hitp://satc.gsfe.nasa. pov/assure/agh txi

SOFTWARE ASSURANCE GUIDEBOOK, NASA-GR-AZO1 5@9‘?@;‘3@&3 / ?gfﬁf
I. OVERVIEW
A. Concepts and Definitions

Software assurance 1ls the planned and systematic set of
activities that ensures that software processes and products
conform to regquirements, standards, and procedures.
"Procegses” include all of the activities involved in
designing, developing, enhancing, and maintaining software;
vproducts® include the software, associated data, its
documentation, and all supporting and reporting paperwork.

The three wutually supportive activities involved in the
goftware life cycle are management, engineering, and
assurance. Socftware management is the set of activities
involved in planning, controlling, and directing the
software project. Software engineering is the set of
activities that analyzes requirements, develops designs,
writes code, and structures databases. Software assurance
makes sure the management and engineering efforts put forth
result in a preduct that meets all of its reguirements.

Software assurance ig not an organization, but a set of
related activities. It is unliikely that any NASA Center or
NASA contractor has a single organizational entity that
performs all of the functions defined in this guidebook.

The guidebook should be read as guidance to activities that
are vital to the success of a scftware project. Some
considerations for organizational structuring to enhance the
probability of success are given in the section on
establishing a software assurance activity.

8. Geals of Software Assurance

Software development, like any complex development activity,
ig a procegs full of risks. The risks are both technical and
programmatic; that is, risks that the software will not
perform as intended or will be too difficult to operate,
modify, or maintain are technical risks, while rigks that
the project will overrun cost or schedule are programmatic
risks. The goal of software assurance is to reduce these
risks. For example, coding standards are set to specify a
minimum guality of code. If no standards are set, there
exists some risk that the code will not come up to a minimum
usable standard, and that the code will require rework. If
standards are set but there is no explicit process for
assuring that all code meets the standards, then there is
some risk that some coders will produce code that does not
meet the standards. The assurance procesg involved is
guality assurance, and to have no guality assurance activity
is to increase the risk thar unacceptable code will be
produced.

Similarly, the lack of a nonconformance reporting and
corractive action system increaseg the risk that problems in
the software will be forgothen and not corrected, or that
itmportant problems will not get priority attention. Other
rigk-related examples can be provided to support all of the
activities in thig guidebock. The point is that goftware
agsurance activiiiss can help to reduce risks.

&

<. Purpose of this Guidebook

1 of 26 3072007 9119 AM



20f26

The purpose of this Software Assurance Guidebock is to
provide assistance, in the form of guidance, Lo NASA
managers responsible for software acquisition and
development and for establishing software assurance
regquirements.

The style of the guideboock is intended to be tutorial rather
than directive. It is hoped that the reader will find the
following sections an easily understoed introduction to
software assurance and a useful guide to formulating and
addressing software project needs related to assurance.

The remainder of this guidebook will touch on each major
activity within software assurance: software guality
agsurance, software quality engineering, verification and
validation, nonconformance reporting and corrective action,
gafety, and security. Section II, Establishing a Project
Software Assurance Activity, 1s designed to assist managers
in starting a new assurance activity or improving an
existing assurance program.

ITI. ESTABLISHING A PROJECT SOFTWARE ASSURANCE ACTIVITY
A, Concepts and Definitions

Every scoftware development, enhancement, or maintenance
project includes some agsurance activities. The types,
amount, and formality of such activities are decisions of
the project manager, based on an assessment of the project,
its risks, and its development and operational environments.

Even a simple, one person development job has assurance
activities embedded in 1t, even if the programmer denies
that "guality assurance” plays any part in what is to be
done. EBach programmer has some idea of how code should be
written, and this idea functions as a coding standard for
that programmer. Likewise, each of us has some idea of how
documentation should be written, and this is a perscnal
documentation standard. Each programmer reviews hisg/her
products to make sure they meet their internal standards,
and this is an assurance review or audit. Each programmer
tegts and inspects his/her own work, and these ave
verification and validation processes. The list could go
on, but the idea should be clear. A project software
assurance program involves the processes that each
programumer goes through, but requires the planning and
formal establishment of project, rather than personal,
standards and processes.

B. Tailoring Software Assurance to the Project

Specific project characteristics and risks influsnce
agsurance needs, and assurance planning should be tailored
to reflect this fact. Charvaoteristics that should be
congidered inciude gafety and mission criticality of the
software, schedule and budget, size and complexity of the
product to be produced, and gize and organizational
complexity of the development staff.

