EF)/1.645, -2) 
lambda.avg <- lambda[r]  # Weighted averaging 
r ~ dcat(p[])     
} 
 
data 
list(x=0, time= 64163, mean= 2.36E-5, EF=10.0, p= c(0.50, 0.50)) 
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The failure taxonomy for the Radiators of the ATCS is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: Radiator 
                 └ Failure Mode: Fails to Operate (Loop A), Fails on Demand (Loop B) 
                    └ Failure Mechanism:  Leak or Plug 
                       └ Failure Cause:  MMOD, vibration, corrosion, internal debris 

 
Referring to Figure 4-99 for guidance, we note that there are two loops of parallel radiators within the 
system. The radiator is assumed to be made of aluminum (as opposed to the carbon models under 
consideration) and the coolant fluid used is propylene glycol.  In Loop A the component type is 
“operating” and the failure type is “fails to operate.”  In case this loop fails then the backup Loop B is 
chosen by the crew.  Loop B is kept in stagnant standby; therefore its failure mode is “fails on demand”.  
The “fails on demand” flow chart is shown in Figure 4-107.  The “fails to operate” path through the flow 
chart is identical to that shown in Figure 4-101. 
 

 
• Figure 4-107.  Inference flow diagram path for the Loop B radiator 

 
Step 1:  The prior 
We gather information related to aluminum radiator systems running propylene glycol and applicable 
information about radiator failures in space. 
 
Assume data is found that a fleet of glycol-based radiators operated for a combined 438,000 hours over 
a 2 year period with 8 radiator failures. 
 
For analysis purposes, we will treat the four-radiator system of the space shuttle as one operational 
radiator. Assume that a leak determined to be caused by Micro Meteoroid Orbital Debris (MMOD) in 
turn caused one radiator failure in 119 flights.  The applicability of the information as compared to other 
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information is handled through the Bayesian update by assigning weights which must sum to one. Use 
an average length of a shuttle mission of 11 days (264 hours). 
 
Assume that the Space Shuttle radiator prototype testing resulted in 1,000 total demands with zero 
failures. 
 
Assume the International Space Station has accumulated 1,500 thermal redundant system checks 
without failure.  
 
Step 2:  The data 
No information can be considered operational data for the radiator at this point in time. 
 
Step 3:  Bayesian calculation to estimate the individual operational Radiator failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and is only partially applicable. 
 

The Bayesian estimation of the failure rate for the radiator in operation can be performed with Script 57.  
Running this script in the usual manner produces a value for lambda.avg of 4.2 × 10-5 per hour with a 
90% interval of (6.5 ×10-6 to 1.2 ×10-4) per hour. 

• Script 57. WinBUGS script for estimating the failure rate of an operating component (ATCS Radiator) 
based upon multiple priors. 
 
 
 

Component : ATCS Radiator Loop A (fails during operation) 
Model           : Poisson 
Prior             : Noninformative 
 subscript 1 = Space Shuttle radiator MMOD (1 failure in 119 flights, 11 hr avg flight) 
 subscript 2 = Terrestrial aluminum radiators (8 failures in 483,000 hr) 
   
model { 
 for(i in 1:2) { 
  lambda[i] ~ dgamma(0.5, 0.0001) # Jeffreys priors for lambda 
  x[i] ~ dpois(mean.pois[i])  # Poisson likelihood 
  mean.pois[i] <- lambda[i] * time[i] # Poisson mean 
 } 
lambda.avg <- lambda[r]   # Weighted average prior 
r ~ dcat(p[])     # Assignment of weights 
} 
 
data 
# Weights and observed failures c(Shuttle, Terrestrial) 
 
list(p=c(0.8, 0.2), x=c(1,8), time=c(31416, 438000)) 
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• Figure 4-108.  DAG representing Script 57. 
 

Step 4:  Bayesian calculation to estimate the on-demand Radiator failure probability 
The Bayesian estimation of the failure probability upon demand of the standby ATCS Radiator can be 
performed with Script 58.  The weighting of the Shuttle and ISS information is considered equal, so the 
weights are assigned as 0.50 each.  Running this script in the usual manner produces a mean demand 
failure probability of failure of 4.1 × 10-4 with a 90% interval of 1.6 ×10-6 to 1.6 ×10-3.  Note the wide range 
of the interval due to the sparse testing data. 

• Script 58. WinBUGS script for estimating the probability of failure of a standby component (ATCS Radiator) 
based on priors. 
 
 
 

Component  : ATCS Radiatior Loop B (fails on demand) 
Model  : Binomial 
Prior  : Noninformative 
 subscript 1: Prototype demand testing (1000 weekly demands 0 failures) 
 subscript 2: ISS thermal backup radiator checks (1500 demands, 0 fails) 
 
model { 
 for (i in 1:2) { 
  x[i] ~ dbin(p[i],n[i]) # Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) # Jeffreys Priors, Conjugate beta prior distribution for p 
 } 
p.avg <- p[r]   # Posterior average 
r ~ dcat(q[])   # Assignment of weights 
} 
 
data 
list(x=c(0, 0), n= c(1000, 1500), q=c(0.50, 0.50)) # Priors information and weights 
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• Figure 4-109.  DAG representing Script 58. 
 

4.12.1.4 Control Valve—The unreliability of the Control Valve or three-way mixing valve 
(TWMV) of the ATCS affects the unreliability of the ATCS.  

 
The failure taxonomy for the Control Valve of the ATCS is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: Control Valve 
                 └ Failure Mode: Fails to Operate 
                    └ Failure Mechanism:  Sticky Operation or Plug 
                       └ Failure Cause:  Vibration, corrosion, internal debris 

 
Referring to Figure 4-99 for guidance, we note that the control valve is central to the operation of the 
system and that there is not a redundant component.  It is always in operation and receives its power 
from the DC Power Source and its control signals from the Avionics.  One prior source is expressed in 
terms of mean time between failures (MTBF) and the other sources are expressed as failure counts in 
hours of operation.    MTBF data can be expressed through a normal distribution1 using the MTBF as 
the mean and manipulating the confidence level value algebraically to determine the variance.  The 
MTBF can then be translated into a failure rate for use in the Bayesian updating process.   
 
Step 1:  The prior 
We gather information related to three-way mixing valves from three different sources: 

• Assume information is found on three-way mixing valves used in commercial heating and 
cooling applications in terms of a MTBF of 85,000 hours with a 98% lower confidence level of 
79,000 hours. 

• Further assume that there have been no three-way mixing valve failures in 1309 hours of 
Space Shuttle operation including 4 mixing valves (5,236 valve-hours). 

                                                      
1 A normal distribution simplifies the algebra significantly.  As long as the epistemic uncertainty in the MTBF is small, as it is here, 
the normal distribution will not cause problems associated with MTBF < 0. 
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• From the NUCLARR database, 2 motor-operated globe valves (similar in design to the three-
way mixing valve) failed in 1,270,000 hours of operation. 
 

Step 2:  The data 
Operational data on the Control Valve is not available.  Consequently, the posterior result for the failure-
to-operate inference process will be equivalent to the prior information. 
 
Step 3:  Bayesian calculation to estimate the individual Control Valve failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and is known with certainty. 
 

In the case of the ATCS control valve, we have prior information that is not in a homogeneous form.  
Script 59 constructs a prior that is a weighted average of the three information sources, using a 
weighting factor of 0.60 for the Space Shuttle data versus 0.20 for both the NUCLARR motor-operated 
globe valves and the terrestrial heating and cooling valves.  The epistemic uncertainty for the  
terrestrial three-way mixing valve is described by a normal distribution with the stated mean and 98% 
lower limit.  The results for lambda.avg are a mean of 6.0 × 10-5 hr-1 with 90% interval of (5.3 ×10-7 to 
2.9 ×10-4) hr-1. 
 

• Script 59.  WinBUGS script for estimation of failure rate from Poisson and MTBF mixed priors. 
 

Component : ATCS Control Valve 
Model          : Mixed data (Poisson and MTBF as a normal distribution) 
Prior            : Noninformative 
  subscript 1 = Space Shuttle use (0 failures in 5,236 hr) 
  subscript 2 = NUCLARR motor-operated globe valves (2 failures in 1,270,000 hr) 
  subscript 3 = Terrestrial heating and cooling 3-way mixing valves (MTBF=85,000 
   hr, 79,000 hr 98% lower confidence limit) 
 
model { 
 for(i in 1:2) { 
  lambda[i] ~ dgamma(0.5, 0.0001) # Jeffreys priors 
  x[i] ~ dpois(mean.pois[i]) 
  mean.pois[i] <- lambda[i]*time[i]  # Poisson mean  
 } 
MTBF ~ dnorm(mu, tau)    # MTBF to normal data 
mu <- 85000     # MTBF mean from manufacturer 
sigma <- (mu - 79000)/2.05   # 98% probabiliy level variance 
tau <- pow(sigma, -2) 
lambda[3] <- 1/MTBF    # MTBF to lambda 
lambda.avg <- lambda[r]   # Weighted lambda average 
r ~ dcat(p[]) 
} 
 
data 
#Weights and observed failures c(Shuttle, NUCLARR, Terrestrial) 
list(x=c(0,2), time=c(5236, 1.27E+6), p=c(0.6, 0.2, 0.2)) 
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• Figure 4-110.  DAG representing Script 59 

 
4.12.1.5 Pump—The unreliability of the Pump is integral to the reliability of the ATCS. The 

failure taxonomy for the Pump of the ATCS is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: Pump 
                 └ Failure Mode: Fails to Operate 
                    └ Failure Mechanism:  Reduced or no flow 
                       └ Failure Cause:  Leak, cavitation, impeller damage 

 
Referring to Figure 4-99 for guidance, we note that the pump is a centrifugal design.  There is not a 
redundant component; it is always in operation, receives its power from the DC Power Source and its 
control signals from the Avionics.  The information we will use for the priors in this case is similar to the 
control valve, one prior source is expressed in terms of MTBF and the other sources are in terms of 
failure counts in hours of operation.   
 
Step 1:  The prior 
We gather information related to electric centrifugal pumps of the size used in the ATCS. 
Assume the manufacturer’s data for the proposed pump lists a Mean Time Between Failure (MTBF) of 
50,000 hours with a 95% lower confidence level of 42,000 hours.  
 
Further assume that there have been no ATCS pump failures in 31416 hours of Space Shuttle 
operation (4 pumps per mission = 125,664 pump-hours). 
 
Step 2:  The data 
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Operational data on the pump is not available.  Consequently, the posterior result will be equivalent to 
the prior information. 
 
Step 3:  Bayesian calculation to estimate the individual Pump failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is not homogeneous and is uncertain. 
 The observed data are homogeneous and are known with certainty. 

 
The shuttle data is considered more relevant than the manufacturer’s estimate, so Script 60 constructs 
a weighted-average prior, again assuming a normal distribution around the MTBF estimate from the 
manufacturer. Running this script in the usual manner gives a posterior mean for lambda.avg of 1.4 × 
10-5 per hour, with a 90% interval of 1.6 ×10-6 to 2.9 ×10-5 per hour. 
 

• Script 60. WinBUGS script for ATCS Pump using multiple data with times to failure and MTBF. 
 

Component : ATCS Pump 
Model  : Poisson / MTBF data (normal distribution assumption) 
Prior  : Noninformative 
  subscript 1 = Space Shuttle data (1 failures in 125,664 total hr) 
  subscript 2 = Manufacturer’s estimate (50,000 hr MTBF mean, 42,000 hr MTBF,  
   95% CL) 
 
model { 
x.sh ~ dpois(mean.sh)   # Poisson likelihood of Space Shuttle data 
mean.sh <- lambda[1] * time.sh 
lambda[1] ~ dgamma(0.5, 0.0001) # Jeffreys priors for lambda 
MTBF ~ dnorm(mu,tau)   # Manufacturer's estimate 
mu <- 50000    # MTBF mean 
sigma <- (mu - 42000)/1.64  # 95% lower probability value 
tau <- pow(sigma, -2) 
lambda[2] <- 1/MTBF   # MTBF to lambda 
lambda.avg <- lambda[r]  # Weighted average prior 
r ~ dcat(p[]) 
} 
 
data 
list(p=c(0.80, 0.20), x.sh=1, time.sh=125664) 
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• Figure 4-111.  DAG representing Script 60. 

 
4.12.1.6 Refrigerant Tank—The unreliability of the refrigerant tank of the ATCS is integral to the 

unreliability of the system. The refrigerant tank is a pressure vessel that must meet ASME standards and 
is thus expected to be very reliable.  The failure taxonomy for the Refrigerant Tank of the ATCS is: 

Mission Directorate:  Exploration Systems Mission Directorate 
└ Program:  IntraSolar Exploration 
   └ Project:  New Manned Vehicle (NMV) 
      └ Subsystem: Crew Module 
           └ Subsystem: Active Thermal Control 
              └ Subsystem: Refrigerant Tank 
                 └ Failure Mode: Fails to Operate Maintain Pressure 
                    └ Failure Mechanism:  Leak 
                       └ Failure Cause:  MMOD, cracked weld, poor fitting connection 

 
Step 1:  The prior 
Information related to refrigerant tanks and pressure vessels similar to those used in the ATCS: 
Savannah River Generic Database records for pressurized tanks indicate a 1.0 x 10-8 hour mean with a 
lognormal error factor of 10. 
 
Tanks that are pressurized have the following data in NUCLARR: 

Mean Median EF Failures Cumulative Hrs. 
 9.3E-10 8.0 0 2.52E+8 

1.6E-8  2.0 4 2.52E+8 
2.6E-9  3.3 1 3.80E+8 
1.1E-8  2.0 4 3.80E+8 
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Step 2:  The data 
In the Refrigerant Tank case, there is operational information from space applications that could be 
considered applicable enough to be treated as data in a Bayesian update, or this information could be 
factored into a weighted-average prior, along with the prior information listed above.  Both types of 
analysis are illustrated to illustrate the similarity of results. 
 
Operational records indicate 1,540,000 hours of operation without a refrigerant tank failure. 
 
A manufacturer of a compressor-based cooling system lists 49 machine years (429,240 hours) with 0 
failures in a life test and 38 machine years (332,880 hours) with 1 failure in operational orbit.  The 
failure was not attributable to the refrigerant tank. 
 
Step 3:  Bayesian calculation to estimate the individual Refrigerant Tank failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and uncertain. 
 The observed data are homogeneous and are known with certainty. 

 
Something to consider when constructing the analysis is whether to pool information.  The 
manufacturer’s data includes both operational and life testing hours of operation all with zero failures.  
In general, applicable zero failure data over long time periods can be pooled and the total time of 
operation of 762,120 hours with zero failures is used. 
 
The importance of the operational data is considered greater than the manufacturer’s data.  Also, the 
Savannah River Generic Database information might be considered of greater importance than the 
NUCLARR information. When considering the weighting of the satellite system information versus the 
terrestrial information, the satellite information carries a much greater importance.  The actual weights 
assigned are up to the analyst. In this case, it was decided to assign a lower weight to the terrestrial 
information.  Of course, depending on the placement of the component and other factors, a decision 
could be made in a real-life scenario to omit terrestrial information as completely not applicable to low 
ambient pressure operation of pressurized tanks. 
 
The model can be developed in one of two ways.  One is to consider the GSFC and the manufacturer’s 
information as data and perform a Bayesian update using them as such, taking the posterior result and 
using it in a weighted average comparison to the lognormal priors.  This is illustrated in Script 61.  The 
alternative model is to consider all the information as priors and average the resulting lambdas as is 
illustrated in Script 62.  Running these two models in the usual manner gives nearly identical results: 
 

Script 61: lambda.avg = 3.3 x 10-7 per hour with a 90% interval of 7.6 x 10-10 to 1.4 x 10-6 per hour 
 
Script 62: lambda.avg = 3.2 x 10-7 per hour with a 90% interval of 7.4 x 10-10 to 1.4 x 10-6 per hour 
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• Script 61. WinBUGS script for ATCS Refrigerant Tank using posterior of data sources mixed with 
lognormal priors for posterior lambda.out. 
 
 

Component:  : ATCS Refrigerant Tank 
Model  : Poisson 
Prior  : Informative Mixture Prior 
  subscript 1 = Satellite records (1.54E+6 hr, 0 refrigerant tank failures) 
  subscript 2 = Satellite Cooling System manufacturer (762,120 hr, 0 failures) 
  subscript 3 = Savannah River Generic Database (1.0E-8 per hr mean, EF = 10.0) 
  subscript 4 = NUCLARR tank data (9.3E-10 median, 8.0 EF, 1.6E-8 mean, 2.0 EF,  
    2.6E-9 mean, 3.3 EF, 1.1E-8 mean, 2.0 EF) 
 
model { 
 for (i in 1:n) { 
  x[i] ~ dpois(mean.pois[i]) # Poisson distribution for number of events 
  mean.pois[i] <- lambda.p[i] * time[i] # Poisson parameter 
  lambda.p[i] ~ dgamma(0.5, 0.0001) # Jeffreys prior distribution for lambda 
 } 
lambda[6] <- lambda.p[r]  # Weighted Poisson lambda posterior average 
r ~ dcat(p[]) 
 
# Lognormal prior with mean and error factor given 
for (j in 1:4) { 
  mu[j] <- log(prior.mean[j]) - pow(log(prior.mean.EF[j])/1.645,2)/2 
  tau[j] <- log(prior.mean.EF[j])/1.645, -2) 
 } 
 
# Lognormal prior with median and error factor given 
mu[5] <- log(prior.median) 
tau[5] <- pow(log(prior.med.EF)/1.645, -2) 
 
for (k in 1:5) { 
  lambda[k] ~ dlnorm(mu[k], tau[k]) 
 } 
lambda.avg <- lambda[s] 
s ~ dcat(q[]) 
 
# Define Weights 
p[1] <- (0.70/0.85)  # Weight for operational records 
p[2] <- (1-(0.70/0.85))  # Weight for Sat Cooling System 
q[1] <- 0.15 * 0.60  # Weight for Savannah River Database info 
for (l in 2:5) {  # Weights for NUCLARR information 
 q[l] <- (0.15 * 0.40)/4 
 } 
q[6] <- 0.85   # Weight for GSFC and SCS combined 
} 
 
data 
list(x=c(0,0,0), time=c(1.54E+6, 762120), n=2, prior.median=9.3E-10, 
  prior.med.EF=8.0, prior.mean=c(1.0E-8, 1.6E-8, 2.6E-9, 1.1E-8), 
 prior.mean.EF=c(10.0, 2.0, 3.3, 2.0)) 
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• Script 62. WinBUGS script for ATCS Refrigerant Tank using all information as priors. 
 

Component : ATCS Refrigerant Tank 
Model  : Poisson 
Prior  : Informative Mixture Prior 
 subscript 1 = Satellite records (1.54E+6 hr, 0 refrigerant tank failures) 
 subscript 2 = Satellite Cooling System manufacturer (762,120 hr, 0 failures) 
 subscript 3 = Savannah River Generic Database (1.0E-8 per hr mean, EF = 10.0) 
 subscript 4 = NUCLARR tank data (9.3E-10 median, 8.0 EF, 1.6E-8 mean, 2.0 EF,  
   2.6E-9 mean, 3.3 EF, 1.1E-8 mean, 2.0 EF) 
 
model { 
# Update Jeffreys prior with past data from GSFC and satellite cooling system records 
 for(i in 1:2) { 
  x[i] ~ dpois(mean.pois[i]) 
  mean.pois[i] <- lambda[i]*time[i] 
  lambda[i] ~ dgamma(0.5, 0.0001) #Jeffreys prior 
 } 
# Incorporate SRL and NUCLARR information 
 for(j in 3:7) { 
  lambda[j] ~ dlnorm(mu[j], tau[j]) 
 } 
# SRL information 
mu[3] <- log(SRL) - pow(log(EF.SRL)/1.645, 2)/2 
tau[3] <- pow(log(EF.SRL)/1.645, -2) 
 
# NUCLARR information 
mu[4] <- log(NUCLARR[1]) 
tau[4] <- pow(log(EF.NUCLARR[1])/1.645, -2) 
mu[5] <- log(NUCLARR[2]) - pow(log(EF.NUCLARR[2])/1.645, 2)/2 
tau[5] <- pow(log(EF.NUCLARR[2])/1.645, -2) 
mu[6] <- log(NUCLARR[3]) - pow(log(EF.NUCLARR[3])/1.645, 2)/2 
tau[6] <- pow(log(EF.NUCLARR[3])/1.645, -2) 
mu[7] <- log(NUCLARR[4]) - pow(log(EF.NUCLARR[4])/1.645, 2)/2 
tau[7] <- pow(log(EF.NUCLARR[4])/1.645, -2) 
 
#Construct overall mixture prior for lambda 
lambda.avg <- lambda[r] 
r ~ dcat(p[]) 
# Define weights 
p[1] <- 0.7   # Weighting for operational records 
p[2] <- 0.15    # Weighting for satellite data 
p[3] <- 0.15*0.6    # Weighting for SRL information 
 for(k in 4:7) { 
  p[k] <- 0.15*0.40/4  # Weighting for each piece of NUCLARR information 
 } 
} 
 
data 
list(x=c(0, 0), time=c(1.54E+6, 762120), SRL=1.0E-8, EF.SRL=10, NUCLARR=c(9.3E-10, 
1.6E-8, 2.6E-9, 1.1E-8), EF.NUCLARR=c(8, 2, 3.3, 2)) 
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• Figure 4-112.  DAG representing Script 61. 

 

 
• Figure 4-113.  DAG representing Script 62. 
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4.12.2  Case Study Implementation (Final Design and Modification) Phase 
After the initial design acceptance and prior information has been evaluated, the final design takes shape 
and performance characteristics are analyzed.  The Bayesian updating analysis can cover anything from 
load capacity of cabling to prototype testing of complete subsystems. 
 

4.12.2.1 Radiator—The ATCS radiator has reached a final design and there are design 
differences from the ones used in the priors to consider and prototype testing data to include.  Data from 
an additional four Space Shuttle missions are also available. 
 
Step 1:  The priors 
Of the operational radiator priors, the terrestrial prior is identical to the Approval Phase analysis but the 
Space Shuttle prior is modified for two reasons.  One is simply that there have been more flights 
between the Approval Phase and the Implementation Phase.  The second modification is a result of 
design and operational differences between the Space Shuttle and the Constellation.  The design 
differences have decreased the probability of MMOD damage to the Constellation ATCS radiator as 
compared to the Space Shuttle.  The probability of MMOD penetration is calculated to be 77% that of 
the shuttle due to less surface area and modified protection.  The value of 0.77 is a measure of the 
model applicability and is used prior to the Bayesian updating by multiplying the number of failures 
noted in the Space Shuttle design by this factor.  As before, the applicability of the data as compared to 
other data is handled through the Bayesian update by assigning weights which must sum to one. 
 

• Our current hypothetical data is one leak on a shuttle radiator in 123 flights (average of 11-day 
mission equates to 32,472 hours). 

• Assume data is found that a fleet of 50 radiators operated for a combined 438,000 hours over 
a 2 year period with 8 radiator failures. 

 
For the on-demand priors, we have the original Space Shuttle information and an update of the ISS 
information: 

• Assume that the Space Shuttle radiator prototype demand produced demand testing of 1000 
total demands with zero failures. 

• Assume the International Space Station has accumulated 1,547 thermal redundant system 
checks without failure.  

 
Step 2:  The data 
Prototype testing of the final design of the radiator has produced: 

• Zero failures in 11,000 total component hours of operation 
• Zero failures in 500 demands 

 
Step 3:  Bayesian calculation to estimate the individual operational Radiator failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and is only partially applicable. 
 The data is known with certainty. 

The Bayesian estimation of the failure rate for the radiator in operation can be performed with 
Script 63.  Running this script in the usual manner produces a mean value for lambda.avg of 2.7 
×10-5, with a 90% interval of (3.1 ×10-6 to 7.5 ×10-5). 
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• Script 63. WinBUGS script to update the operational Radiator failure rate based on updated priors 
information and prototype testing. 
 

 
• Figure 4-114.  DAG representing Script 63, Script 65, and Script 67. 

 
Step 4:  Bayesian calculation to estimate the on-demand Radiator failure probability 

 The aleatory model of the world (akin to the likelihood function in Bayes’ Theorem) is Binomial. 
 The prior information is heterogeneous and is only partially applicable. 
 The data is known with certainty. 

Component : ATCS Radiator Loop A (fails during operation) 
Model           : Poisson 
Prior             : Noninformative 
 subscript 1 = Space Shuttle radiator MMOD (1 failure in 123 flights, 264 hr avg flight) 
 subscript 2 = Terrestrial aluminum radiators (8 failures in 483,000 hr) 
 subscript 3 = Prototype Constellation radiator testing (1 failures in 11,000 hr) 
 
model { 
 for(i in 1:2) { 
  lambda[i] ~ dgamma(0.5, 0.0001) # Jeffreys priors for lambda 
  x[i] ~ dpois(mean.pois[i])  # Poisson likelihood 
  mean.pois[i] <- lambda[i] * time[i] # Poisson mean 
 } 
lambda.avg <- lambda[r]   # Weighted average prior 
r ~ dcat(p[])     # Assignment of weights 
x[3] ~ dpois(mean.pois.c) 
mean.pois.c <- lambda.avg * time[3]   # Poisson mean 
} 
 
data 
# Weights and observed failures c(Shuttle, Terrestrial, proto) 
list(p=c(0.8, 0.2), x=c(0.77, 8, 0), time=c(32472, 438000, 11000)) 
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The updated Bayesian estimation of the failure probability upon demand of the standby ATCS Radiator 
can be performed using Script 64.  Running the script in the usual manner produces a mean probability 
of failure of 2.9 × 10-4, with a 90% interval of 1.2 ×10-6 to 1.1 ×10-3. 
 

• Script 64. WinBUGS script to update the standby Radiator probability of failure upon demand in the 
Implementation Phase incorporating new priors evidence and prototype testing. 
 
 

• Figure 4-115.  DAG representing Script 64, Script 66, and Script 68. 
 
 

Component  : ATCS Radiatior Loop B (fails on demand) 
Model  : Binomial 
Prior  : Noninformative 
 subscript 1: Prototype demand testing (1000 weekly demands 0 failures) 
 subscript 2: ISS thermal backup loop radiator checks (1547 demands, 0 fails) 
 subscript 3: Prototype testing (500 demands 0 failures) 
 
model { 
 for (i in 1:2) { 
  x[i] ~ dbin(p[i],n[i]) # Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) # Jeffreys Priors, Conjugate beta prior distribution for p 
 } 
p.avg <- p[r] 
r ~ dcat(q[]) 
x[3] ~ dbin(p.avg,n[3]) 
} 
 
data 
list(x=c(0, 0, 0), n= c(1000, 1547, 500), q=c(0.50, 0.50)) #Priors information and weights 
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4.12.3  Case Study Integration Phase 
The final design is integrated into the system and final operational testing is performed.  An update of 
the component reliability can be performed with this new information. 
 

4.12.3.1 Radiator—The ATCS radiator is now integrated into the system.  Original prototype 
testing of the unit alone continues and now there is a life test of the complete system in progress.  The 
new data along with updates from the priors all are used to perform an updated estimate. 
 
Step 1:  The priors 
There have been five more Space Shuttle flights and the ISS has continued to operate and periodically 
test its backup cooling loops.  The design differences that decreased the probability of MMOD damage 
to the new ATCS radiator as compared to the Space Shuttle have remained the same, keeping the 
Space Shuttle information factor at 0.77.  As before, the applicability of the data as compared to other 
data is handled through the Bayesian update by assigning weights which must sum to one. 

• Our current hypothetical information is that MMOD caused a leak on one shuttle radiator in 
128 flights (average of 11-day mission equates to 33,792 hours). 

• Assume data is found that a fleet of 50 radiators operated for a combined 438,000 hours over 
a 2 year period with 8 radiator failures. 

For the on-demand priors, we have the original Space Shuttle information and an update of the ISS 
information: 

• Assume that the Space Shuttle radiator prototype demand produced demand testing of 1000 
total demands with zero failures. 

• Assume the International Space Station has accumulated 1,600 thermal redundant system 
checks without failure.  

 
Step 2:  The data 
Prototype testing of the final design of the radiator has produced: 

• Zero failures in 24,000 total component hours of operation 
• Zero failures in 1,100 demands 

ATCS System life testing has produced: 
• Zero failures in 3,000 accumulated system hours 
• Zero failures in 330 demands 

 
Step 3:  Bayesian calculation to estimate the individual operational Radiator failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and is only partially applicable. 
 The data is known with certainty. 

 
The Bayesian estimation of the failure rate for the radiator in operation during the Integration Phase can 
be performed with Script 65.  As was noted in the analysis of the refrigerant tank during the Approval 
Phase, equally applicable zero-failure data can be pooled.  This allows us to pool the ATCS System life 
testing data with the radiator prototype testing data.  Running this script in the usual manner produces a 
mean value for lambda.avg of 2.0 ×10-5 per hour with a 90% interval of (2.3 ×10-6 to 5.3 ×10-5). 
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• Script 65. WinBUGS script to update the operational Radiator failure rate based on updated priors 
information and pooled prototype and system testing. 
 
Figure 4-114 shows the DAG representing Script 65. 
 
Step 4:  Bayesian calculation to estimate the on-demand Radiator failure probability 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Binomial. 

 The prior information is heterogeneous and is only partially applicable. 
 The data is known with certainty. 

 
The updated Bayesian estimation of the failure probability upon demand of the standby ATCS Radiator 
can be performed using Script 66.  Running the script in the usual manner produces a mean demand 
failure probability of 1.8 ×10-4 with a 90% interval of 7.3 ×10-7 to 7.1 ×10-4. 

Component : ATCS Radiator Loop A (fails during operation) 
Model           : Poisson 
Prior             : Noninformative 
 subscript 1 = Space Shuttle radiator MMOD (1 failure in 128 flights, 264 hr avg flight) 
 subscript 2 = Terrestrial aluminum radiators (8 failures in 483,000 hr) 
 subscript 3 = Prototype radiator testing and ATCS System life testing pooled data 
   (0 failures in 27,000 hr) 
 
model { 
 for(i in 1:2) { 
  lambda[i] ~ dgamma(0.5, 0.0001) #Jeffreys priors for lambda 
  x[i] ~ dpois(mean.pois[i])  #Poisson likelihood 
  mean.pois[i] <- lambda[i] * time[i] #Poisson mean 
 } 
lambda.avg <- lambda[r]   #Weighted average prior 
r ~ dcat(p[])     #Assignment of weights 
x[3] ~ dpois(mean.pois.c) 
mean.pois.c <- lambda.avg * time[3]                      #Poisson mean 
} 
 
data 
#Weights and observed failures c(Shuttle, Terrestrial, proto) 
list(p=c(0.8, 0.2), x=c(0.77, 8, 0), time=c(33792, 438000, 27000)) 
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• Script 66. WinBUGS script to update the standby Radiator probability of failure upon demand in the 
Integration Phase incorporating new priors evidence and pooled prototype and ATCS system life testing. 

 
Figure 4-115 shows the DAG representing Script 66. 
 
4.12.4  Case Study Operation Phase 
The components are now operational and have flown as part of the ATCS system.  The analyst has 
decisions to make as the components and system mature.  At what point should the prototype data and 
system life test data move into the priors? Once these data are moved to priors, what weight should be 
assigned to them?  Now that there is more known about the system, are the initial design priors from 
the approval stage still applicable enough to include, even with a heavy discounting in the analysis?   
 

4.12.4.1 Radiator—The radiator is now operational and has flown four missions as part of the 
ATCS system.  The prototype testing and ATCS life testing programs are complete.  The Space Shuttle 
program has ended after 10 more flights and experienced one more MMOD caused failure on an ATCS 
radiator.  The new information needs to be incorporated into the current failure probability estimates. 
 
Step 1:  The priors 
There have been ten more Space Shuttle flights and the ISS has continued to operate and periodically 
test its backup cooling loops.  The design differences that decreased the probability of MMOD damage 
to the new ATCS radiator as compared to the Space Shuttle have remained the same, keeping the 
Space Shuttle information factor at 0.77.  As before, the applicability of the data as compared to other 
data is handled through the Bayesian update by assigning weights which must sum to one. 
 
Operational priors include: 

• Our current hypothetical information is that operation and MMOD caused a leak on one shuttle 
radiator in 138 flights (average of 11 day mission equates to 36,432 hours). 

• Assume data is found that a fleet of 50 radiators operated for a combined 438,000 hours over 
a 2 year period with 8 radiator failures. 

• Prototype testing of the final design of the radiator concluded with 30,000 component hours of 
operation without failure. 

• ATCS System life testing concluded with 15,000 accumulated system hours without failure. 

Component  : ATCS Radiatior Loop B (fails on demand) 
Model  : Binomial 
Prior  : Noninformative 
 subscript 1: Prototype demand testing (1000 weekly demands 0 failures) 
 subscript 2: ISS thermal backup loop radiator checks (1600 demands, 0 fails) 
 subscript 3: Pooled radiator prototype and system life testing  
   (1430 demands 0 failures) 
 
model { 
 for (i in 1:2) { 
  x[i] ~ dbin(p[i],n[i]) #Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) #Jeffreys Priors, Conjugate beta prior distribution for p 
 } 
p.avg <- p[r] 
r ~ dcat(q[]) 
x[3] ~ dbin(p.avg,n[3])  #Posterior distribution 
} 
 
data 
list(x=c(0, 0, 0), n= c(1000, 1600, 1430), q=c(0.50, 0.50)) #Priors information and weights 
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On-demand priors include: 

• Assume that the Space Shuttle radiator prototype demand produced 1000 total demands with 
zero failures. 

• Assume the International Space Station has accumulated 2,100 thermal redundant system 
checks without failure.  

• Radiator prototype testing concluded at 2,000 demands without failure. 
• ATCS System life testing concluded at 1,000 demands on the standby radiator without failure. 

 
Step 2:  The data 
The new ATCS has flown four missions averaging 15 days (1,440 component operational hours). The 
standby loop has been tested 60 times. No operational or standby failures have been noted. 
 
Step 3:  Bayesian calculation to estimate the individual operational Radiator failure rate 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Poisson. 

 The prior information is heterogeneous and of varying applicability. 
 The data is known with certainty. 

 
The Bayesian estimation of the failure rate for the radiator in operation during the Integration Phase can 
be performed with Script 67.  When considering the weighting factors on the priors, the Space Shuttle 
operational information was still given a high weight (0.48) due to its ability to include the risk of MMOD 
strikes on the system.  The terrestrial data was discounted heavily (0.02) and the majority of the weight 
went to the prototype and ATCS life test pooled data (0.50). Running this script in the usual manner 
produces a mean value for lambda.avg of 2.2 ×10-5 per hour with a 90% interval of (1.7 ×10-7 to 7.4 
×10-5) per hour.  This slight increase in posterior mean and interval over the Integration Phase is 
expected due to the relatively sparse operational data used to develop the posterior. 
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• Script 67. WinBUGS script for the operational phase of the ATCS radiator moving prototype and ATCS life 
testing data to the priors and using operational data to update posterior. 
 
Figure 4-114 shows the DAG representing Script 67. 

 
Step 4:  Bayesian calculation to estimate the on-demand Radiator failure probability 

 The aleatory model of the world (corresponding to the likelihood function in Bayes’ Theorem) is 
Binomial. 

 The prior information is heterogeneous and is only partially applicable. 
 The data is known with certainty. 

The updated Bayesian estimation of the failure probability upon demand of the standby ATCS Radiator 
can be performed using Script 68.  Running the script in the usual manner produces a mean probability 
of failure of 2.0 ×10-4 with a 90% interval of 7.1 ×10-7 to 7.8 ×10-4.  Again, the probability of failure has 
increased slightly despite more demands with failure free operation because of the sparse operational 
data and the movement of the testing data to the priors for operational phase updating. 
 

Component : ATCS Radiator Loop A (fails during operation) 
Model           : Poisson 
Prior             : Noninformative 
 subscript 1 = Space Shuttle radiator MMOD (1 failure in 138 flights, 264 hr avg flight) 
 subscript 2 = Terrestrial aluminum radiators (8 failures in 483,000 hr) 
 subscript 3 = Prototype radiator testing and ATCS System life testing pooled data 
   (0 failures in 45,000 hr) 
 subscript 4 = ATCS operational phase time in service (0 failures in 1440 hr) 
 
model { 
 for(i in 1:3) { 
  lambda[i] ~ dgamma(0.5, 0.0001) # Jeffreys priors for lambda 
  x[i] ~ dpois(mean.pois[i])  # Poisson likelihood 
  mean.pois[i] <- lambda[i] * time[i] # Poisson mean 
 } 
lambda.avg <- lambda[r]   # Weighted average prior 
r ~ dcat(p[])     # Assignment of weights 
x[4] ~ dpois(mean.pois.c) 
mean.pois.c <- lambda.avg * time[4]                      # Poisson mean 
} 
data 
#Weights and observed failures c(Shuttle, Terrestrial, proto) 
list(p=c(0.48, 0.02, 0.50), x=c(0.77, 8, 0, 0), time=c(36432, 438000, 45000, 1440)) 
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• Script 68. WinBUGS script for Operational Phase update of standby ATCS radiator with testing 
data moved to priors and operational data used to update posterior. 

 
Figure 4-115 shows the DAG representing Script 68. 

Component  : ATCS Radiatior Loop B (fails on demand) 
Model  : Binomial 
Prior  : Noninformative 
 subscript 1: Shuttle Prototype demand testing (1000 weekly demands 0 failures) 
 subscript 2: ISS thermal backup loop radiator checks (2100 demands, 0 fails) 
 subscript 3: Pooled radiator prototype & system life tests (3011 demands 0 failures) 
 subscript 4: ATCS operational backup loop radiator checks (60 demands, 0 failures) 
 
model { 
 for (i in 1:3) { 
  x[i] ~ dbin(p[i],n[i]) #Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) #Jeffreys Prior for p 
 } 
p.avg <- p[r] 
r ~ dcat(q[]) 
x[4] ~ dbin(p.avg,n[4])  #Posterior distribution 
} 
 
data 
#Priors information and weights  
list(x=c(0, 0, 0, 0), n= c(1000, 2100, 3011, 60), q=c(0.10, 0.10, 0.80)) 
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4.13 Extensions, Issues, and Pitfalls 
 
This section provides coverage of extensions to methods already addressed, general analysis issues, 
and potential pitfalls. 
 
4.13.1  MCMC Sampling Initial Values and Convergence 
In the past, MCMC-based methods have been associated with long run times both for convergence 
and follow on iterations for estimates.  Modern software and processors make the MCMC technology 
viable. For the majority of the inference models presented in this guidebook, the MCMC used in 
OpenBUGS runs 100,000 iterations in less than 30 seconds on a desktop processor (circa 2005).  
Even the most complex models take around two minutes to run 100,000 iterations.  It is not out of the 
question to run a million or more iterations in a reasonable amount of time. 
 