The relarvrionship of criticality ¢
sxpect: the more critical the so
and formal the goftware assurances
relationghip of schedule and budge
howsver; the tighter the budget and

, the more important
£ omust he.  The
ttive,
nedule, bhe more

http:/fsate.gsfc. nasa.gov/assure/agh.txt

F/30/2002 919 AM



Jof 26

critical it is to have a well planned and effective
assurance effort. This does not mean that projects with more
regources can afford to be lax, it just means that tight
resources increase risks that should be offset by a strong
aggurance program.

The projected size of the software to be produced influences
the level of assurance required. A large project requires
explicit and detailed standards for all of the products in
order to get at least a minimum standard of quality from the
varied ideas and experience of many different programmers.
In addition, a large project requires significant efforts in
testing and other verification activities, which have to be
planned and the plans followed. In short, just due to the
size of the activity, a gignificant and formal assurance
program must be established or risks of poor quality
products must be accepted. On the other hand, a small
project may require little formal assurance, and on a very
small one, the assurance efforts may be left to the
programmer involved 1f adeguate, informal planning is done.

Another factor that influences assurance planning is the
project’s organizational structure. A small, centralized
development staff can easily participate in reviews and
inspections, keep each other informed on the status of
nenconformances, and help each other in meeting coding and
documentation standards. A large or dispersed staff will
have many different ideas of the best ways of doing things
and many more difficulties in communicating them. In the
latter case, a more formal assurance program and a larger
assurance effort will be needed.

A last but very important characteristic is the difference
between the regquirements of a scftware providing
organization and a software acquiring organization. A
software provider actually develops the products by
developing designs and writing code, etc., and therefore
needs a full assurance program. An acquirer dees not
develop software and thus can limif its assurance activities
te those that ensure that the provider is adhering to agreed-
to metheds and standards and producing the agreed-to
products.

C. Creating the Software Assurance Plan

An effective assurance program recuires planning and follow
through; it cannot simply evolve along with the project.
Adeguate assurance planning ensures that the assurance
activities are focused on the guality requirements and risks
agsociated with the specific project.

The purpoese of creating a goftwares assurance plan is to
document. /specify the conduct of the activities that will
comprise goftware agsurance for a specific project. Armed
with information about the project and the avallable
software assurance resources, the project manager is ready
to develop the plan. A useful guide for documenting
assurance plans is provided in the assurance sections of the
SMAP Management Plan Documentation Standard. In addition,
the following should be considered:

Plan software assurance in conjunction witl
and enginsering planning, 1l.e., durim t
concept and initiation phase.

http://sate. gsfo.nasa gov/assure/aghb.ixi

7/30/2002 9:19 AM



4 of 26

Phase assurance activities properly. For example,
design standards must be produced well before design is
to be done.

Compliete tool development or procurement before the
toole are needed. Especially important is the development
of test tools and test data sources.

D. Project Structure Considerations

In planning and establishing a software assurance program,
one consideration is the software project organization and
the location in that organization of the assurance
activities. Experience has indicated, both in hardware and
asoftware, that some asgsurance functions are best done by
organizational entities that are separate from the ones
doing engineering activities. Software Quality Assurance
{(80a) is one activity that should be organizationally
separated from the producing organizations.
Adwminisgtratively, the SQA organization should report no
lower than the project manager; indeed, many large
gsuccessful software producing organizations have the SQA
organization report administratively to top corporate
management and interface with the project manager. The
reason for thisg separation of function is that the SCA
organization is management’s arm that assures that standards
are met and that procedures are followed. If SQA is not
independent of the development activity, clear and impartial
agssessment will be difficult.

In addition, many organizations have had success using an
independent test team, or at least an independent test
development team. The team is responsible for developing
tegt plans, procedures, and test cases for formal acceptance
vests. Independence is required because these tests should
be reguirements driven and not influenced by the design
structure and coding details.

E. Completion Criteria

Recause of the nature of software, it is difficult to
ascertain the status of a development or maintenance
activity. It is important, therefore, to define criteria
for the completion of specific development stages. For
example, during the implementation phase, one has to do the
lowest level detailed design of small program elements, code
the slements, and unit test them. When a significant number
of program elements are involved, it isg difficult for anyone
to ascertain the status of the units without specific
completion criteria. For example, if there isg a criterion
that detailed design is complete only after the rework that
finighes a design inspection, then the design can be saild to
be either complete or incomplete depending on the gtatus of
the rework.

The setting of completion criteria iz a management activity,
but the audit of records 18 an S8QA activity. The acouracy
of the reported status can then be determined. This is
important to both providers and acquirers of software, and
this "status suditing" is an important SQ& function.