In OpenBUGS, the initial sampling values are loaded manually through the script or generated 
automatically by the program and give the MCMC engine a place to start.  Regardless of where the 
start is, the destination is the same, convergence to the inferred answer.  This guidebook cautions to 
check for convergence and presented the tools used to check for convergence.  The standard run of 
generating the initial values through the program, running 1,000 iterations to allow for convergence and 
100,000 iterations for sampling is acceptable for most applications.  Some models however, require 
further checks for convergence. Many of the scripts throughout the guide set the initial values within the 
script.  Many of these scripts also run two or more chains of initial values to check for convergence.  
The use of initial values is twofold: one is that the program can not always generate a set of initial 
values that will allow it to start the MCMC; the other is to provide data to confirm convergence. 
 
To illustrate, recall Script 21.  The results running the script with the given initial values are a = -3.4, b = 
0.16, p.value = 0.47, and p[10] = 0.15.  If the script is run by compiling just one chain and clicking on 
generate initial values (“gen inits”), the software will error because the flat distributions on parameters a 
and b require a starting point.  Given initial values that are reasonable but different, the MCMC will 
converge to the same results.   
 
What are reasonable initial values for Script 21? Looking at the logit(x) function used, the OpenBUGS 

help under scalar functions shows the logit function as ⎟
⎠
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 and p(i) should be between a value of 0 and 1. This binds the logit(p(i)) value between 

about -6.9 to 6.9.  Therefore, values of “a” and “b” entered as initial values such that 
9.69.6 <+<− bia would be considered reasonable starting points. 

 
What about using unreasonable starting values? The MCMC will attempt to start at wherever you tell it 
to, and many times it can be successful even if started outside of a reasonable range. To illustrate this 
property, load initial values for Script 21 as chain 1: a = 97, b = 0, and chain 2: a = -1, b = 5.  The 
convergence graphs below show that the model will take longer to converge and that the values of the 
chain are originally far from the end values.  However, the overall results are identical to that found in 
the original Script 21. 
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• Figure 4-116.  BGR Diagnostics results for Script 21 with initial values a = (97, -1) and b = (0, 5). 

 

 
• Figure 4-117.  History results for Script 21 parameter “a“ with initial values a = (97, -1) and b = (0, 5). 
 

 
• Figure 4-118. History results for Script 21 parameter “b“ with initial values a = (97, -1) and b = (0, 5). 

 
Although the MCMC is forgiving in that it will take a large range of starting values and eventually 
converge to a consistent answer, it is best practice to choose the initial values within a reasonable 
range based upon the equations that are used.  It is also good practice to set the different strings far 
apart from each other within the reasonable range.   
 
There is, of course, a limit to how far away from the reasonable values the initial values can be set.  For 
instance, in Script 21, the program will terminate and not provide a final answer if one tries to run the 
script with a value for “a” greater than 97.5. 
 
4.13.2  Extensions of Existing Methods 
Assume a component similar in application and environment to prior components will be used on a 
proposed platform and an estimation of the probability of failure upon demand is required.  The analysis 
can be split into three steps. 
 
1. Gather all the information available on the component and its similar predecessors. 
2. Select an analysis model and evaluate the applicability of the predecessor components 

information. 
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3. Create an inference diagram to help choose an applicable OpenBUGS script (or solve the problem 
via numerical integration if possible) to handle the inference. 

 
In the first step, the analyst considers the operation of the component and determines that it is used to 
perform a mechanical operation on demand after resting in standby. There are processed data from 
telemetry of two missions where a similar component was used with demands and successes.  The 
first mission produced 570 demands with no failures.  The component operated in a degraded state on 
the second mission after 475 demands, where it would stick and require a re-issued command to get it 
to operate.  Fifteen random instances occurred in this range where the command was re-issued and 
the component operated.  A decision to not include the 15 commands is made based on analysis of the 
telemetry which was inconclusive as to signal reception by the component.  Not counting the re-issued 
commands as a demand, a hard failure occurred at 677 demands where it would not operate any 
more.  The two components which flew on the two separate missions were of the same manufacturer, 
although they are not of the same manufacturer as the proposed component. The proposed 
component comes with a reliability claim from its manufacturer in terms of mean cycles to failure and a 
confidence claim.  There has been no prototype testing to date other than that performed by the 
manufacturer.  Analysis of the information by the team determines that the degraded operation was an 
annoyance and only the hard fail at 677 demands would be counted. The information available by the 
numbers: 

Mission 1, component A:   570 demands, 0 failures 
 
Mission 2, component A:   677 demands, 1 failure 
 

 Component B Manufacturer’s test data: 1500 demands,  
      1350 demands at 95% lower confidence level 
 
The analyst determines that the best model for operation of the component is the binomial based on 
the operation profile of the component and the demand and success data.  The two prior missions are 
considered to be equivalent in application and environment.  At a design meeting, the new component 
is touted as less expensive, yet meets the criteria of the old component and the applicability of the prior 
mission data is determined to be 90%.  The provided testing documentation from the new component’s 
manufacturer shows due diligence and is accepted as a 100% valid estimation. 
 
An inference diagram is drawn based on the data provided.  These diagrams have to be drawn with the 
thought in mind that Bayesian inference is from a distribution to a distribution, which is why one can’t 
just place a number such as the lower bound estimate of the test data into the inference, rather the 
whole normal distribution about the data developed with the 95% confidence lower limit is used.  Since 
there are no parameters known for the prior operation of the component to this information, a Jeffreys 
prior is used for the binomial model used for the two existing missions.  The manufacture’s information 
can be modeled as a normal distribution about the estimate in the same manner the MTBF was in 
Sections 4.12.1.4 and 4.12.1.5.  The outputs of the two results would need the posteriors averaged, so 
the diagram will need the p.avg node and the r node used for a categorical distribution.  The diagram 
ends up as shown in Figure 4-119. 
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• Figure 4-119. Inference diagram (DAG) for a component with applicable flight data and 
manufacturer's estimate. 

 
The model requires construction next.  There are several pieces of the model identifiable in the DAG, 
which are color coded in the figure. The binomial piece is in red, the manufacturer information piece is 
in blue, and the posterior averaging is in green.  WinBUGS scripts always begin with the “model {“ 
keyword, and following that it doesn’t matter what order the lines are in, the BUGS language runs the 
inference the same.  Following the convention used through the majority of the case study, place the 
binomial piece in the script first.  A good example of the piece required can be found in Script 55 which 
also has two binomial information sources.  So far the model looks like: 

 
Next, the manufacturer information needs to be developed as a distribution.  A normal distribution 
about an estimate avoids unnecessarily-complex arithmetic if the bound is tight enough to prevent the 
manufacturer information to be less than one.  This is the case here with the manufacturer information 
being a normal distribution with mean of 1500 demands and a 95% lower limit of 1350 demands.  

Utilizing the properties of the normal distribution: mu = mean = 1500,  2

1
sigma

tau =  , sigma being 

the standard deviation which can be calculated by  
Z

LCValuemusigma −
= , Z being found through 

calculator or table as 1.645 for 95% lower confidence limit.  Coded in the BUGS language it looks like: 

model { 
 for (i in 1:2) { 
  x[i] ~ dbin(p[i],n[i]) # Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) # Jeffreys Priors, Conjugate beta prior distribution for p 
 } 

Jeffreys Prior
Beta

0.50.5

p[i] p.avg

q[1-3]x[i]

n[i]

MCTF

r

Normal 
Distribution

tausigmamu

For i = 1 to 2

p[3]
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The next part of the model is the posterior averaging portion.  Many scripts throughout Chapter 4 utilize 
this and it is written as: 

 
 
What remains is to determine the weights and add the data.  The weights have to correspond to the 
order of the data.  They can be listed within the script or in the data. Script 34 is an example of listing 
the formulas or distributions used to determine the weighting factor in the script.  Nearly all of the case 
study scripts use the developed factors in the data.  Here, we will place the formulas in the script. 
Putting the pieces together, the script is as follows: 
 

• Script 69.  WinBUGS script for a component with applicable flight data and manufacturer's 
estimate. 

 
The results for p.avg after 1000 burn-in iterations followed by 100000 iterations for estimation are a 
mean of 1.2 x 10-3 with a 90% credible interval of (3.4 x 10-5, 4.2 x 10-3).   
 
Examining the densities of the results gives some insight into the Bayesian process.  Figure 4-120 
shows that p[1] and p[2] have a shape consistent with a Beta distribution, p.avg is an average mixture 
of the three, but one might question why there is a slight skew to the left in the p[3] density of the 

mu <-  1500 
tau <- pow(sigma, -2) 
sigma <- (mu – 1350)/1.645 
p ~ dnorm(mu, tau) 

p.avg <- p[r]     
r ~ dcat(q[]) 

model { 
#Flight data 1 and 2 
 for (i in 1:2) { 
  x[i] ~ dbin(p[i],n[i]) # Binomial dist. for number of failures in n demands 
  p[i] ~ dbeta(0.5, 0.5) # Jeffreys Priors, Conjugate beta prior distribution for p 
 } 
 
# Manufacturer’s estimation 
mu <-  1500   # Mean estimation 
tau <- pow(sigma, -2)   
sigma <- (mu - 1350)/1.645 # Std. deviation using the 95% lower confidence value 
MCTF ~ dnorm(mu, tau)  # Resulting normal distribution about the mean 
p[3] <- 1/MCTF   # Convert to a probability 
p.avg <- p[r]     
r ~ dcat(q[]) 
qsum <- 2.8 
q[1]  <- 0.9 / 2.8 
q[2] <- 0.9 / 2.8 
q[3] <- 1 / 2.8 
} 
data 
list(x=c(0, 1), n=c(570, 677)) 
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normal distribution used for the manufacturer information.  Bayesian inference flows in both forward 
and reverse directions throughout a network.  At iteration number 1, the manufacturer information 
estimation is the normal distribution that was placed in the model.  As the iterations increase, influence 
is felt both on the posterior by the normal distribution and also on the normal distribution by the 
developing posterior and the other distributions in the network. Very little direct data is available for the 
performance of the component, as is the case for many problems faced in estimating the performance 
of a relative unknown, but the forward and backflow of inference in Bayesian analysis refines the 
estimations and builds upon what is known to further hone in on the posterior value.  
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• Figure 4-120. Parameter densities for the example. 

 
 
Next, let’s take the same problem developed thus far and say that further analysis of the telemetry from 
the first flight indicates that the component was receiving the command signal during the “soft” failures 
starting at 475 demands.  Looking back in the guide, Script 31 shows a way to handle uncertainty in 
binomial demands.  Analyzing the telemetry shows that the soft failure started at 475 demands, and a 
total of 15 soft failures occurred with a corresponding command re-issued before the end failure at 677 
demands.  Since the soft failures are being considered now, the command re-issues should also be 
added into the mix.  The result is that the component operated for 690 demands with a failure between 
475 and 692.  In the first script, the two flights were combined because the binomial model was the 
same for both sets of data. This situation will not allow the combination of the two sets of flight data in 
the script because of the uncertainty in the second set of information requires a uniform distribution on 
the number of demands as per Script 31.  Drawing this as a DAG in Figure 4-121, it splits into 4 parts, 
one for the binomial model with a known number of demands (red), one for the binomial model with an 
uncertain number of demands (yellow), one for the manufacturer information (blue) and the posterior 
averaging part (green). 
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• Figure 4-121.  DAG for a component with uncertain flight data and manufacturer's estimate. 
 
 
The new script handling this uncertainty can be built by separating the three pieces of information.  This 
script has a uniform distribution for the number of demands on one of those flights, so it can not use the 
convenient “for i in x” loop.  Data points where the parameters are the same, such as the number of 
failures, x, can still use the list annotation in the data c( ).  The resulting script is as follows: 

Jeffreys Prior
Beta

0.50.5

p[1]

x[1]

n.1

p.avg p[2]

Normal 
Distribution

sigmamu tauMCTF

r

q[1-3]

p[3]

Jeffreys Prior
Beta

0.50.5

x[2]

n.2

lower

upper
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model { 
# Flight 1 information 
x[1] ~ dbin(p[1],n.1)  # Binomial dist. for number of failures in n demands 
p[1] ~ dbeta(0.5, 0.5)  # Jeffreys Priors, Conjugate beta prior distribution for p 
 
# Flight 2 information 
x[2] ~ dbin(p[2], n.2)   # Binomial dist. for number of failures in n demands 
n.2 ~ dunif(lower, upper) # Uniform distribution for number of demands 
p[2] ~ dbeta(0.5, 0.5)  # Conjugate beta prior distribution for p 
 
# Manufacturer’s estimation 
mu <-  1500   # Mean estimation 
tau <- pow(sigma, -2) 
sigma <- (mu - 1350)/1.645 # Std. deviation using the 95% lower confidence value 
MCTF ~ dnorm(mu, tau)  # Resulting normal distribution about the mean 
p[3] <- 1/MCTF   # Convert to a probability 
p.avg <- p[r]     
r ~ dcat(q[]) 
qsum <- 2.8 
q[1]  <- 0.9 / 2.8 
q[2] <- 0.9 / 2.8 
q[3] <- 1 / 2.8 
} 
 
data 
list(x=c(0, 1), n.1= 570, lower = 450, upper = 692) 

• Script 70.  WinBUGS script for a component with uncertain flight data and manufacturer's estimate. 
 
The results for p.avg after 1000 burn-in iterations followed by 100,000 iterations for estimation are a 
mean of 1.4 x 10-3 with a 90% credible interval of (3.4 x 10-5, 5.0 x 10-3). 
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4.13.3 Ad hoc Methods versus Bayesian Inference 
For a group of failure records, one common ad hoc method is to simply pool the data together.  For 
example, each source might be used to generate a mean and variance as follows. 
If the number of failures (x) is greater than zero, then each source produces a beta distribution with 
parameters α = x and β = n –x, where n is the number of demands (the standard conjugate updating 
approach).  From the properties of a beta distribution, the mean is then x/n and the variance is 
approximately x(n – x)/n3.  If no failures were recorded for a particular data source, then α is taken to be 
0.5 (assuming a Jeffreys prior is used). 
 
To get the overall posterior distribution for the set of information, a beta distribution may be fit to the 
overall mean and variance using: 
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For the hypothetical data in Table 15, the overall mean and variance can be found to be 9.6E-4 and 
2.8E-6, respectively.  From these moments, the parameters of the resulting beta distribution can be 
found using: 
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A lognormal distribution could also be fit using these overall moments.  For the data in Table 15, the 
overall beta distribution has parameters 0.3 and 343.6.  The fitted lognormal distribution has mean 
9.6E-4 and error factor (EF) of 7. 
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• Table 15.  Hypothetical failure data for fan check valves. 

Record Number Failure Mode Failures Demands 

469 FTO 0 11,112 
470 FTO 0 3,493 
471 FTO 0 10,273 
472 FTO 1 971 
473 FTO 0 4,230 
474 FTO 0 704 
475 FTO 0 7,855 
476 FTO 0 504 
477 FTO 0 891 
478 FTO 0 846 
480 FTO 0 572 
481 FTO 0 631 
482 FTO 0 2,245 
488 FTO 0 7,665 
532 FTO 0 1,425 
534 FTO 0 700 
538 FTO 0 716 
549 FTO 8 1,236 
550 FTO 0 926 
551 FTO 1 588 
552 FTO 0 856 
554 FTO 1 708 
569 FTO 0 724 
570 FTO 12 8,716 
592 FTO 2 632 
593 FTO 0 564 

 
 

The overall posterior developed by this ad hoc method using the average-moment approach depends on 
the fitted distribution and summarized below for two different distributions. 
 
• Table 16.  Summary of overall fan check valve prior, average-moment approach. 

Fitted Distribution Mean 5th Percentile 95th Percentile 
Beta 9.6E-4 9.4E-8 4.0E-3 

Lognormal 9.6E-4 6.8E-5 3.3E-3 
 
4.13.3.1 The Hierarchical Bayes Approach—Because of the large source-to-source variability 

exhibited by Table 15, it may be inappropriate to pool the data.  The standard Bayesian approach to such 
a problem is to specify a hierarchical prior for the demand failure probability, p.  We will compare the 
results from this approach with the ad hoc average-moment approach.   We will analyze two different 
first-stage priors, beta and logistic-normal, with independent diffuse hyperpriors in both cases.  WinBUGS 
Script 71 was used to carry out the analysis. 
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Script 71 continued on next page. 

model { 
 for(i in 1:N) { 
  x[i] ~ dbin(p[i], n[i])  # Binomial model for number of events in each source 
  p[i] ~ dbeta(alpha, beta) # First-stage beta prior 
  #p[i] <- exp(p.norm[i])/(1 + exp(p.norm[i])) # Logistic-normal first-stage prior 
  #p.norm[i] ~ dnorm(mu, tau) 
  x.rep[i] ~ dbin(p[i], n[i]) # Replicate value from posterior predictive distribution 
  #Generate inputs for Bayesian p-value calculation 
  diff.obs[i] <- pow(x[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) 
  diff.rep[i] <- pow(x.rep[i] - n[i]*p[i], 2)/(n[i]*p[i]*(1-p[i])) 
 } 
p.avg ~ dbeta(alpha, beta)  #Average beta population variability curve 
#p.avg ~ dlnorm(mu, tau) 
#p.norm.avg ~ dnorm(mu, tau) 
#p.avg <- exp(p.norm.avg)/(1 + exp(p.norm.avg)) 
#Compare observed failure total with replicated total 
x.tot.obs <- sum(x[]) 
x.tot.rep <- sum(x.rep[]) 
percentile <- step(x.tot.obs - x.tot.rep)  #Looking for values near 0.5 
# Calculate Bayesian p-value 
chisq.obs <- sum(diff.obs[]) 
chisq.rep <- sum(diff.rep[]) 
p.value <- step(chisq.rep - chisq.obs)  #Mean of this node should be near 0.5 
# Hyperpriors for beta first-stage prior 
alpha ~ dgamma(0.0001, 0.0001) 
beta ~ dgamma(0.0001, 0.0001) 
#mu ~ dflat() 
#tau <- pow(sigma, -2) 
#sigma ~ dunif(0, 20) 
} 
 
inits 
list(alpha=1, beta=100) #Chain 1 
list(alpha=0.1, beta=200) #Chain 2 
list(mu=-11, sigma=1) 
list(mu=-12, sigma=5) 
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• Script 71.  Hierarchical Bayesian script used for the comparison to ad hoc methods. 

data 
x[] n[] 
0 11112 
0 3493 
0 10273 
1 971 
0 4230 
0 704 
0 7855 
0 504 
0 891 
0 846 
0 572 
0 631 
0 2245 
0 7665 
0 1425 
0 700 
0 716 
8 1236 
0 926 
1 588 
0 856 
1 708 
0 724 
12 8716 
2 632 
0 564 
END 
 
list(N=26) 
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Using a beta first-stage prior 
The overall average distribution representing source-to-source variability in p has a mean of 1.2E-3, 
variance of 1.4E-4, and a 90% credible interval of (3.5E-20, 4.1E-3).  The very small 5th percentile is an 
artifact of choosing a beta distribution as a first-stage prior.  The posterior mean of α is 0.12, and the 
average variability distribution has a sharp vertical asymptote at p = 0. 
 
Using a logistic-normal first-stage prior 
The logistic-normal distribution is constrained to lie between 0 and 1, and because the density function 
goes to 0 at both 0 and 1, it avoids the vertical asymptote at p = 0 from which the beta distribution 
suffers.  For small values of p, the logistic-normal and lognormal distributions are very close; we chose 
to use the logistic-normal distribution because, with such large variability, the Monte Carlo sampling in 
WinBUGS can generate values of p > 1, and these have the potential to skew the results, particularly 
the mean. 
 
With a logistic-normal first-stage prior, we found the overall average distribution representing source-to-
source variability to have a mean of 0.01, variance of 8.7E-3, and 90% credible interval of (7.6E-11, 
1.2E-2). 
 
Update with New Data 
Assume we would like to update the overall check valve prior with new data, which we take to be 0 
failures in 2,000 demands.  The results of the four different update possibilities are shown in Table 17.  
As a reference point, we include an update of a Jeffreys prior, which is a beta(0.5, 0.5) distribution. 
 
• Table 17.  Posterior results for the ad hoc versus Bayesian method comparison. 

Method Mean 5th  
Percentile 

95th Percentile 

Ad hoc (beta) 1.3E-4 1.4E-8 5.9E-4 
Ad hoc (lognormal) 3.0E-4 4.3E-5 8.3E-4 

Hierarchical Bayes (beta) 4.9E-5 5.9E-23 2.9E-4 
Hierarchical Bayes (logistic-normal) 4.7E-5 2.6E-11 2.5E-4 

Jeffreys prior 2.5E-4 9.8E-7 9.6E-4 
  

 
As shown in Figure 4-122, a perhaps surprising outcome is that updating the lognormal 

distribution fit by ad hoc methods using the average-moment approach gives about the same mean 
and 95th percentile for p as simply updating the Jeffreys prior (however the 5th percentile differs 
between the two posteriors).  The beta prior would give about the same result if there were not a 
vertical asymptote at p = 0, causing excess shrinkage of the mean toward 0. 
 
Both hierarchical Bayes analyses give similar means and 95th percentiles; the 5th percentiles differ 
because of the vertical asymptote in the beta first-stage prior.  Hierarchical Bayes allows the large 
number of sources with zero failures to more strongly influence the result than the average-moment ad 
hoc approach.   With no failures in 2,000 demands, the posterior mean is pulled more towards a value 
of zero in the hierarchical Bayes analysis, giving a less conservative result. 
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• Figure 4-122.  Plot of the posterior results for the Bayesian versus ad hoc method comparison. 

 
 

Model Validation 
We can generate replicate failure counts for the data sources in Table 15, and then use the Bayesian 
p-value calculated from the chi-square summary statistic to compare models.  Table 18 shows the 
results of this model validation calculation.  The ad hoc distributions derived from the average-moment 
approach are poor at replicating the observed data:  they over-predict the total number of failures (the 
observed total was 25) and they under-predict the variability in the failure count, leading to a very low 
Bayesian p-value.  In contrast, the hierarchical Bayes models have much better predictive validity. 
 
• Table 18.  Model validation results for the ad hoc versus Bayesian method comparison. 

Method Total Replicated Failures 
(mean) 

Bayesian p-value 

Ad hoc (beta) 61.0 0.001 
Ad hoc (lognormal) 67.3 0.001 

Hierarchical Bayes (beta) 25.1 0.44 
Hierarchical Bayes (logistic-

normal) 
25.0 0.38 

 
 
 

Conclusions 
The averaging approach used by the ad hoc method has the potential to give erroneous results, either 
overly conservative, as in the example here, or nonconservative.  Without model validation, one cannot 
judge the validity of ad hoc approximations.  The hierarchical Bayes approach is the preferred method for 
incorporating source-to-source variability.  With tools like WinBUGS, model validation can be performed 
in tandem with parameter estimation.  In the example here, hierarchical Bayes was superior at replicating 
the observed data, as measured by the total replicated failure count and Bayesian p-value. 
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A. Definitions 
 

Aleatory Pertaining to stochastic (non-deterministic) events, the outcome of which is 
described by a probability.  From the Latin alea (game of chance, die). 

 
Context The set of environmental conditions and circumstances, both helpful and adverse, 

that surround a reliability or risk-relevant event.  In the analysis of human 
performance, context includes both system-manifested impacts (e.g., available time, 
ergonomics, and task complexity) and human-manifested impacts (e.g., stress level, 
degree of training, fatigue).  In the analysis of hardware or software performance, 
context includes the operational environments and interactions with other hardware, 
software, and human elements. 

 
Bayesian Inference A process of inference using Bayes' Theorem in which knowledge is used to newly 

infer the plausibility of a hypothesis.  This process (Bayesian inference) produces 
information that adds to organizational knowledge. 

 
Component A group of parts designed to work together to perform a specific function.  

Components are constituents of systems and subsystems. 
 
Credible Interval Bayesian inference produces a probability distribution.  The “credible interval” 

consists of the values at a set (one low, one high) of specified percentiles from the 
resultant distribution.  For example, a 90% credible interval ranges from the value of 
the 5th percentile to the value of the 95th percentile. 

 
Data Distinct observed (e.g., measured) values of a physical process.  Data may be 

factual or not.  Data may be subject to uncertainties, such as imprecision in 
measurement, truncation, and interpretation errors. 

 
Distribution A cumulative distribution function represents the probability that the entity associated 

with the probability is less than or equal to a certain value [e.g., F(x) = P(X < x), where 
F is the cumulative distribution function and X is the entity of interest].  Differentiating 
the cumulative distribution function yields the probability density function, or f(x) = 
dF(x)/dx.  The total area under a normalized probability density function is equal to, by 
definition, 1.0. 

 
Deterministic Pertaining to exactly predictable (or precise) events, the outcome of which is known 

with certainty if the inputs are known with certainty.  As the antitheses of aleatory, 
this is the type of model most familiar to scientists and engineers and include 
relationships such as E=mc2, F=ma, F=G m1 m2 /r2, etc. 

 
Epistemic Pertaining to the degree of knowledge of models and their parameters.  From the 

Greek episteme (knowledge). 
 

Expected Value The expected value, or mean, is the arithmetic sum of the values of a random 
variable divided by the total number of values.  Common nomenclature to indicate 
the expected value of a variable X is E[X].  The expected value represents a 
“central” point of a distribution.  

 
Failure A loss of function for a system, subsystem, component, or part. 
 
Failure Cause A causal impact leading, either indirectly or directly, to failure. 
 
Failure Effect An outcome resulting from a failure.  A failure may have multiple effects. 
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Failure Mode A specific type of failure, describing the manner of failure. 
 
Generic Data Surrogate or non-specific information related to a class of parts, components, 

subsystems, or systems. 
 
Homogeneous A set of information made up of similar constituents. A homogeneous population is 

one in which each item is of the same type. 
 

Inference The process of obtaining a conclusion based on what one knows. 
 
Information The result of evaluating, manipulating, or organizing data/information in a way that 

adds to knowledge. 
 

Knowledge What is known from gathered information. 
 
Model A mathematical construct that converts information (including data as a subset of 

information) into knowledge.  Two types of models are used for safety analysis 
purposes, aleatory and deterministic. 

 
Odds The odds of an event is determined by taking the ratio of the event probability and 

one minus the event probability, or:  Odds = Event Probability / (1 – Event 
Probability). 

 
Part The smallest piece of hardware contained in a component.  It refers to one piece of 

hardware, or a group of pieces, that cannot be disassembled without destruction.  
Examples of a part are a nut, bolt, resister, or electronic chip. 

 
Percentile A percentile, p, is a specific value x such that approximately p% of the uncertainty is 

lower than x and (100-p)% of the uncertainty is larger than x.  Common percentiles 
used in PRA include the lower-bound (5th percentile), the median (50th percentile), 
and upper-bound (95th percentile). 

 
Reliability The degree of plausibility that an item (e.g., component or system) would not fail 

during a specified time (or mission). 
 

Subsystem A group of components comprised as a portion of a system. 
 
System A group of subsystems and components organized as a whole.  A system may have 

one or more functions. 
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Figure B.1 Venn diagram with showing 3 events and
10 outcomes. 

B. Probability Fundamentals 

B.1 Events  
Any process, hypothetical or not, for which the result is uncertain can be considered an experiment, 
such as counting failures over time or measuring failure times.  The result of one experiment is an 
outcome.  Experiment trials would not be expected to produce the same outcomes due to process 
variations or other causal factors.  The set of all possible outcomes is the sample space, which can be 
discrete (e.g., pass, fail) or a continuum (e.g., time to failure).  An event E is a specified set of 

outcomes in a sample space S (denoted SE ⊂ , 
where ⊂ denotes a subset). 

Many events of interest are compound events, 
formed by some composition of two or more 
events.  Composition of events can occur through 
the union, intersection, or complement of events, 
or through combinations of these. 

For two events, E1 and E2, in a sample space S, 
the union of E1 and E2 is the event containing all 
sample points in E1 or E2 or both, and is denoted 
by the symbol ( )21 EE ∪ .  A union is the event 
that either E1 or E2 or both E1 and E2 occur. 

The intersection of E1 and E2 is the event 
containing all sample points that are in both E1 
and E2, denoted by the symbol ( )21 EE ∩ .  The 

intersection is the event that both E1 and E2 occur. 

Figure B.1 shows a picture, called a  Venn diagram, of some outcomes and events.  In this example, 
the event E1 contains three outcomes, event E2 contains five outcomes, the union contains seven 
outcomes, and the intersection contains one outcome. 

The complement of an event E is the collection of all sample points in S and not in E.  The 
complement of E is denoted by the symbol E  (alternatively /E) and is the event that all the outcomes 
in S that are not in E occur. 

It is sometimes useful to speak of the empty or null set, a set containing no outcomes.  In Figure B.1, 
the event E3 is empty.  It does not occur. 

Two events, E1 and E2, are said to be mutually exclusive if the event ( )21 EE ∩  contains no 
outcomes in the sample space S.  That is, the intersection of the two events is the null set.  Mutually 
exclusive events are also referred to as disjoint events.  Three or more events are called mutually 
exclusive, or disjoint, if each pair of events is mutually exclusive.  In other words, no two events can 
happen together. 
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B.2 Probability Concepts  
Each of the sample space outcomes has a probability associated with it.  Probabilities of outcomes 
are seldom known; they are usually estimated via Bayesian methods.  Once determined, the 
probabilities must satisfy two requirements: 

• The probability of each outcome must be a number 10: ≤≤ xx . 

• The probabilities of all outcomes in a given sample space must sum to one. 

Associated with any event E of a sample space S is the probability of the event, Pr(E).  Probabilities 
are associated with each outcome in the sample space through a probability model.  Probability 
models may be developed based on information derived from outcomes obtained from an experiment 
(where an “experiment” could be any process such as operating a component or system).   

 

B.3 Basic Rules and Principles of Probability  
The definition of probability satisfies the following axioms: 

• If Pr(E) is defined for a type of subset of the sample space S, and if Pr(E) ≥ 0, for every event 
E, and 

• ...)Pr()Pr(...)Pr( 2121 ++=∪∪ EEEE , where the events E1, E2, . . . , are such that no 
two have a point in common, and 

• Pr(S) = 1, 

then Pr(E) is called a probability function. 

This probability function defines how the probability is distributed over various subsets E of a sample 
space S.  From this definition, several rules of probability follow that provide additional properties of a 
probability function. 

The probability of an impossible event (the empty or null set) is zero, written as: 

Pr(∅) = 0, where ∅ is the null set.  The probability of the complement of E is given by: 

EEE =−= )Pr(1)Pr( . 

In general, the probability of the union of any two events is given by: 

)Pr()Pr()Pr()Pr( 212121 EEEEEE ∩−+=∪ . 

If E1 and E2 are mutually exclusive, then =∩ )Pr( 21 EE  Pr(∅) = 0, and 

)Pr()Pr()Pr( 2121 EEEE +=∪ , 

which is a special case of the second axiom of probability stated above and is sometimes referred to 
as the addition rule for probabilities. 
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For three events, 

)Pr()Pr()Pr()Pr()Pr()Pr()Pr()Pr( 321323121321321 EEEEEEEEEEEEEEE ∩∩+∩−∩−∩−++=∪∪
. 

This rule is also referred to as the inclusion-exclusion principle and can be generalized to n events.  

The simultaneous occurrence of two or more events (the intersection of events) is called a joint event, 
and its probability is called a  joint probability.  Thus, the joint probability of both events E1 and E2 
occurring simultaneously is denoted by )Pr( 21 EE ∩ . 

The probability associated with one event, irrespective of the outcomes for the other events, can be 
obtained by summing all the joint probabilities associated with all the outcomes for the other events, 
and is referred to as a  marginal probability.  A marginal probability is therefore the unconditional 
probability of an event, unconditioned on the occurrence of any other event. 

Two events E1 and E2 are often related in such a way that the probability of occurrence of one 
depends on whether the other has or has not occurred.  The conditional probability of one event, 
given that the other has occurred, is equal to the joint probability of the two events divided by the 
marginal probability of the given event.  Thus, the conditional probability of event E2, given event E1 
has occurred, denoted Pr(E2∣E1), is: 

)Pr(
)Pr()|Pr(

1

21
12 E

EEEE ∩
= , 

for Pr(E1) > 0.  If Pr(E1) = 0, Pr(E2∣E1) is undefined. 

Rearranging this equation yields: 

)|Pr()Pr()|Pr()Pr()Pr( 21212121 EEEEEEEE ==∩ . 

Calculation of joint probability requires the concept of statistical independence.  Two events E1 and 
E2 are statistically independent if the probability of one event does not change whenever the other 
event occurs or does not occur.  Thus, E2 is independent of E1 if 

)Pr()|Pr( 212 EEE = . 

If E2 is independent of E1, then E1 is independent of E2.  It follows that events E1 and E2 are 
independent if their joint probability is equal to the product of the unconditional, or marginal, 
probabilities of the events:  

)Pr()Pr()Pr( 2121 EEEE =∩ , 

which is sometimes referred to as the multiplication rule for probabilities.  If Pr(E1) varies depending on 
whether or not event E2 has occurred, then events E1 and E2 are said to be statistically dependent. 

If E1, E2, ... are mutually exclusive, and if the union of E1, E2, ... equals the entire sample space, then 
the events  E1, E2, ... are said to form a partition of the sample space.  Exactly one of the events must 
occur, not more than one but exactly one.  In this case, the law of total probability says 

∑= )Pr()|Pr()Pr( ii EEAA . 
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A special case can be written when there are only two sets.  In this case, write E1 as E and E2 as /E .   

Then the law of total probability simplifies to 

)Pr(/)/|Pr()Pr()|Pr()Pr( EEAEEAA +=   

for event A.  

The concepts of mutually exclusive events and statistically independent events are often confused.  If 
E1 and E2 are mutually exclusive events and Pr(E1) and Pr(E2) are nonzero, Pr(E1 ∩ E2) = Pr(∅) = 0.  

From the conditional probability equation: 
)Pr(

)Pr()|Pr(
1

21
12 E

EEEE I
=  = 0, which does not equal 

Pr(E2).  Thus, the two events are not statistically independent.  Mutually exclusive events cannot be 
statistically independent and vice versa. 

 

B.4 Random Variables and Probability Distributions  
 

B.4.1 Random Variables  
A random variable is any mathematical construct that associates real numbers with observable 
outcomes of an experiment.  If the numbers associated with the outcomes of an experiment are all 
distinct and countable, the corresponding random variable is called a discrete random variable.  An 
example of a discrete random variable would be the variable tracking the outcomes of a coin toss, 
either heads or tails. 

If the sample space contains an infinite number of outcomes (like those contained in any interval), the 
random variable is continuous.  Time T is a common continuous random variable, for example time 
to failure where the random variable T can assume any value over the range 0 to ∞. 

B.4.2 Probability Distributions  
A probability function associates a probability with each possible value of a random variable and, 
thus, describes the distribution of probability for the random variable.  For a discrete random variable, 
this function is referred to as a discrete probability distribution function (PDF).  A discrete PDF, 
commonly denoted by f, is also referred to as a discrete distribution, or discrete probability mass 
function, for example: 

• The discrete random variable is X 

• This random variable can take on a value x 

• The probability distribution function is denoted f(x) [alternatively, as Pr(x)] 

The notation used here is that a random variable itself is given in upper case while an observed value 
(data) of the random variable is denoted in lower case.   

Note that the sum of the probabilities over all the possible values of x must be 1. 
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Some discrete random variables have wide application and have therefore been defined and given 
specific names.  The two most commonly used discrete random variables in PRA applications are the 
binomial and Poisson random variables.  These are also called aleatory models. 

A continuously distributed random variable has a  density function, a nonnegative integral function, 
with the area between the graph of the function and the horizontal axis equal to 1.  This density 
function is also referred to as the continuous PDF.  If x denotes a value that the continuous random 
variable X can assume, the PDF is often denoted as f(x).  The probability that X takes a value in a 
region A is the integral of f(x) over A.  In particular, 

∫=≤≤
b

a

dxxfbXa )()Pr(  

and  

xxfxxXx Δ≈Δ+≤≤ )()Pr(        
 (B.1) 

for small xΔ . 

Some common continuous distributions in PRA are the lognormal, exponential, gamma, and beta 
distributions.   

B.4.3 Cumulative Distribution Functions  
Discrete probability distributions provide point probabilities for discrete random variables and 
continuous PDFs provide point densities for continuous random variables.  A related function is the 
cumulative distribution function (CDF).  This function is defined as the probability that the random 
variable assumes values less than or equal to the specific value x, and is denoted F(x). 

For a discrete random variable X, with outcomes xi, and the corresponding probabilities Pr(xi), F(x) is 
the sum of the probabilities of all xi ≤ x.  That is, 

∑
≤

=≤=
xx

i
i

xxXxF )Pr()Pr()( . 

For a continuous random variable X, F(x) is the area beneath the PDF f(x) up to x.  F(x) is the integral 
of f(x): 

∫
∞−

=≤=
x

dyyfxXxF )()Pr()( . 

Thus, f(x) is the derivative of F(x).  If X takes on only positive values, the limits of integration are zero to 
x.  Note that, because F(x) is a probability, 1)(0 ≤≤ xF .  If X ranges from - ∞ to + ∞, then 

0)( =−∞F and 1)( =+∞F . 

If X has a restricted range, with a and b being the lower and upper limits of X respectively, a < X < b, 
then 

F(a) = 0 and F(b) = 1. 
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Also, F(x) is a non-decreasing function of x, that is, if )()(, 1212 xFxFxx ≥> . Another important 
property of F(x) is that 

)()()Pr( 1221 xFxFxXx −=≤<  

for discrete random variables and 

)()()Pr( 1221 xFxFxXx −=≤<  

for continuous random variables. 

An example of a PDF and the associated CDF for a continuous distribution is shown in Figure B.2. 

 

Figure B.2: Probability density function  
(PDF) and cumulative distribution function 
(CDF) 
 
 
 

B.4.4 Reliability and Hazard Functions  

Definitions 

There are also characterizations that have special interpretations for time-to-failure distributions.  Let T 
denote the random time to failure of a system.  The reliability function of a system is defined as 

)Pr()( tTtR >=  . 

Hence, R(t), called the reliability at time t, is the probability that a system does not fail in the time 
interval [0, t] or equivalently, the probability that the system is still operating at time t.  (This discussion 
uses the notation (a, b) to mean the set of times > a and ≤ b, but the distinction between < and ≤ is a 
mathematical fine point, not important in practice.)  The reliability function is also sometimes called the 
survival function.  It is equal to )(1 tF− . 

When used as a reliability criterion, it is common to state a time, say t0, called the mission time, and 
require that the reliability at mission time t0 be at least some prescribed level, say R0.  For example, a 
power unit might be required to operate successfully for at least 12 hours with probability at least 0.95.  
The requirement in this case is R0 = 0.95 and t0 = 12.  In terms of the reliability function, this would 
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mean 95.0)12( ≥hR .  One interpretation would be that such a power unit would perform for the 
required mission time for 95% of the situations when it is called on to do so.  Another interpretation is 
that 95% of all such power units would perform as required. 