F. Implementation of the Scofrware Assurance Plan

Onos the project nseds have Deen determined and the goftwars
agspurance planning is complete, the plan must be

hitp://sate. gsfe.nasa.gov/assure/agh.ix1

F30/2002 919 AM



Sof 26

implemented. Qualified, trained staff must be obtained, and
special training must be made available where needed. If
standards and procedures are not available for reuse on this
project, they must be written. Staff must be trained in the
standards and procedures, since merely writing them down
does not guarantee compliance. All of the above are
management activities, but the assurance staff is a resource
to help complete them. :

Staff devoted purely Lo assurance activities is usually
small compared to the project staff. On the other hand, it
ig important to have people with specific assurance
responsgibilities, even if they must be sghared
organizationally with other duties. Too coften the truism
that "guality is everybody's businessY becomes *quality is
nobody s business” if specific responsibilities are not
agssigned.

G. Sources of Help

In additicn to this guidebook, there are other sources of
help in planning and implementing a software assurance
program. First, there is a NASA software planning
regquirement, stated in NMI 2410.10. In addition, there are
Center requirements and guidance documents. All NASA Centers
have assurance organizations that provide varying degrees of
support, assistance, and actual performance of goftware
assurance activities.

H. Summary

Software assurance is an essential part of the development
and maintenance of software. Software assurance formsg part
of the triad of activities, along with software management
and software engineering that, taken together, can provide a
successful software development, enhancement, or maintenance
activity. This guidebook is intended to increase the
general understanding in NASA of what comprises software
assurance and how it is to be planned and implemented.

III. SOFPTWARE QUALITY ASSURANCE
A. Concepts and Definitions

Software Quality Assurance (8QA} is defined as a planned and
systematic approach to the evaluation of the quality of and
adherence to software product standards, processes, and
procedures. SQA includes the process of assuring that
standards and procedures are established and are followed
throughout the software acquisition life cycle. Compliance
with agreed-upon standards and procedures is evaluated
through process monitoring, product evaluation, and audits.
Software development and control processes should include
guality assurance approval points, where an SQA evaluation
of the product wmay be done in relation to the applicable
standards.

B. Standards and Procedures

Establishing standards and procedures for software
development is critical, since these provide the framework
from which the software svolves. Standards are the
sgtablished criteria to which the scoftware products arve
compared. Procedures are the established oriteria to which
the developnment and control processes are compared.

http://satc. gsfe.nasa gov/assure/agh.ixt

73072002 919 AM



hitp://sate.gsfe.nasa. gov/assure/agb.1x1

Standards and progedures establish the prescribed methods
for developing software; the SCA role is to ensure their
existence and adequacy. Proper documentation of standards
and procedures is necessary since the SQA activities of
process monitoring, product evaluation, and auditing rely
upon uneguivecal definitions to measure project compliance.

Types of standards include:

Documentation Standards specify form and content for
planning, control, and product documentation and provide
congiatency throughout a project. The NABA Data Item
Descriptions (DIDs) are documentation standards defined
within NASA Software Documentation Standard, NASA-8TD-2100-91.

Design Standards specify the form and content of the
design product. They provide rules and methods for
translating the scoftware requirements inito the software
design and for representing it in the design
documentation.

Code Standards specify the language in which the code
is to be written and define any restrictions on use of
language features. They define legal language
structures, style conventions, rules for data structures
and interfacesg, and internal code documentation.

Procedurass are explicit steps to be followed in carrying out
a process. All processes should have documented procedures.
Examples of processes for which procedures are needed are
configuration management, nonconformance reporting and
corrective action, testing, and formal inspections.

If developed according to the NASA DID, the Management Plan
describes the software development control processes, such
as configuration management, for which there have to be
procedures, and contains a list of the product standards.
Standards are tgo be documented according to the Standards
and Guidelines DID in the Product Specification. The
planning activities reguired to assure that both products
and processes comply with designated standards and
procedures are described in the QA portion of the Management
Plan.

C. Software Quality Assurance Activities

Product evaluation and process monitoring are the S0A
activities that assure the software development and control
processes described in the project's Management Plan are
correctly carried out and that the project's procedures and
standards are followed. Products are monitored for
conformance to standards and processes are monitored for
conformance to procveduraes. Audits are a key technique used
to perform product evaluation and process moniltoring.

Review of the Management Plan should ensure that appropriate
S0a approval points are built into these processes.