Consider a system that operates for a particular mission time, unless it fails.  If it fails, no immediate 
repairs are attempted, so some authors call the system nonrepairable.  A common way to 
characterize this system’s reliability is in terms of the hazard function.  Suppose that the system is still 
operating at time t, and consider the probability that it will fail in a small interval of time (t, t + ∆t).  This 
is the conditional probability )|Pr( tTttTt >Δ+≤< .   The hazard function, h, is defined so that 
when ∆t is small: 

)|Pr()( tTttTttth >Δ+≤<≈Δ        
 (B.2) 

This function is also encountered, under the name of λ, in some treatments of Poisson processes.  
The hazard function gives, approximately, 

)(
)(

)Pr(
)Pr()(

tR
ttf

tT
ttTttth Δ

≈
>

Δ+≤<
≈Δ  

This is the basis for the formal definition of h: 

)(
)()(

tR
tfth =  

For details, see (Bain and Engelhardt 1992, p. 541).  Equation B.2 is analogous to Equation B.1, 
except that the probability in Equation B.2 is conditional on the system having survived until t, whereas 
Equation B.1 refers to all systems in the original population, either still surviving or not.  Suppose a 
large number, say N, of identical systems are put into operation at time t = 0, and n is the number 

which fail in the interval (t, t + ∆t).  It follows that 
N
nttf ≈Δ)( , the observed relative frequency of 

systems failed in the interval (t, t + ∆t).  On the other hand, if Nt denotes the number of the original N 

systems which are still in operation at time t, then 
tN

ntth ≈Δ)( , the observed relative frequency of 

surviving systems which fail in this same interval.  Thus, f(t) is a measure of the risk of failing at time t 
for any system in the original set, whereas h(t) is a measure of the risk of failing at time t, but only for 
systems that have survived this long. 

The hazard function is used as a measure of “aging” for systems in the population.  If h(t) is an 
increasing function, then systems are aging or wearing out with time.  Of course, in general the hazard 
function can exhibit many types of behavior other than increasing with time, and other possible 
behaviors are discussed later in this handbook.  In actuarial science the hazard function is called the 
force of mortality, and it is used as a measure of aging for individuals in a population.  More 
generally, the hazard function gives an indication of “proneness to failure” of a system after time t has 
elapsed.  Other terms which are also used instead of hazard function are hazard rate and failure 
rate.  The term failure rate is often used in other ways in the literature of reliability (Ascher and 
Feingold 1984, p. 19).  
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Relations among PDF, Reliability, and Hazard  

Any one of the functions F, f, R, and h completely characterizes the distribution, and uniquely 
determines the other three functions.  The definition 

)(
)()(

tR
tfth =  

was given above.  The right hand side can be written as the derivative of −ln[R(t)], leading to 

( ))(exp)(exp)(
0

tHduuhtR
t

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫  

where the function H(t) is called the cumulative hazard function.  The reliability function, R(t), and 
the CDF, F(t) = 1 − R(t), are therefore uniquely determined by the hazard function, h(t), and the PDF 
can be expressed as 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= ∫

t

duuhthtf
0

)(exp)()( . 

Figure B.3 shows the reliability, hazard and the cumulative hazard function for the example of 
Figure B.2. 

 

The hazard function in Figure B.3 is an 
increasing function of time.  Therefore, it would 
be consistent with systems with a dominant 
wear-out effect for the entire life of the system.  
The lifetime of a system may be divided into 
three typical intervals: the burn-in or infant 
period, the random or chance failure period 
and the wear-out period.  During the useful 
period, the dominant cause of failures is 
“random” failures.  For example, systems might 
fail due to external causes such as power 
surges or other environmental factors rather 
than problems attributable to the defects or 
wear-out in the systems.  This example is 
somewhat idealized because for many types of 
systems the hazard function will tend to 
increase slowly during the later stages of the 
chance failure period.  This is particularly true 
of mechanical systems.  On the other hand, for 
many electrical components such as 
transistors and other solid-state devices, the 
hazard function remains fairly flat once the 
burn-in failure period is over. 

 

Figure B.3 The reliability function, hazard function and 
cumulative hazard function. 
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B.4.5 Joint, Marginal, and Conditional Distributions  
Many statistical methods are based on selecting a sample of size n from a probability distribution f(x).  
Such a sample is denoted by 

(X1 = x1, X2 = x2, ..., Xn = xn) = (x1, x2, ..., xn), 

where x1, x2, ..., xn are the actual values of the random variable X which has the distribution f(x). 

The concepts of simultaneous events and joint, marginal, and conditional probability, discussed in 
Section B.3, also pertain to random variables and probability distributions.  Two random variables X1 
and X2 (both continuous, both discrete, or one of each) can have a  joint distribution, or joint PDF, 
denoted f(x1, x2).  The point (x1, x2) can be thought of as a point in two-dimensional Euclidean space.  
Similarly, n random variables have joint distribution f(x1, x2, ..., xn).  Also, the n random variables have 
joint cumulative distribution F(x1, x2, ..., xn). 

The  marginal distribution of Xi is defined as the joint PDF integrated (for continuous random 
variables) or summed (for discrete random variables) over the n −1 other corresponding dimensions, 
resulting in a function of xi alone.  Thus, the marginal distribution of Xi is the unconditional PDF of Xi, 
fi(xi). 

The  conditional distribution of X1 given X2, denoted )|( 21 xxg , is defined by 

)(
),()|(

22

21
21 xf

xxfxxg =  

where f2(x2) ≠ 0, and can be shown to satisfy the requirements of a probability function.  Sampling from 
a conditional PDF would produce only those values of X1 that could occur for a given value of X2 = x2.  
The concept of a conditional distribution also extends to n random variables. 

Two random variables X1 and X2 are independent if their joint PDF is equal to the product of the two 
individual PDFs.  That is, 

f(x1, x2) = f(x1) f(x2). 

In general, X1, X2, ..., Xn are  independent random variables if 

f(x1, x2, ..., xn) = f(x1) ⋅ f(x2) ⋅ . . . ⋅ f(xn). 

 

B.4.6 Characterizing Random Variables and their Distributions  
Distribution Characteristics  

Probability distributions have many characteristics of interest, some of which are described by 
distribution parameters.  The term parameter is used to refer to a fixed characteristic.  In contrast to 
a statistic, which changes from sample to sample, a parameter for a particular distribution is a constant 
and does not change.  However, when a parameter’s value is not known, sample statistics can be 
used to estimate the parameter value.  Parameter estimation is discussed in Appendix B.10. 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS  

 B-10

A very useful distribution characteristic is the parameter that serves as a measure of central tendency, 
which can be viewed as a measure of the middle of a distribution.  When a change in the parameter 
slides the distribution sideways, as with the mean of a normal distribution, the parameter is referred to 
as the location parameter.  It serves to locate the distribution along the horizontal axis.  Sometimes, 
however, a change in the parameter squeezes or stretches the distribution toward or away from zero, 
as with the mean of the exponential distribution.  In that case, the parameter is a scale parameter. 

In any case, the most common measure of central tendency is the  mean, µ, of the distribution, which 
is a weighted average of the outcomes, with the weights being probabilities of outcomes.  For a 
discrete random variable X, 

∑=
i

iiX xx )Pr(μ . 

For a continuous random variable X, 

∫
∞

∞−

= dxxxfX )(μ . 

Another distribution characteristic commonly used as a measure of central tendency, or location, is the  
median, which is the point along the horizontal axis for which 50% of the area under the PDF lies to its 
left and the other 50% to its right.  The median of a random variable, X, is commonly designated 
med(X) or x.50 and, for a continuous distribution, is the value for which Pr(X ≤ x.50) = .50 and Pr(X ≥ x 50) 
= .50.  In terms of the cumulative distribution, F(x 50) = .50.  The median is a specific case of the 
general 100αth  percentile, xα, for which F(xα) = α.  When the factor of 100 is dropped, xα is called the 
α quantile.  Along with the median as the 50th percentile (or equivalently, the 0.5 quantile), the 25th 
and 75th percentiles are referred to as quartiles of a distribution. 

Figure B.4 shows the quartiles, x0 25 and x0.75, the median, x0.50, and the mean.  The quartiles and the 
median divide the area under the density curve into four pieces, each with the same area.  Note that 
the mean is greater than the median in this example, which is the usual relation when the density has 
a long right tail, as this one does. 

Figure B.5 shows the same quantities plotted with the CDF.  By definition, the q quantile, xq, satisfies 
F(xq) = q. 
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Figure B.4 Density, showing quartiles, median, and 
mean. 

Figure B.5 Cumulative distribution function (CDF) 
showing quartiles, median, and mean. 
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The mean and the median are used to measure the center or location of a distribution.  Since the 
median is less affected by tail-area probabilities, it can be viewed as a better measure of location than 
the mean for highly-skewed distributions.  For symmetric distributions, the mean and median are 
equivalent. 

A different measure of center or location of a distribution is the  mode, which indicates the most 
probable outcome of a distribution.  The mode is the point along the horizontal axis where the “peak” 
or maximum of the PDF is located.  Note that the mode does not necessarily have to be near the 
middle of the distribution.  It simply indicates the most likely value of a distribution.  Note also that a 
peak does not have to exist and, in some cases, more than one peak can exist. 

Another important characteristic of a distribution is its  variance, denoted by σ2.  The variance is the 
average of the squared deviations from the mean.  The  standard deviation, σ, of a distribution is the 
square root of its variance.  Both the variance and standard deviation are measures of a distribution’s 
spread or dispersion.  For a discrete random variable X, 

( ) ( )∑ −=
i

iiX xx Pr22 μσ . 

For a continuous random variable X, 

( )∫
∞

∞−

−= dxxfxX )(22 μσ  . 

Though less used than the mean and variance, the skewness is defined as 

( )
3

3

σ
μ−XE

 . 

It measures asymmetry.  It is usually positive if the density has a longer right tail than left tail, and 
negative if the density has a longer left tail than right tail.  For example, the density in Figure B.4 has 
positive skewness. 

Mathematical Expectation  

The definitions of distribution means and variances arise from mathematical  expectation and  
moments of a distribution, which form an important method for calculating the parameters of a 
known PDF  In general, the expectation (expected value or mathematical expectation) of a function 

)(Xg , denoted [ ])(XgE , is 

[ ] ∑=
i

ii xxgXgE )Pr()()(  , 

when X is discrete, and 

[ ] ∫
∞

∞−

= dxxfxgXgE )()()(  , 

when X is continuous. 
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Because of their wide use, several expectations have special names.  For g(X) = X, the expectation 
E(X) becomes the mean of X.  Thus, the mean is also commonly referred to as the expected value (or 
expectation) of the random variable X.  In addition, for g(X) = X, the expectation E(X) is known as the 
first moment about the origin. 

The variance, σX
2, also denoted by Var(X), of a distribution is defined by mathematical expectation with 

( )2)( XXXg μ−= .  Thus, 

( )[ ] ( )[ ]2222 )()( XEXEXEXVar XX −=−== μσ  , 

which is known as the second moment about the mean. 

Ordinary moments (moments about the origin) of a random variable X are defined as 

( )r
r XEM = , 

for r = 1, 2, ... .  Thus, 

( ) [ ] 2
12

222 )()( MMXEXEXVar X −=−== σ . 

Central moments (moments about the mean) of a random variable X are defined as being equal to 
( )[ ]rXE μ−  for r = 2, 3, ... .  The ordinary and central moments can be seen to define characteristics 

of distributions of random variables. 

An important rule of expectation commonly used in PRA is that the expected value of a product of 
independent random variables is the product of their respective expected values.  That is, E(X1AX2A ... 
AXn) = E(X1)AE(X2)A ... AE(Xn) when all Xi are independent.  This rule also applies to conditionally 
independent random variables.  If the random variables X2, X3, ..., Xn are all conditionally independent 
given X1 = x1, then 

( ) )|(...)|()|(|,...,, 11312132 xxAfAxxfAxxfxxxxf nn ⋅⋅⋅=  

It follows that  

)|(...)|()|()|...( 11312132 xXAEAxXEAxXExAXAAXXE nn ⋅⋅⋅= . 

Thus, 

[ ])|(...)|()|()...( 11312121 xXAEAxXEAxXEAXEAXAXAXE nn ⋅⋅⋅⋅=⋅⋅⋅ . 

Covariance and Correlation  

For two random variables, X and Y, with means μx and  μy, the expected value E[(X − μx)(Y − μy)] is 
called the  covariance of X and Y, denoted ),( YXCov .  The covariance of X and Y divided by the 
product of the standard deviations of X and Y is called the correlation coefficient (or correlation) 
between X and Y, denoted ),( YXCor .  That is, 

])[(])[(
)()(

)()(
),(),(

22
YX

YX

YEXE
YEXE

YVarXVar
YXCovYXCor

μμ
μμ
−−

−−
==  . 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS  

 B-13

The correlation coefficient measures the degree of association between X and Y, that is, the strength 
of a linear relationship between X and Y. 

B.4.7 Distribution of a Transformed Random Variable  
This section considers the distribution of Y = h(X), when X has a known distribution and h is a known 
function.  The problem is straightforward when X has a discrete distribution.  When X is continuous 
and h is monotone, either increasing or decreasing, the CDFs are also related in the natural way, as 
follows.  Let F be the CDF of X and let G be the CDF of Y.  Then we have 

[ ]yXhyYyG ≤=≤= )(Pr)Pr()(  . 

If h is monotone increasing, this equals 

[ ] )()(Pr 1 xFyhX =≤ − , 

where x and y are related by ).(),( 1 yhxxhy −==   In summary, G(y) = F(x). 

If, instead, h is monotone decreasing, then a similar argument gives 

G(y) = 1 − F(x) . 

The surprise comes with the densities.  Differentiate both sides of either of the above equations with 
respect to y, to obtain the density of y.  This involves using the chain rule for differentiation.  The result 
is 

dy
dxxfyg )()( =  . 

That is, the density of Y is not simply equal to the density of X with a different argument.  There is also 
a multiplier, the absolute value of the derivative.  If Y = exp(X), then 

)/1)]([ln()( yyfyg =  

If Y = 1/X, then 

)/1)(/1()( 2yyfyg = . 

The formulas here are the basis for the densities of the lognormal distribution and the inverted gamma 
distribution. 

 

B.5 Bayes’ Theorem  
It is frequently desired to calculate the probability of an event A given that another event B has 
occurred at some prior point in time.  It can also be of interest to calculate the probability that a state 
exists given that a certain sample is observed, for example, belonging to a certain population based on 
a sample measurement or observation.  Conditional probability leads directly to  Bayes’ Theorem, 
which, along with subjective probability, forms the basis for Bayesian inference commonly used in 
PRA. 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS  

 B-14

Bayes’ Theorem states that: if A1, A2, ..., An are a sequence of disjoint events and if B is any other 
event such that Pr(B) > 0, then 

)Pr(
)Pr()|Pr()|Pr(

B
AABBA ii

i =        

 (B.3) 

Where 

∑
=

=
n

j
jj AABB

1
)Pr()|Pr()Pr(  . 

Equation B.3 follows from the definition of conditional probability: 

)Pr(
)|Pr(

)Pr(
)Pr()|Pr(

B
AB

B
ABBA ii

i =
∩

=  

The )|Pr( BAi is the posterior (or a posteriori) probability for the event Ai, meaning the probability of 
Ai once B is known.  The Pr(Ai) is the prior (or a priori) probability of the event Ai before 
experimentation or observation.  The event B is the observation.  The )|Pr( iAB is the probability of 
the observation given that Ai is true.  The denominator serves as a normalizing constant. 

Calculating the posterior probabilities Pr(Ai∣B) requires knowledge of the probabilities Pr(Ai) and 
Pr(B∣Ai), i = 1, 2, ..., n.  The probability of an event can often be determined if the population is known, 
thus, the Pr(B∣Ai) can be determined.  However, the Pr(Ai), i = 1, 2, ..., n, are the probabilities that 
certain states exist and are either unknown or difficult to ascertain.  These probabilities, Pr(Ai), are 
called prior probabilities for the events Ai because they specify the distribution of the states prior to 
conducting the experiment. 

Application of Bayes’ Theorem utilizes the fact that Pr(B∣Ai) is easier to calculate than Pr(Ai∣B).  If 
probability is viewed as degree of belief, then the prior belief is changed, by the test evidence, to a 
posterior degree of belief.  In many situations, some knowledge of the prior probabilities for the events 
A1, A2, ..., An exists.  Using this prior information, inferring which of the set A1, A2, ..., An, is the true 
population can be achieved by calculating the Pr(Ai∣B) and selecting the population that produces the 
highest probability. 

Equation B.3 pertains to disjoint discrete events and discrete probability distributions.  Bayes’ Theorem 
has analogous results for continuous PDF’s.  Suppose X is a continuous random variable, with PDF 
depending on parameter θ, and with conditional PDF of X, given θ, specified by f(x∣θ).  Consider θ to 
be a possible value of the random variable Θ (using the convention of denoting random variables with 
uppercase letters).  If the prior PDF of Θ is denoted g(θ), then for every x such that f(x) > 0 exists, the 
posterior PDF of Θ, given X = x, is 

)(
)()|()|(

xf
gxfxg θθθ =  , 

Where 

∫= θθθ dgxfxf )()|()(  
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is the marginal PDF of X.  Again, the prior and posterior PDFs can be used to represent the 
knowledge and beliefs about the likelihood of various values of a random variable Θ prior to and 
posterior to observing a value of another random variable X. 

B.6 Discrete Random Variables  
 

B.6.1 Binomial Distribution  
The binomial distribution (Bernoulli model) describes the number of failures X in n independent trials.  
The random variable X has a binomial distribution if: 

1. The number of random trials is one or more and is known in advance. 

2. Each trial results in one of two outcomes, usually called success and failure (or could be pass-
fail, hit-miss, defective-nondefective, etc.). 

3. The outcomes for each trial are statistically independent. 

4. The probability of failure, p, is constant across trials. 

Equal to the number of failures in the n trials, a binomial random variable X can take on any integer 
value from 0 to n.  The probability associated with each of these possible outcomes, x, is defined by 
the binomial(n, p) PDF as 

xnx pp
x
n

xX −−⎟
⎠

⎞
⎜
⎝

⎛
== )1()Pr(    ,  nx ,...,0=  

Here 

)!(!
!

xnx
n

x
n

−
=⎟

⎠

⎞
⎜
⎝

⎛
 

is the binomial coefficient and 

n! = n(n −1)(n −2) ... (2)(1) 

denotes n factorial, with 0! defined to be equal to 1.  This binomial coefficient provides the number of 
ways that exactly x failures can occur in n trials (number of combinations of n trials selected x at a 
time). 

The binomial distribution has two parameters, n and p, of which n is known.  (Although n may not 
always be known exactly, it is treated as known in this handbook.) 

The mean and variance of a binomial(n, p) random variable X are 

E(X) = np 

and 

Var(X) = np(1 − p). 
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Figure B.6 Three binomial probability distribution functions. 

 

Figure B.6 shows three binomial probability distribution functions, with parameter p = 0.25, and n = 4, 
12, and 40.  In each case, the mean is np.  The means have been aligned in the three plots. 
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B.6.2 Poisson Distribution  
The Poisson distribution provides a discrete probability model that is appropriate for many random 
phenomena that involve counts.  Examples are counts per fixed time interval of the number of items 
that fail, the number of customers arriving for service, and the number of telephone calls occurring.  A 
common use of the Poisson distribution is to describe the behavior of many rare event occurrences.  
The Poisson distribution is also frequently used in applications to describe the occurrence of system or 
component failures under steady-state conditions. 

The count phenomena that occur as Poisson random variables are not necessarily restricted to 
occurring over a time interval.  They could also be counts of things occurring in some region, such as 
defects on a surface or within a certain material.  A process that leads to a Poisson random variable is 
said to be a  Poisson process. 

The Poisson distribution describes the total number of events occurring in some interval of time t (or 
space).  The PDF of a Poisson random variable X, with parameter μ = λt, is 

( )
!!

)Pr(
x

te
x

exX
xtx λμ λμ −−

===                

 (B.4) 

for x = 0, 1, 2, ..., and x! = x(x − 1)(x − 2) ... (2)(1), as defined previously. 

The Poisson distribution has a single parameter μ, denoted Poisson(μ).  If X denotes the number of 
events that occur during some time period of length t, then X is often assumed to have a Poisson 
distribution with parameter μ = λt.  In this case, X is considered to be a Poisson process with intensity 
λ > 0 (Martz and Waller 1991).  The variable λ is also referred to as the event rate (or failure rate 
when the events are failures).  Note that λ has units 1/time; thus, λt = μ is dimensionless. 

If only the total number of occurrences for a single time period t is of interest, the form of the PDF in 
Equation B.4 using μ is simpler.  If the event rate, λ, or various time periods, t, are of interest, the form 
of the PDF in Equation B.4 using λt is more useful. 

The expected number of events occurring in the interval 0 to t is μ = λt.  Thus, the mean of the Poisson 
distribution is equal to the parameter of the distribution, which is why μ is often used to represent the 
parameter.  The variance of the Poisson distribution is also equal to the parameter of the distribution.  
Therefore, for a Poisson(μ) random variable X, 

E(X) = Var(X) = μ = λt. 

Figure B.7 shows three Poisson probability distribution functions, with means μ = 1.0, 3.0, and 10.0, 
respectively.  The three means have been aligned in the graphs.  Note the similarity between the 
Poisson distribution and the binomial distribution when μ = np and n is not too small. 

Several conditions are assumed to hold for a Poisson process that produces a Poisson random 
variable: 

For small intervals, the probability of exactly one occurrence is approximately proportional to the length 
of the interval (where ë, the event rate or intensity, is the constant of proportionality). 

For small intervals, the probability of more than one occurrence is essentially equal to zero (see 
below). 

The numbers of occurrences in two non-overlapping intervals are statistically independent. 
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More precise versions of condition 2 are:  (1) the 
probability of more than one event occurring in a very 
short time interval is negligible in comparison to the 
probability that only one event occurs (Meyer 1970), (2) 
the probability of more than one event occurring in a 
very short time interval goes to zero faster than the 
length of the interval (Pfeiffer and Schum 1973), and (3) 
simultaneous events occur only with probability zero 
(Çinlar 1975).   

The Poisson distribution also can serve as an 
approximation to the binomial distribution.  Poisson 
random variables can be viewed as resulting from an 
experiment involving a large number of trials, n, that 
each have a small probability of occurrence, p, of an 
event.  However, the rare occurrence is offset by the 
large number of trials.  As stated above, the binomial 
distribution gives the probability that an occurrence will 
take place exactly x times in n trials.  If p = μ/n (so that p 
is small for large n), and n is large, the binomial 
probability that the rare occurrence will take place 
exactly x times is closely approximated by the Poisson 
distribution with μ = np.  In general, the approximation is 
good for large n, small p, and moderate μ (say μ ≤ 20) 
(Derman et al. 1973). 

The Poisson distribution is important because it 
describes the behavior of many rare event occurrences, 
regardless of their underlying physical process.  It also 
has many applications to describing the occurrences of 
system and component failures under steady-state 
conditions.  These applications utilize the relationship 
between the Poisson and exponential (continuous 
random variable, see Section B.7.4) distributions:  the 
times between successive events follow an exponential 
distribution. 

 

 

B.7 Continuous Random Variables  
 

B.7.1 Uniform Distribution  
A uniform distribution, also referred to as a rectangular distribution, represents the situation where any 
value in a specified interval, say [a, b], is equally likely.  For a uniform random variable, X, because the 
outcomes are equally likely, f(x) is equal to a constant.  The PDF of a uniform distribution with 
parameters a and b, denoted uniform(a, b) is 

Figure B.7 Three Poisson probability distribution
functions. 
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ab
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−
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1)(  

for a ≤ x ≤ b. 

Figure B.8 shows the density of the uniform(a, b) 
distribution. 

The mean and variance of a uniform(a, b) distribution 
are 

2
)( abXE +

=  

And 

( )
12

)(
2abXVar −

=  

 

 

B.7.2 Normal Distribution  
One of the most widely encountered continuous probability distributions is the normal distribution, 
which has the familiar bell shape and is symmetrical about its mean value.  The importance of the 
normal distribution is due to:  (1) its applicability in describing a very large number of random variables 
that occur in nature and (2) the fact that certain useful functions of nonnormal random variables are 
approximately normal.  Details on the derivation of the normal distribution can be found in many basic 
mathematical statistics textbooks (e.g., Hogg and Craig 1995). 

The normal distribution is characterized by two parameters, μ and σ.  For a random variable, X, that is 
normally distributed with parameters μ and σ, the PDF of X is 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

−=
2

2
1exp

2
1)(

σ
μ

πσ
xxf       

 (B.5) 

for −∞ < x < ∞, −∞ < μ < ∞, and σ > 0.  Increasing μ moves the density curve to the right and 
increasing σ spreads the density curve out to the right and left while lowering the peak of the curve.  
The units of μ and σ are the same as for X. 

The mean and variance of a normal distribution with parameters μ and σ are 

E(X) = μ 

and 

2)( σ=XVar . 

The normal distribution is denoted normal(μ, σ 2 ). 

Figure B.8 Density of uniform(a, b) distribution. 
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Figure B.9 shows two normal(μ, σ2) densities.  The distribution is largest at μ and is more concentrated 
around μ when σ is small than when σ is large. 

Note the similarity of the normal density to a binomial PDF with large np or a Poisson PDF with large 
μ.  This illustrates the fact that a normal distribution can sometimes be used to approximate those 
distributions. 

 

The normal(0, 1) distribution is called the 
standard normal distribution, which, from 
Equation B.5, has PDF 

⎟⎟
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2
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2
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φ   

 (B.6) 

for −∞ < x < ∞.   

The cumulative distribution of the standard normal 
distribution is denoted by Φ.  Tables for the standard 

normal distribution are presented in almost all books on statistics. 

It can be shown that the transformed random variable Z = (X − μ)/σ is normal(0, 1).  Thus, to calculate 
probabilities for a normal(μ, σ 2) random variable, X, when μ ≠ 0 and/or σ 2 ≠ 1, the tables for the 
standard normal can be used.  Specifically, for any number a, 

⎥⎦
⎤

⎢⎣
⎡ −
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⎤
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⎡ −
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σ
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μ )()(Pr)()(Pr]Pr[ aaZaXaX  

Part of the importance of the normal distribution is that it is the distribution that sample sums and 
sample means tend to possess as n becomes sufficiently large.  This result is known as the central 
limit theorem, which states that, if X1, X2, ..., Xn, are independent random variables, each with mean μ 

and variance σ2, the sum of these n random variables, 'iXi, tends toward a normal(nμ, nσ2) distribution 
for large enough n.  Since the sample mean is a linear combination of this sum, the central limit 

theorem also applies.  Thus, X  = 'iXi/n tends to a normal(μ, σ2/n) distribution.  The importance of the 
central limit theorem is it can be used to provide approximate probability information for the sample 
sums and sample means of random variables whose distributions are unknown.  Further, because 
many natural phenomena consist of a sum of several random contributors, the normal distribution is 
used in many broad applications. 

Because a binomial random variable is a sum, it tends to the normal distribution as n gets large.  Thus, 
the normal distribution can be used as an approximation to the binomial distribution.  One rule of 
thumb is that the approximation is adequate for np ≥ 5. 

A Poisson random variable also represents a sum and, as presented previously, can also be used as 
an approximation to the binomial distribution.  It follows that the normal distribution can serve as an 
approximation to the Poisson distribution when μ = λt is large.  One rule of thumb is that the 
approximation is adequate for μ ≥ 5. 

 

Figure B.9 Two normal densities. 
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B.7.3 Lognormal Distribution  
Use of the lognormal distribution has become increasingly widespread.  It is commonly used as a 
distribution for failure time and in maintainability analysis (Martz and Waller 1991).  It has also been 
widely used as a prior distribution for unknown positive parameters. 

The lognormal distribution arises from the product of many independent random variables.  If 

∏=⋅⋅⋅=
i in YYYYY ...21  is the product of n independent positive random variables that are 

(nearly) identically distributed, then ( ) ( )∑∏ ==
i ii i YYY lnln)ln(  is a sum that tends toward a 

normal distribution. 

The distribution of Y is defined to be lognormal when the distribution of ln(Y) is normal.  That is, when 
Y is lognormal, ln(Y) is normal(μ, σ 2).  The parameters of the lognormal distribution are μ and σ, the 
parameters from the underlying normal distribution.  For a random variable, Y, that is lognormally 
distributed with parameters μ and σ, denoted lognormal(μ, σ 2), the PDF of Y is 

( ) ⎥⎦
⎤

⎢⎣
⎡ −−= 2

2 )ln(
2

1exp
2

1)( μ
σπσ

y
y

yf  

for 0 < y < ∞, −∞ < μ < ∞, and σ > 0.  Note the y in the denominator, for reasons explained in Section 
B.4.7.  The mean and variance of a lognormal(μ, σ 2) distribution are 

⎥
⎦

⎤
⎢
⎣

⎡
+=

2
exp)(

2σμYE  

and 

( ) ( )[ ]1exp2exp)( 22 −+= σσμYVar  . 

In addition, the median of a lognormal distribution is exp(μ) and the mode is exp(μ−σ2).  See Martz and 
Waller (1991) for more information on the lognormal distribution. 

Sometimes the median of Y = exp(μ) is used as a parameter.  In addition, a parameter commonly 
used in PRA is the error factor (EF), where  

)645.1exp( σ=EF , 

 and is defined as 

90.0*)()(Pr =⎥⎦
⎤

⎢⎣
⎡ ≤≤ EFYmedY

EF
Ymed

 . 

Figure B.10 shows three lognormal densities.  The value μ = −7 corresponds to a median of about 
1.E−3.  [More exactly, it corresponds to exp(−7) = 9.E−4.]  The value μ = −6.5 corresponds to a 
median of about 1.5E−3.  The value σ = 0.67 corresponds to an error factor EF = 3, and σ = 1.4 
corresponds to an error factor EF = 10. 

 

 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS  

 B-22

The two distributions with σ = 0.67 and different 
values of μ have essentially the same shape, but 
with different scales.  The larger μ corresponds to 
spreading the distribution out more from zero.  The 
distribution with σ = 1.4, and therefore EF = 10, has 
a very skewed distribution. 

To calculate probabilities for a lognormal(μ, σ 2) 
random variable, Y,  the tables for the standard 
normal can be used.  Specifically, for any number 
b, 

[ ] [ ] [ ])ln(Pr)ln()ln(PrPr bXbYbY ≤=≤=≤  

⎥⎦
⎤

⎢⎣
⎡ −

Φ=
σ

μ))(ln(b
 

where X = ln(Y) is normal(μ, σ 2). 

B.7.4 Exponential Distribution  
The exponential distribution is widely used for modeling time to failure and is inherently associated 
with the Poisson process (Martz and Waller 1991).  For a Poisson random variable X defining the 
number of failures in a time interval t and for a random variable T defining the time to failure, it can be 
shown that T has the exponential PDF 

tetf λλ −=)(  , 

for t > 0.  Thus, the time to first failure and the times 
between successive failures follow an exponential 
distribution and the number of failures in a fixed time 
interval follows a Poisson distribution. 

Figure B.11 shows two exponential densities, for two 
values of λ .  The intercept (height of the curve when t = 0) 
equals λ .  Thus, the figure shows that the distribution is 
more concentrated near zero if λ is large.  This agrees 
with the interpretation of λ as a frequency of failures and t 
as time to first failure. 

The exponential distribution parameter, λ, corresponds to 
the λt parameterization of the Poisson PDF in Equation 
B.4. and is referred to as the failure rate if the component 

or system is repaired and restarted immediately after each failure.  It is called the  hazard rate if the 
component or system can only fail once and cannot be repaired.  Section 4.6.2 discusses modeling 

duration times with different distributions and defines the hazard rate as [ ])(1
)()(
tF

tfth
−

= .  For the 

exponential distribution, the hazard rate is constant, λ.  The CDF of the exponential distribution is 

tetF λ−−= 1)( . 

The exponential distribution with parameter λ is denoted exponential(λ). The mean and variance of an 
exponential(λ) distribution are 

Figure B.10 Three lognormal densities. 

0 GC00 0433 1

Figure B.11 Two exponential densities. 
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λ
1)( =TE  

and 

2
1)(
λ

=TVar  . 

The relationship of the exponential distribution to the Poisson process can be seen by observing that 
the probability of no failures before time t can be viewed in two ways.  First, the number of failures, X, 
can be counted.  The probability that the count is equal to 0 is given by Equation B.4 as  

( ) tt eteX λλ λ −− ===
!0

)0Pr(
0

 . 

 Alternatively, the probability that first failure time, T, is greater than t is 

[ ] tt eetFtTtT λλ −− =−−=−=≤−=> 11)(1)Pr(1)Pr(  . 

Thus, the two approaches give the same expression for the probability of no failures before time t. 

The assumptions of a Poisson process require a constant failure rate, λ, which can be interpreted to 
mean that the failure process has no memory (Martz and Waller 1991).  Thus, if a device is still 
functioning at time t, it remains as good as new and its remaining life has the same exponential(λ) 
distribution.  This constant failure rate corresponds to the flat part of the common “bathtub” failure 
curve (number of failures plotted against time) and does not pertain to initial (burn-in) failures and 
wear-out failures. 

A different, sometimes useful, parameterization uses μ = 1/λ = E(T).  For example, if T represents a 
time to failure, μ is called the  mean time to failure.  If T is the time to repair, or to fire suppression, or to 
some other event, the name for μ is the  mean time to repair, or other appropriate name.  The 
exponential(μ) distribution for T has density 

⎟
⎠

⎞
⎜
⎝

⎛
−⎟

⎠

⎞
⎜
⎝

⎛
=

μμ
ttf exp1)(   , for t ≥ 0 

and CDF 

⎟
⎠

⎞
⎜
⎝

⎛
−−=

μ
ttF exp1)(   , for t  ≥ 0 . 

The units of μ are the same as the units of t, minutes or hours or whatever the data have.  The mean 
and variance are 

μ=)(TE    and 

2)( μ=TVar . 
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B.7.5 Weibull Distribution  
The Weibull distribution is widely used in reliability and PRA and generalizes the exponential 
distribution to include nonconstant failure or hazard rates (Martz and Waller 1991).  Different Weibull 
distributions have been successfully used to describe initial failures and wear-out failures.  The Weibull 
distribution is appropriate when a system is composed of a number of components, and system failure 
is due to any one of the components failing.  It, therefore, is commonly referred to as a distribution 
corresponding to failure of the weakest link. 

For a random variable, T, that has a Weibull distribution, the PDF is 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −
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⎠
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=
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α
θ

α
β tttf exp)(

1

 , 

for t ≥ θ ≥ 0 and parameters α > 0 and β > 0.  The parameter θ is a location parameter and 
corresponds to a period of guaranteed life that is not present in many applications (Martz and Waller 
1991).  Thus, θ is usually set to zero.  The CDF for T is 
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⎦
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−=
β

α
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for t ≥θ and α > 0 and β > 0. 

The α parameter is a scale parameter that expands or contracts the density along the horizontal axis.  
The β parameter is a shape parameter that allows for a wide variety of distribution shapes (Martz and 
Waller 1991) for further discussion and examples].  When β = 1, the distribution reduces to the 
exponential distribution.  Therefore, the Weibull family of distributions includes the exponential family of 
distributions as a special case. 

A Weibull distribution with parameters α, β, and θ is referred to as Weibull(α, β, θ) and, when θ = 0, 
Weibull(α,β).  The mean and variance of the Weibull distribution are given by Martz and Waller (1991) 
as 
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⎠
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Here, Γ is the gamma function, defined in Sec. 
B.7.6. 

Figure B.12 shows four Weibull densities, all 
with the same scale parameter, α, and all with 

location parameter θ = 0.  The shape parameter, 
β, varies.  When β < 1, the density becomes 
infinite at the origin.  When β = 1, the distribution 

is identical to the exponential distribution.  Surprisingly, the distribution is not asymptotically normal as 
β becomes large, although it is approximately normal when β is near 3. 

Figure B.12 Four Weibull densities, all having θ =
0 and all having the same α. 
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B.7.6 Gamma and Chi-Squared Distributions  
The gamma distribution is an extension of the exponential distribution and is sometimes used as a 
failure time model (Martz and Waller, 1991).  It is also often used as a prior distribution in Bayesian 
estimation (Sections B.6.2 and B.7.4) of the failure rate parameter λ from Poisson(λt) or exponential(λ) 
data.  The chi-squared distribution is a re-expression of a special case of the gamma distribution. 

The gamma distribution arises in many ways.  The distribution of the sum of independent 
exponential(λ) random variables is gamma, which forms the basis for a confidence interval for λ from 
exponential(λ) data.  Because the sum of n independent exponentially distributed random variables 
has a gamma distribution, the gamma distribution is often used as the distribution of the time, or 
waiting time, to the nth event in a Poisson process.  In addition, the chi-squared distribution is the 
distribution for a sum of squares of independent, identically distributed normal random variables, which 
forms the basis for a confidence interval for the variance of a normal distribution.  The gamma 
distribution is also often used as a distribution for a positive random variable, similar to the lognormal 
and Weibull distributions.  In PRA work, it is often used as a Bayesian distribution for an uncertain 
positive parameter. 

Two parameterizations of the gamma distribution are common, with various letters used for the 
parameters.  The parameterization given here is most useful for Bayesian updates, the primary use of 
the gamma distribution in this handbook.  For a random variable, T, that has a gamma distribution, the 
PDF is 

)exp(
)(

)( 1 β
α

β α
α

tttf −
Γ

= −  , 

for t, α, and β > 0.  Here 

∫
∞

−−=Γ
0

1)( dxex xαα  

is the  gamma function evaluated at α.  If α is a positive integer, Γ(α) = (α − 1)!. 

A gamma distribution with parameters α and β is referred to as gamma(α, β).  The mean and variance 
of the gamma(α, β) random variable, T, are: 

β
α

=)(TE  

and 

2)(
β
α

=TVar   . 

The parameters α and β are referred to as the shape and scale parameters.  The shape parameter α 
allows the density to have many forms.  If α is near zero, the distribution is highly skewed.  For α = 1, 
the gamma distribution reduces to an exponential(β−1) distribution.  Also, the gamma(α = n/2, β = ½) 
distribution is known as the chi-squared distribution with n degrees of freedom, denoted χ2(n).  The 
PDF for the χ2(n) distribution is found by substituting these values into the above formula for the 
gamma PDF  It also can be found in many statistics texts (e.g., Hogg and Craig 1995, Chapter 4). 
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In addition, if T has a gamma(α, β) distribution, then 2βT has a χ2(2α) distribution, which forms the 
defining relationship between the two distributions.  The gamma and chi-squared distributions can, 
therefore, be viewed as two ways of expressing one distribution.  Since the chi-squared distribution 
usually is only allowed to have integer degrees of freedom, the gamma distribution can be thought of 
as an interpolation of the chi-squared distribution. 