Product evaluation is an SQA activity that assures standards
are being followed. Ideally, the first products monitored
by 804 should be the project’s standards and procedures. S0A
azgures that ¢lear and achisvable standards exist and then
evaluates compliance of the software product to the
sgtablished standards. Product evaluation assures that the
software product reflects the reguiremsnig of the applicable
grandard{s) as identified in the Management Plan.

t of 26 TIRGA2G02 919 AM



7 of26

Process monitoring is an SQA activity that ensures that
appropriate steps to carry out the process are being
followed. SQA monitors processeg by comparing the actual
steps carried cut with those in the documented procedures.
The Agsurance gection of the Management Plan specifies the
methods to be used by the SQA process monitoring activity.

A fundamental SQA technigue is the audit, which locks at a
process and/or a product in depth, comparing them to
established procedures and standards. Audits are used to
review management, technical, and assurance processes Lo
provide an indication of the quality and status of the
software product.

The purpose cof an SQA audit is to assure that proper control
procedures are being followed, that required documentation
is maintained, and that the developer's status reports
accurately reflect the status of the activity. The SQA
product is an audit report to management consisting of
findings and recommendations to bring the development into
conformance with standards and/or procedures.

. S0A Relationships to Other Assurance Activities

Some of the more important relationships of S0A to other
managenent and asgsurance activities are described below.

1. Configuration Management Monitoring

SQA assures that software Configuration Management (CM)
activities are performed in accordance with the M plans,
standards, and procedures. SQA reviews the CM plans for
compliance with software CM policies and regquirements and
provides follow-up for nonconformances. SQ0A audits the CM
functions for adherence to standards and procedures and
prepares reports of its findings.

The CM activities monitored and audited by SQA incliude
baseline control, configuration identificaticn,
configuration centrel, configuration status accounting, and
configuration authentication. SQA alsc monitors and audits
the software library. SQA assures that:

Baselines are established and consistently maintained
for use in subsequent baseline development and control.

Software configuration identification is consistent and
accurate with respect to the numbering or naming of
computer programs, software modules, software units, and
aggociated software documents.

Configuration control ig maintained such that the
software configuration uged in critical phases of
testing, acceptance, and delivery is compatible with the
agsociated documentation.

Configuration status accounting is performed accourately
inciuding the recording and reporting of data reflecting
the software's configuration identification, proposed
changes to the configuration identification, and the
implementation status of approved changes.

Scftware configuratlon authentication is established by
a garies of configuration reviews and auditse that exhibit

http:/isate. gsfc. nasa. gov/assure/agh.ixt

TAI002 9:19 AM



8 of 26

the performance required by the software requirements
specification and the configuration of the scoftware is
accurately reflected in the software design documents.

Software development libraries provide for proper
handling of software code, documentation, media, and
related data in their variocus forms and versicns from the
time of their initial approval or acceptance until they
have been incorporated into the final media.

Approved changes to baselined software are made
properly and consistently in all products, and no
urrauthorized changes are made.

2. Verification and Validation Monitoring

S0A assures Verification and Validation (V&V) activities by
monitoring technical reviews, inspections, and walkthroughs.
The SQA role in formal testing is described in the next
section., The S5QA role in reviews, inspections, and
walkthroughs is to cobserve, participate as needed, and
verify that they were properly conducted and documented.

SQA also ensures that any actions required are assigned,
documented, scheduled, and updated.

Formal software reviews should be conducted at the end of
each phase of the life cycle to identify problems and
determine whether the interim product meets all applicable
requirements. Examples of formal reviews are the
Preliminary Design Review (PDR}, Critical Design Review
{CDR}, and Test Readiness Review (TRR}. A review locks at
the overall picture of the product being developed to see if
it satisfies ites requirements. Reviews are part of the
development process, designed to provide a ready/not-ready
decisicon to begin the next phase. In formal reviews, actual
work done ig compared with established standards. S5QA's
main objective in reviews is to assure that the Management
and Development Flans have been followed, and that the
product is ready tc proceed with the next phase of
development. Although the decigion to proceed is a
management decision, SQA is responsible for advising
management and participating in the decision.

An inspection or walkthrough is a detailed examination of a
product on a step-by-step or line-of-code by line-of-code
basis to find erreors. For inspections and walkthroughs, SQA
agsures, at a minimum, that the process is properly
completed and that needed follow-up is done. The inspection
process may be used to measure compliance to standards.

3. Formal Test Monitoring

SQA assures that formal scoftware testing, such ag acceptance
testing, is done in accordance with plans and procedures.
80A reviews testing documentation for completeness and
adherence to standards. The documentation review includes
test plans, test specificarions, test procedures, and test
reports. SCA monitors testing and provides follow-up on
nonconformances. By test monitoring, S0A assures software
completeness and readiness for delivery.