Percentiles of the chi-squared distribution are tabulated in many statistic books.  These tables can be 
used as follows to find the percentiles of any gamma 
distribution.  The 100×p percentile of a gamma(α, β) 
distribution is χ2

p(2α)/(2β), where χ2
p(2α) denotes the 

100×p percentile of the chi-squared distribution with 
2α degrees of freedom. 

Figure B.13 shows gamma densities with four shape 
parameters, α.  When α < 1, the density becomes 
infinite at 0.  When α = 1, the density is identical to 
an exponential density.  When α is large, the 
distribution is approximately a normal distribution.  
Note that when α = 0.5 and β = 0 (which is not a 
proper distribution), the distribution is the Jeffreys 
noninformative prior for a Poisson likelihood function. 

As stated previously, the sum of exponential lifetimes 
or waiting times has a gamma distribution, with the shape parameter α equal to the number of exponential lifetimes.  

Thus, when α is large, the gamma distribution is 
approximately normal. 

An alternative parameterization of the gamma 
distribution uses the scale parameter, say τ = β−1.  If T has a gamma(α, τ) distribution, its PDF is 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−

Γ
= −

τατ
α

α
tttf exp1)( 1  

for t, α, and τ > 0.  The mean and variance of the gamma(α, τ) random variable, T, are: 

ατ=)(TE      and    2)( ατ=TVar  . 

 

B.7.7 Inverted Gamma and Inverted Chi-Squared Distributions  
The inverted gamma distribution is often used as a prior distribution for Bayesian estimation of the 
time to failure of an exponential(λ) distribution (Martz and Waller 1991).  It is also used as a prior and 
posterior distribution for σ2 when the data have a normal distribution with variance σ2 (Box and Tiao 
1973, Lee 1997). 

For a gamma(α, β) random variable, T, W = 1/T has an inverted gamma distribution with PDF 
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  , 

for w, α, and β > 0.  The parameters here are the same as for the gamma distribution.  For example, if 
T has units of time then w and β both have units 1/time.  A comparison of this density with the gamma 

Figure B.13 Gamma densities with four shape
parameters. 
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density shows that this density has an extra w2 in the denominator, for reasons explained in Section 
B.4.7. 

The parameters of the inverted gamma distribution are α and β and this distribution is denoted inverted 
gamma(α, β).  Similar to the gamma(α, β) distribution, α is the shape parameter and β is the scale 
parameter.  The distribution can also be parameterized in terms of τ = β−1. 

The mean and variance of an inverted gamma(α, β) random variable, W, are 

1
)(

−
=

α
βWE   , α > 1, 

and 

( ) ( )21
)( 2

2

−−
=

αα
βWVar   ,   α > 2. 

Note that, for α ≤ 1, the mean and higher moments do not exist and, for 1 < α ≤ 2, the mean exists but 
the variance does not exist (Martz and Waller, 1991). 

 

Figure B.14 shows four inverted gamma 
distributions, all having the same scale parameter, 
β, and having various shape parameters, α. 

In the special case with α = n/2 and β = ½, the 
distribution is called the inverted chi-squared 
distribution with n degrees of freedom.  Values 
from this distribution are sometimes denoted 
χ−2(n).  This form of the distribution is often used in 
connection with a prior for σ2 when the data are 
normally distributed. 

 

 

 

B.7.8 Beta Distribution  
Many continuous quantitative phenomena take on values that are bounded by known numbers a and 
b.  Examples are percentages, proportions, ratios, and distance to failure points on items under stress.  
The beta distribution is a versatile family of distributions that is useful for modeling phenomena that 
can range from 0 to 1 and, through a transformation, from a to b. 

The beta distribution family includes the uniform distribution and density shapes that range from 
decreasing to uni-modal right-skewed to symmetric to U-shaped to uni-modal left-skewed to 
increasing (Martz and Waller 1991).  It can serve as a model for a reliability variable that represents 
the probability that a system or component lasts at least t units of time.  The beta distribution is also 
widely used in Bayesian estimation and reliability analysis as a prior distribution for the binomial 
distribution parameter p that represents a reliability or failure probability. 

Figure B.14 Four inverted gamma densities,
having the same scale parameter, β, and various
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The PDF of a beta random variable, Y, is 

( ) ( ) 11 1
)()(

)( −− −
ΓΓ
+Γ

= βα

βα
βα yyyf   , 

for 0 ≤ y ≤ 1, with the parameters α, β > 0, and is denoted beta(α, β).  The gamma functions at the 
front of the PDF form a normalizing constant so that the density integrates to 1. 

The mean and variance of the beta(α, β) random variable, Y, are 

βα
α
+

=)(YE  

and 

( ) ( )1
)( 2 +++

=
βαβα

αβYVar   . 

Various beta distributions are shown in Figures B.15 and B.16.  Figure B.15 shows beta densities with 
α = β, and therefore with mean 0.5.  When α < 1, the density becomes infinite at 0.0, and when β < 1, 
the density becomes infinite at 1.0.  When α = β = 1, the density is uniform.  When α = β = 0.5, the 
density is U shaped and is the Jeffreys noninformative prior for a binomial likelihood function. When α 
and β are large, the density is approximately normal. 

Figure B.16 shows densities with mean 0.1.  Again, when α < 1, the density becomes infinite at 0.0, 
and when α > 1, the density is zero at 0.0.  As the parameters α and β become large, the density 
approaches a normal distribution. 

Another parameterization of the beta distribution uses the parameters x0 = α and n0 = α + β. This 
parameterization is used by Martz and Waller (1991) because it simplifies Bayes formulas and 
Bayesian estimation.  The PDF of a beta(x0, n0) is 

( )
( ) ( ) ( ) 11

000

0 000 1)( −−− −
−ΓΓ

Γ
= xnx yy

xnx
nyf  , 

for 0 ≤ y ≤ 1, with the parameters x0 and n0 satisfying  

Figure B.15 Beta distributions with mean = 0.5. Figure B.16 Four beta distributions with mean 0.1.
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n0 > x0 > 0. 

The mean and variance of the beta(x0, n0) random variable, Y, are 

0
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Percentiles of the beta distribution occur in the formula for a Bayes credible interval for p when a 
conjugate prior is used.  Many software packages, including some commonly used spreadsheets, can 
calculate these percentiles.  

 

B.7.9 Logistic-Normal Distribution  
This distribution is used for Bayesian inference, especially as a prior for the binomial parameter p 
when p could plausibly be fairly large. X has a logistic-normal distribution if [ ])1/(ln XX − is normally 
distributed with some mean μ and variance σ2.  The function [ ])1/(ln XX − may appear strange, but it 
is common enough in some areas of application to have a name, the  logit function.  Therefore, the 
above statements could be rewritten to say that X has a logistic-normal distribution if logit(X) is 
normally distributed. 

Properties of the logistic-normal distribution are summarized here. 

• Let y = ln[x /(1- x)].  Then x = ey / (1 + ey).  This implies that x must be between 0 and 1. 

• As x increases from 0 to 1, y = ln[x /(1 - x)] increases monotonically from ∞−  to ∞+  .  
Thus, y can be generated from a normal distribution with no problem of going outside the 
possible range. 

• The monotonic relation between x and y means that the percentiles match.  For example, the 
95th percentile of Y is  µ + 1.645σ. Denote this by y0.95.  Therefore, the 95th percentile of X is  
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⎤

⎢
⎣

⎡
+

=
)exp(1

)(exp
950

950
950 y

yx   . 

Alternatively, this can be written as 
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• If X is close to 0 with high probability, so that X/(1 - X) is close to X with high probability, then 
the logistic-normal and lognormal distributions are nearly the same. 
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The third bullet shows how to find the percentiles of a logistic-normal distribution.  Unfortunately there 
is no equally easy way to find the moments, such as the mean or variance.  Moments must be found 
using numerical integration. 

Figure B.17 shows several logistic normal distributions that all have median 0.5.  These correspond to 
a normally distributed y with mean μ = 0 and with various values of σ.  Figure B.18 shows several 
logistic normal distributions that all have median 0.1.  These correspond to a normally distributed y 
with mean μ = −2.2 = ln[0.1/(1 − 0.1)]. 

Note the general similarities to the beta distributions in Figures B.15 and B.16.  Note also the 
differences: Logistic-normal distributions are characterized most easily by percentiles, whereas beta 
distributions are characterized most easily by moments.  Also, the beta densities can be J-shaped or 
U-shaped, but the logistic-normal densities always drop to zero at the ends of the range. 

 

B.7.10 Student’s t Distribution  
If Z has a standard normal distribution, X has a chi-squared distribution with d degrees of freedom, and 
Z and X are statistically independent, then 

d
X

ZT =  

has a Student’s t distribution with d degrees of freedom.  Therefore, T has a distribution that is 
symmetrical about 0, and it can take values in the entire real line.  If d is large, the denominator is 
close to 1 with high probability, and T has approximately a standard normal distribution.  If d is smaller, 
the denominator adds extra variability, and the extreme percentiles of T are farther out than are the 
corresponding normal percentiles.  

The PDF and first two moments of T are given here.  (many standard texts, such as DeGroot 1975.)  
The PDF is 

Figure B.17 Three logistic-normal densities with
median = 0.5. 

Figure B.18 Three logistic-normal densities with
median = 0.1. 
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If d > 1 the mean is 0.  If d > 2 the variance is )2/( −dd .  If d ≤ 2 the variance does not exist.  If d = 1, 
even the mean does not exist; in this case the distribution is called a  Cauchy distribution. 

B.8 Random Samples  
When sampling from a distribution (or population), it is usually assumed that the n observations are 
taken at random, in the following sense.  It is assumed that the n random variables X1, X2, ..., Xn are 
independent.  That is, the sample X1, X2, ..., Xn taken from a distribution f(x) has the joint PDF h 
satisfying 

h(x1, x2, ..., xn) = f(x1) A f(x2) A . . . A f(xn). 

This follows the definition of independent random variables given in Section B.4.5.  A sample taken in 
this way is called a  random sample.  (As elsewhere in this handbook, upper case letters denote 
random variables and lower case letters denote particular values, number.) 

The random variables X1, X2, ..., Xn forming such a random sample are referred to as being 
independent and identically distributed.  If n is large enough, the sampled values will represent the 
distribution well enough to permit inference about the true distribution. 

 

B.9 Sample Moments  
Mathematical expectation and moments provide characteristics of distributions of random variables.  
These ideas can also be used with observations from a random sample from a distribution to provide 
estimates of the parameters that characterize that distribution. 

A statistic is a function of one or more random variables that does not depend on any unknown 
parameters.  A function of random variables that can be computed from the collected data sample is 
thus a statistic.  Note that a function of random variables is also a random variable that has its own 
probability distribution and associated characteristics. 

If X1, X2, ..., Xn denote a random sample of size n from a distribution f(x), the statistic 
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is the mean of the random sample, or the  sample mean and the statistic 
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is the  variance of the random sample.  Note that n − 1 is used as the denominator in the S2 statistic 
to make the statistic an unbiased estimator of the population variance, σ2. 

Similarly, the statistics defined by 
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r
i

r n
Xm

1
  , 

for r = 1, 2, ..., are called the sample moments. 

One of the common uses of statistics is estimating the unknown parameters of the distribution from 
which the sample was generated.  The sample mean, or average, X , is used to estimate the 

distribution mean, or population mean, μ, the sample variance, S2, is used to estimate the population 
variance, σ2, and so forth. 

B.10 Statistical Inference  
Since values of the parameters of a distribution are rarely known, the distribution of a random variable 
is rarely completely known.  However, with some assumptions and information based on a random 
sample of observations from the distribution or population, values of the unknown parameters can 
often be estimated.  Probabilities can then be calculated from the corresponding distribution using 
these parameter estimates. 

Statistical inference is the area of statistics concerned with using sample data to answer questions 
and make statements about the distribution of a random variable from which the sample data were 
obtained.  Parameter estimators are functions of sample data that are used to estimate the 
distribution parameters.  Statements about parameter values are inferred from the specific sample to 
the general distribution of the random variable or population.  This inference cannot be perfect; all 
inference techniques involve uncertainty.  Understanding the performance properties of various 
estimators has received much attention in the statistics field. 

For the purposes of this handbook, statistical inference procedures can be classified as follows: 

• parameter estimation 

o estimation by a point value 

o estimation by an interval 

• hypothesis testing 

o tests concerning parameter values 

o goodness-of-fit tests and other model-validation tests. 

Parametric statistical inference assumes that the sample data come from a particular, specified family 
of distributions, with only the parameter values unknown.  However, not all statistical inference is 
based on parametric families.  In many cases, in addition to not knowing the distribution parameter 
values, the form of the parametric family of distributions is unknown.  Distribution-free, also called 
nonparametric, techniques are applicable no matter what form the distribution may have.  
Goodness-of-fit tests are an important type of nonparametric tests that can be used to test whether a 
data set follows a hypothesized distribution. 
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B.11 Distribution Summary 
Probability Density Function Mean Variance† Excel Formulation SAPHIRE 

Formulation 

Beta 

),(
)1()(

11

βα
π

βα

B
ppp

−− −
=  

where 
)(
)()(),(

βα
αββα

+Γ
ΓΓ

=B  

αβ
α
+

 )1()( 2 +++ βαβα
αβ

 

Density 

Not available 

Cumulative 

BETADIST(p, α, β) 

Inverse cumulative 

BETAINV(%, α, β) 

1st parameter Mean 

2nd parameter β 

Gamma 

)(
e)(

α
λβλπ

βλαα

Γ
=

−−1

 β
α

 2β
α

 
Density 

Gammadist(x,α,1/β,false) 

Cumulative 

Gammadist (x, α, 1/β, true) 

Inverse cumulative 

Gammadist (%, α, 1/β) 

1st parameter Mean 

2nd parameter 

α (called “r”) 

Lognormal 

( )
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⎥
⎦
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⎢
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⎣
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−= 2
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)
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exp(
2σμ +

 

( ) ( )[ ]1exp 22 −σmean
 

 1st parameter Mean 

2nd parameter 

Error factor 

Uniform 

Same as the beta distr bution with α=1 and β=1 

 

                                                      
† Recall that the variance is equal to the standard deviation squared, or Var(x) = σ2. 
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C. Applicable Tools 

C.1 WinBUGS and OpenBUGS 
BUGS refers to Bayesian inference Using Gibbs Sampling.  WinBUGS is freely available software 
for implementing Markov chain Monte Carlo (MCMC) sampling.  It is available in a Windows 
version from the BUGS Project website http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml which 
also has links to the open source code (OpenBUGS) directly available at 
http://mathstat.helsinki.fi/openbugs/Home.html .  Both programs are commonly referred to as 
WinBUGS or just BUGS. 

WinBUGS is commonly used independently but can be called from other programs through shell 
commands or the open-source statistical program R through the R2WinBUGS or BRUGS 
packages for R.  For more information on R, see the R Project homepage, www.r-project.org. 

The OpenBUGS user manual (Spiegelhalter, et al, 2007) comes with the program and is the basis 
for much of this appendix. 

C.1.1 Distributions Supported in OpenBUGS 
Over 20 distributions are supported in OpenBUGS.  Discrete and continuous univariate and 
multivariate distributions are supported. Common distributions used in PRA that are supported 
include: 

• Binomial: dbin(p,n) 

• Poisson: dpois(mu) 

o Users will often have mu = λt 

• Exponential: dexp(lambda) 

• Weibull: dweib(v,lambda) 

• Gamma: dgamma(r,mu) 

• Uniform: dunif(a,b) 

• Beta: dbeta(a,b) 

• Lognormal: dlnorm(mu,tau) 

o 2

1
σ

=tau  
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Figure C.1: Sample WinBUGS Script 

Script to update failure rate 
 
model {  #Model defined between {} symbols 
   events ~ dpois(mu)  #Poisson dist. for number of events 
   mu <- lambda*time #Parameter of Poisson distribution 
   lambda ~ dgamma(1.6,44) #Prior distribution for lambda 

} 
Data   #Observed data 
list(events=1,time=44) 

o 
645.1

)ln(EF
=σ  

It is also possible to analyze user-defined distributions in WinBUGS.  See the OpenBUGS User 
Manual (Spiegelhalter, et al, 2007) for information on how to do this. 

C.1.2 WinBUGS Script 
WinBUGS is a scripting language with a menu-driven interface (Thomas, 2006).  There are three 
parts to a WinBUGS script: the model description, data section, and initial values. A sample script 
is presented in Figure C.1. 

 
The model description includes the 
likelihood function, prior 
distribution, and any derived 
quantities (e.g., system reliability). 

The data can be written within the 
WinBUGS script or input from a 
separate text file. The initial values 
can be written within the 
WinBUGS script from a separate 

text file.   

The use of the # character is for comments.  It is highly encouraged to comment scripts.  

C.1.3 Demonstration of WinBUGS via an Example Analysis 

Conjugate Prior Example 

Assume the frequency of an event (lambda) has a gamma(1.6, 44 yr) prior distribution.  The 
likelihood function is a Poisson distribution with observed data consisting of 1 event in a 44-year 
period.  The posterior distribution is gamma(1.6+1, 44+44 yr) and the posterior mean of lambda is 
2.6/88 yr = 0.03 per year. 

The script in Figure C.1 is used to update the prior distribution for lambda with the observed data. 
This can be written either in the WinBUGS new project screen or cut and pasted from a text editor. 

The first step is to check the model’s 
syntax by highlighting the word 
“model” and selecting “Model – 
Specification” from the toolbar as in 
Figure C.2. 

The Specification Tool will appear on 
the screen, after which the “Check 
Model” button should be selected.  A 
status message will be displayed at 
the bottom left of the WinBUGS 
palette.  If all is well, the message is 
returned, “model is syntactically 
correct”. 

 

Figure C.2: Checking the WinBUGS model for syntax. 
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Leave the Specification Tool on the screen (Figure C.3) and double-click (highlight) the word “list” 
in the data portion of the script, then select “load data”.  A status message will be displayed at the 
bottom left of the WinBUGS palette that states “data loaded”.  Next, select “compile” and 
WinBUGS reports “model compiled”.  Note that models using multiple chains can be run.  The 
number of chains in this example is one.   

The last task to do with the 
Specification Tool is to load the initial 
values.  For the conjugate prior 
example, the model is such a simple 
one that we can let WinBUGS 
generate initial values.  Select “gen 
inits” to have WinBUGS generate the 
initial values and a message of “initial 
values generated, model initialized” 
should appear in the status bar. 

 

 

 

 

 

The next step in setting up the 
analysis is to select the variables to 
monitor. For the conjugate prior 
example, we are interested in the 
frequency, or rate of occurrence 
(lambda).  Close the Specification 
Tool and select “Inference” and then 
“Samples” from the toolbar.  The 
Sample Monitor Tool (Figure C.4) will 
pop up.  Type the variable name 
“lambda” in the “node” box.  Enter 
1001 in the “beg” box as the iteration 
at which to start monitoring lambda. 
This will allow this particular model 
enough iterations to converge. A 
discussion on convergence will 
follow. Select the default of 
10,000,000 as the “end” value. Save 

the setting by clicking the “set” button.  Multiple variables and chains can be monitored, although 
we will only monitor lambda for this example.  

Figure C.3: WinBUGS Specification Tool. 

Figure C.4: WinBUGS Sample Monitor Tool. 



BAYESIAN INFERENCE FOR NASA PROBABILISTIC RISK AND RELIABILITY ANALYSIS  

 

C-4

  

Close the Sample Monitor Tool and select “Model” and “Update” from the toolbar.  The Update 
Tool appears on the screen (Figure C.5).  Enter in the number of updates to perform, in this case 

10,000 is the quantity desired.  The refresh rate will control 
the display in the iteration box during an update.  A lower 
number for the refresh rate will be informative, but will also 
slow the sampling time.  Select “update”. WinBUGS will 
report that the “model is updating” in the status bar and the 
iteration window will display the iterations by increments 
specified in the refresh rate.  When the model update has 
completed a message will appear in the status bar that 
indicates “updates took X s”. 

 

Close the Update Tool when the sampling is complete and re-open the Sample Monitor Tool by 
selecting “Inference  Samples” from the toolbar.  Select “lambda” from the drop-down list of 
monitored nodes.  Highlight the percentiles 5, median (50%), and 95 by holding down the Ctrl key 
while selecting with the left mouse button.  To display a graph of the posterior density (Figure C.6) 
select “density”. 

 

Next select the “stats” button to get the 
posterior mean and percentiles selected.  
These results shown in Figure C.7 can be 
compared to hand/spreadsheet calculation 
results of: 

• Posterior mean = 0.03/yr 

• 5th percentile = 0.007/yr 

• 95th percentile = 0.06/yr 

Note that the results, both the density plots and 
the statistics, may be selected and copied (via 

the CTRL+C key combination in Windows) for pasting into other programs. 

C.1.4 Monitoring Convergence in WinBUGS 

WinBUGS uses Markov chain Monte Carlo (MCMC) sampling to generate values directly from the 
target posterior distribution.  However, it takes some time for the sampling to converge to the 
posterior distribution; any values sampled prior to convergence should not be used to estimate 
parameter values.  For simple problems involving one parameter, such as p in the binomial 
distribution or lambda in the Poisson distribution, 1,000 iterations will be more than sufficient for 
convergence.  In more complicated problems, which usually involve inference for more than one 

Figure C.5: WinBUGS Update Tool. 

Figure C.6: Posterior distribution density. 

Figure C.7: Posterior statistics for lambda. 
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parameter, this may not be the case, and the user will have to check for convergence.  This section 
discusses practical checks that the user can do, using features built into WinBUGS. 

Running Multiple Chains 

For problems with more than one parameter, at least two chains should be run, with starting values 
that are dispersed around the estimated node of the posterior distribution.  Usually the analysis will 
not be very sensitive to the initial values selected for the chains, but this is not always the case.  An 
expert analyst should be consulted in such cases, which arise especially often when modeling 
population variability, as there are sophisticated approaches that can be used to derive initial 

values. 

After the model has been compiled (remember to specify the number of 
chains before compiling the model) and initial values have been loaded, 
specify the nodes to be monitored.  All parameters should be monitored and 
convergence should be checked for each of these monitored nodes.  Now run 
1,000 samples and select History from the Inference menu to generate a 
trace of the first 1,000 samples for each monitored node.  A plot like the one 
shown below, in which the two chains are well mixed, is indicative of 
convergence. 

iteration

0 250 500 750

al
ph

a
0.

0
1.

0
2.

0
3.

0
4.

0

 

 

In contrast, the figure below shows a case in which the chain are not well mixed, which indicates 
that more iterations must be run to reach convergence. 

 

 

After user-specified 
initial values are 

loaded, it may still be 
necessary to have 

WinBUGS generate 
remaining initial 

values. 

Figure C.8: History plot showing two well-mixed chains, indicative of convergence. 

Figure C.9: History plot showing two poorly-mixed chains, indicative of failure to converge. 
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Brooks-Gelman-Rubin (BGR) Convergence Diagnostic 

WinBUGS has a built-in convergence diagnostic that can be used in conjunction with the history 
plots shown above to help the user decide when burn-in samples have been taken.  It requires 
multiple chains, and is based on an analysis of the variance within- and between-chains.  If the 
chains have converged, all chains should have approximately the same within-chain variance, and 
this should be approximately equal to the between-chain variance estimate.  The BGR diagnostic 
in WinBUGS looks at a ratio of these estimates, which is normalized to equal one when the chains 
have converged. 

To implement the BGR diagnostic, run at least two chains, as described above, then select “bgr 
diag” from the Inference menu.  The resulting plot will have three curves.  The estimate of the 
within-chain variance is shown in blue, the between-chain estimate is in green, and the BGR ratio 
is shown in red.  The BGR ratio is expected to start out greater than one.  The heuristic is that this 
ratio should be less than about 1.2 for convergence.  However, the between-chain and within-chain 
estimates should be stable.  Double-clicking with the left mouse button on the BGR graph, followed 
by <Ctrl>-left click will bring up a table of the values over the history. 

The first graph below shows a typical BGR plot for a problem that has converged.  The second 
shows a plot where convergence may have been reached just at the end of the 1,000 samples, but 
more burn-in iterations should be taken to ensure convergence before estimating parameter 
values. 
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C.2 References for WinBUGS/OpenBUGS 
 

Spiegelhalter, D., A. Thomas, N. Best, D. Lunn, 2007, OpenBUGS User Manual, OpenBUGS 
project, ,http://www.mrc-bsu.cam.ac.uk/bugs 

Thomas, A., 2006, The BUGS Language, R News, vol 6/1, 17-21. 

 

 

 

Figure C.10: BGR plot illustrating convergence. Figure C.11: BGR plot illustrating a questionable 
convergence. 
 



  

 

D. Select Inference Equations 

D.1 Introduction 
 
This appendix provides additional details of the salient mathematics behind the Bayesian networks 
and WinBUGS scripts found in Sections 4.2.1, 4.2.2, and 4.2.3 of the guidebook.  The network 
diagrams and scripts in the guidebook are intended to be the primary tools to help an analyst think 
through a Bayesian inference problem.  However, some analysts may gain additional benefit from 
seeing the supporting equations, at least in those cases where it is possible to write them down.  
Furthermore, some problems in Bayesian inference are amenable to solution by numerical tools 
other than the Markov chain Monte Carlo (MCMC) sampling employed by WinBUGS, and analysts 
may feel more comfortable using such tools.  Note that the starting point for inference, Bayes’ 
Theorem, was described via Equation 2-2: 
 

.
)()|(
)()|()|(

∫
=

θθπθ
θπθθπ

dxf
xfx1  (2-2) 

To perform inference, we need to solve equation 2-2, which requires knowing the functional form of 
the likelihood [f(x | θ)], the prior [π (θ)], and the data x. 
 
Below, we list the applicable Appendix D equations for the topical areas found in Sections 4.2.1, 
4.2.2, and 4.2.3.  In addition, we provide a cross-reference to the OpenBUGS script found in the 
respective sections. 
 
 

Script Section Appendix D Equations Topical Area 

n/a 4.2.1 D-1 Binomial distribution 
1 4.2.1.1 D-1, D-2, D-3 Binomial with conjugate prior 

n/a 4.2.1.2 D-1, D-2, D-3, D-17, D-18 Binomial Jeffreys prior 
2 4.2.1.3 D-1, D-9, D-10, D-11, D-12, D-13 Binomial non-conjugate prior 
3 4.2.1.3 D-1, D-9, D-10, D-11, D-12, D-13 Binomial non-conjugate prior 

n/a 4.2.2 D-4 Poisson distribution 
4 4.2.2.1 D-4, D-5, D-6 Poisson conjugate prior 

n/a 4.2.2.2 D-4, D-5, D-6, D-17, D-18 Poisson Jeffreys prior 
5 4.2.2.3 D-4, D-9, D-14 Poisson non-conjugate prior 
6 4.2.3.1 D-5, D-7, D-8 Exponential conjugate prior 

n/a 4.2.3.2 D-5, D-17, D-18 Exponential Jeffreys prior 
7 4.2.3.3 D-8, D-14 Exponential non-conjugate prior 
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D.2 Inference for a Single Parameter 
 
This section describes inference for p in the binomial distribution, typically used for failure on 
demand; λ in the Poisson distribution, used for initiating events and operating failures; and λ in the 
exponential distribution, used for random durations, such as time to recover failed equipment.  The 
section also includes inference for the multinomial distribution, typically used to model common-
cause failure of redundant equipment.  While not a single-parameter problem, it is a slight 
extension of the binomial model, so the conceptual similarity justifies its inclusion in this section. 

D.2.1 Binomial Distribution with Conjugate Prior 

The likelihood function is the binomial distribution, given by 

 xnx )p(p
x
n

)p|x(f −−⎟
⎠

⎞
⎜
⎝

⎛
= 1  (D-1) 

 
The conjugate prior is a beta distribution, with density function 
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B(α, β) is the beta function, defined as follows for α, β > 0: 
 

 ∫ −− −=
1

0

11 )1(),( dxxxB βαβα  (D-3) 

 
If x failures are observed in n demands, the posterior distribution is easily shown to be a beta 
distribution with parameters α + x and β + n – x.  The mean and variance can be found in closed 
form, but credible intervals must be found numerically, using a spreadsheet tool, as described in 
the guidebook, or another routine. 
 

D.2.2 Poisson Distribution with a Conjugate Prior 
 
The likelihood function is the Poisson distribution, given by 
 

 ( )
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The conjugate prior is a gamma distribution, with density function 
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Γ(α) is the gamma function, defined for α > 0 by 
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If x events are observed in time t, the posterior is a gamma distribution with parameters α + x and β 
+ t.  As above, the mean and variance can be written in closed form but credible intervals must be 
found numerically, using a spreadsheet tool, as described in the guidebook, or another routine. 
 

D.2.3 Exponential Distribution with Conjugate Prior 
 
This is essentially identical to Poisson inference, but with a likelihood function that changes as 
follows.  We are now observing times to occurrence.  We assume that each time, Ti, i = 1, 2, …, n, 
is independently and identically distributed as an exponential random variable with rate λ.  Thus, 
the density function for each Ti can be written 
 
 iti e)|t(f λλλ −=  (D-7) 
 
Because of the independence assumption, the joint distribution for the likelihood factors into n 
terms, allowing us to write the likelihood function as the product of n exponential density functions: 
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The prior is again a gamma distribution, with density given by Equation (D-5).  The posterior is a 
gamma distribution with parameters α + n and β + Σti.  As above, the mean and variance can be 
written in closed form but credible intervals must be found numerically, using a spreadsheet tool, as 
described in the guidebook, or another routine. 

 

D.2.4 Binomial Distribution with Nonconjugate Prior 
The lognormal prior for p in the binomial distribution is parameterized in terms of the logarithmic 
mean, μ, and logarithmic precision, τ, defined as τ = 1/σ2.  The density function in this 
parameterization is given by 
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The likelihood function is the binomial distribution, given by Equation (D-1) above.  Therefore, the 
posterior distribution is given by 
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(D-10) 

 

The denominator of this equation does not have an analytic solution and must be evaluated 
numerically.  As will be true for all of the cases utilizing a nonconjugate prior, the posterior 
distribution does not have a closed form, and is not a member of any particular functional family 
(e.g., lognormal).  However, it can be approximated with a particular functional distribution, if 
desired. 
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The posterior mean of p is given by 

 ∫
1

0
1 dp)x|p(pπ  (D-11) 

 

Again, this equation does not have an analytic solution and must be evaluated numerically. 

Percentiles can be found by numerically solving equations such as the following: 
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The logistic-normal prior for p is also nonconjugate.  The density is given by 
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where μ and τ are the mean and precision of the underlying normal distribution.  The posterior 
mean and credible intervals are obtained by substituting the logistic-normal density into the above 
equations. 

D.2.5 Poisson Distribution with Nonconjugate Prior 
The unknown parameter is now λ, the intensity of the Poisson process.  Simply replace p with λ in 
Equation (D-9) above for the lognormal prior.  The likelihood function is the Poisson distribution, 
given by Equation (D-4).  The posterior distribution is given by 
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Again, this equation does not have an analytic solution and must be evaluated numerically.  The 
posterior mean and credible intervals are found numerically as in Equation (D-12) above using this 
posterior distribution. 

D.2.6 Exponential Distribution with Nonconjugate Prior 
As mentioned above, this is essentially the same as Poisson inference, but with a likelihood 
function given by Equation (D-8).  The posterior distribution is obtained by substituting this 
likelihood function for the Poisson likelihood function into Equation (D-14) above. 
 

D.2.7 Multinomial Distribution with Conjugate Prior 
 
The multinomial distribution generalizes the binomial distribution to the situation where there are 
more than two possible outcomes of a trial.  The most common application of the multinomial 
distribution in PRA is for common-cause failure (CCF), where it serves as an aleatory model for 
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common-cause failure of a group of redundant components.  Given that a failure occurs in the 
group, the possible outcomes are one component fails, two fail due to common cause, three fail 
due to common cause, etc., up to all of the components in the group fail due to common cause.  
This model can be parameterized in different ways, with the most commonly used being one in 
which the parameters represent the fraction of failures of the group that involve a specific number 
of components in the group.  These parameters are denoted αk, and thus this parameterization is 
referred to as the alpha-factor model for CCF(Mosleh, Common Cause Failures: An Analysis 
Methodology and Examples, 1991).  Each αk represents the fraction of failures that involve k 
components of the group.  The prior distribution for αk, which is now a vector of dimension equal to 
the component group size, is almost always assumed to be a Dirichlet distribution, which is 
conjugate to the multinomial likelihood.  Like α, the parameter of the Dirichlet distribution, which we 
will denote as θ, is a vector of dimension equal to that of α. 
 
In equation form, the multinomial likelihood is 
 

 ∏
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Note the constraint that the αks must sum to unity, which will introduce a correlation into the joint 
posterior distribution.  The Dirichlet prior distribution for the vector of alpha-factors has density 
function 
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The posterior distribution is also Dirichlet, with parameters θk + xk. 
 

D.2.8 Noninformative Priors 
 
The guidebook discusses only the Jeffreys prior, which is obtained by applying Jeffreys rule: 
 

 )()( θθπ JNI ∝  (D-17) 
 
J(θ) depends upon the likelihood function: 
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For the binomial distribution, this leads to a beta(0.5, 0.5) distribution as the Jeffreys prior.  For the 
Poisson distribution, the Jeffreys prior is an improper distribution proportional to λ-0 5, which can be 
thought of as a (conjugate) gamma(0.5, 0) distribution, yielding a gamma posterior distribution with 
parameters x + 0.5 and t if x events are observed in time t.  For the exponential distribution, the 
Jeffreys prior is an improper distribution proportional to 1/λ, which can be thought of as a 
(conjugate) gamma(0, 0) distribution for Bayesian updating.  For the case of the multinomial 
likelihood, the noninformative prior is a Dirichlet distribution with all parameters equal to 1.  Note 
that this is not the Jeffreys prior; the Jeffreys prior is not often used as a noninformative prior in 
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multiparameter inference problems.  Instead, as illustrated in the guidebook, one usually uses 
independent diffuse priors. 
 

 

D.3 References 
 

1. Mosleh, A. (1991). Common Cause Failures: An Analysis Methodology and Examples. 
Reliability Engineering and System Safety , 34, 249-292. 

 



  

 

 

 

E. Analysis Validation 

E.1 Introduction 
 
This appendix provides an example of the possible validation approach for the analysis examples described in 
the main body of the report.  Here we compare our calculated answers (using OpenBUGS) with other 
independent analysis tools including Excel, RADS, and R. 

The table below provides validation results for the first eight scripts in the report. 

Script Section Model Type Validation Method 
Results  

Pass 
or 

Fail 
OpenBUGS Validation Model

1 4.2.1.1 

Binomial 
likelihood with 
Beta conjugate 

prior 

Spreadsheet calculations 
based on conjugate 

distribution properties 

p 
mean = 

1.70 x 10-5 

5th % = 
4.99 x 10-6 
95th % = 

3.50 x 10-5 

p 
mean = 

1.71 x 10-5 

5th % = 
4.98 x 10-6 
95th % = 

3.52 x 10-5 

Pass 

2 4.2.1.3 
Binomial 

likelihood with 
Lognormal prior 

 RADS1 calculator 

p 
mean = 

4.7 x 10-5 

5th % = 
1.9 x 10-6 
95th % = 
1.8 x 10-4 

p 
mean = 

4.69 x 10-5 
5th % = 

1.87 x 10-6 
95th % = 

 1.78 x 10-4 

Pass 

3 4.2.1.3 

Binomial 
likelihood with 

Logistic-Normal 
prior 

 RADS calculator 

p 
mean = 

4.8 x 10-5 

5th % = 
1.9 x 10-6 
95th % = 
1.8 x 10-4 

p 
mean = 

4.69 x 10-5 
5th % = 

1.87 x 10-6 
95th % = 

1.78 x 10-4 

Pass 

4 4.2.2.1 
Poisson likelihood 

with Gamma 
conjugate prior 

Spreadsheet calculations 
based on conjugate 

distribution properties 

lambda 
mean = 

4.3 x 10-6 

5th % = 
5.6 x 10-7 
95th % = 
1.1 x 10-5 

lambda 
mean = 

4.33 x 10-6 

5th % = 
5.63 x 10-7 
95th % = 

1.10 x 10-5 

Pass 

                                                      
1 RADS is the “Reliability and Availability Data System” developed for the NRC by the INL. 
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5 4.2.2.3 
Poisson likelihood 

with Lognormal 
prior 

RADS calculator 

lambda 
mean = 

1.6 x 10-6 

5th % = 
3.8 x 10-8 
95th % = 
6.5 x 10-6 

 lambda 
mean = 

1.8 x 10-6 
5th % = 

3.56 x 10-8 
95th % = 

7.04 x 10-6 

Pass 

6 4.2.3.1 

Exponential 
likelihood with 

Gamma conjugate 
prior 

Spreadsheet calculations 
based on conjugate 

distribution properties 

lambda 
mean = 

6.5 x 10-7 

5th % = 
3.4 x 10-7 
95th % = 
1.1 x 10-6 

lambda 
mean = 

6.54 x 10-7 

5th % = 
3.35 x 10-7 
95th % = 

1.06 x 10-6 

Pass 

7 4.2.3.3 
Exponential 

likelihood with 
Lognormal prior 

RADS calculator (treat as 
7 Poisson events in 

12782180 hours) 

lambda 
mean = 

5.5 x 10-7 

5th % = 
2.6 x 10-7 
95th % = 
9.2 x 10-7 

lambda 
mean = 

5.47 x 10-7 
5th % = 

2.64 x 10-7 
95th % = 

9.16 x 10-7 

Pass 

8 4.2.4 
Multinomial 

likelihood with 
Dirichlet prior 

Mcmultinomdirichlet function 
in MCMCpack package in R 

Alpha-1 
mean = 0.72 

5th % = 0.58 
95th % = 0.85 

Alpha-2 
mean = 0.21 
5th % = 0.10 
95th % = 0.34 

Alpha-3 
mean = 0.07 
5th % = 0.01 
95th % = 0.16 

Beta 
mean = 0.28 
5th % = 0.15 
95th % = 0.42 

Gamma 
mean = 0.25 
5th % = 0.05 
95th % = 0.52 

Alpha-1 
mean = 0.72 

5th % = 0.58 
95th % = 0.85 

Alpha-2 
mean = 0.21 
5th % = 0.10 
95th % = 0.34 

Alpha-3 
mean = 0.07 
5th % = 0.01 
95th % = 0.16 

Beta 
mean = 0.28 
5th % = 0.15 
95th % = 0.43 

Gamma 
mean = 0.25 
5th % = 0.05 
95th % = 0.52 

Pass 

 



  

 

 