The obhlectives of S0 in monitoring formal eoftwars testin
are to asgure that:

r

The test procedures arve festing the softwar

I

http:/fsate.gsfe nasa.gov/assure/agh 1xi

73072002 9:19 AM



9of26

requirements in accordance with test plans.
The test procedures are verifiable.

The correct or "advertised" version of the software is
being tested (by SQA monitoring of the OM activity}.

The test procedures are followed.

Nonconformances cccurring during testing {that is, any
incident not expected in the test procedures) ars noted
and recorded.

Test reports are accurate and complete.

Regression testing is conducted to assure
nonconformances have been corrected.

Resolution of all ncnconformances takes place prior to
delivery.

Software testing verifies that the software meets its
raegquirements. The quality of testing is assured by
verifying that project requirementg are satisfied and that
the testing process is in accordance with the test plans and
procedures.

E. Software Quality Assurance During the Software
Acquisition Life Cycle

In addition to the general activities described in
gubsections C and D, there are phase-specific SQA activities
that should be conducted during the Software Acguisition
Life Cycle. At the conclusion of each phase, SQA
concurrence is a key element in the management decision to
initiate the following life cycle phase. Suggested
activities for each phase are described below.

1. Software Concept and Initiation Phase

8QA should be inveolved in both writing and reviewing the
Management Plan in order to assure that the processes,
procedures, and standards identified in the plan are
appropriate, clear, specific, and auditable. During this
phase, S0A also provides the QA section of the Management
Plan.

2. Software Reguirements Phase

During the software requirements phasge, SQA assures that
software reguirements are complete, testable, and properly
expressed ag functional, performance, and interface
requirements.

3. Boftware Architectural (Preliminary) Design Phase

80A sctivities during the architectural (preliminary) design
phase include:

hsguring adherence to approved design standards as
desicgnated in the Managemept Plan.

Asguring 32ll sofiwars regquirements are allocaled to
software components.

hitp://satc.gsfe.nasa. gov/assure/agh.txi

7302002 6:19 AM



0of 26

Assuring that a testing verification matrix exists and
is kept up to date.

Assuring the Interface Control Documents are in
agreement with the standard in form and content.

Reviewing PDR documentaticn and assuring that all
action items are resolved,

Assuring the approved design is placed under
configuration management.

4. Software Detailed Design Phase
50A activities during the detailed design phase include:
Assuring that approved design standards are followed.

Assuring that allocated modules are included in the
detailed design.

Assuring that results of design inspections are
inciuded in the design.

Reviewing CDR documentation and assuring that all
action items are resclved.

5. Software Implementaticn Phase

8QA activities during the ilmplementation phase include the
audit of:

Results of coding and design activities including the
schedule contained in the Software Development Plan.

Status of all deliverable items.

Configuration management activities and the software
development library.

Nonconformance reporting and corrective action system.
6. Software Integraticon and Test Phase

SCA activities during the integration and test phase
include:

Assuring readiness for testing of all deliverable
items.

Agsuring that all tests are run according to test plans

and procedures and that any nonconformances are reported
and resclved.

Asguring that test reporits are complete and correct.

Caertifying that testing is complete and software and
documentation are ready for delivery.

Participating in the Test EReadiness Review and asgsuring

z11 action items are completed.
F Software Acceptances and Delivery Phase

Az a minimum, SCA activities during the software acceptance

httpe//sate.gsfe.nasa. goviassure/agh. txs

FANHNZ 19 AM



11 of26

and delivery phase include assuring the performance of a
final configuration audit to demonstrate that all
deliverable items are ready for delivery.

8. Software Sustaining Engineering and Operatlons Phase

Bburing this phase, there will be mini-develepment cycles to
enhance or correct the software. During these development
cycles, SQA conducts the appropriate phase-specific
aetivities desgcribed above.

E. Technigques and Tools

80A should evaluate its needs for assurance tools versus
those available off-the-ghelf for applicability to the
specific project, and must develop the others it reguires.
Useful tools might include audit and inspection checklists
and autcomatic code standards analyzers.

IV. SOFTWARE QUALITY ENGINEERING
A. Concepts

Software Quality Engineering (S5QE} is a process that
evaluates, assegses, and improves the quality of software.
Software guality is often defined as the degree to which
software meets requirements for reliability,
maintainability, transportability, etc., as contrasted with
functional, performance, and interface requirements that are
gatisfied as a result of software engineering.

Quality must be built into a software product during its
development to satisfy quality reguirements established for
it. SQE ensures that the process of incorporating guality
in the software is done properly, and that the resulting
gsoftware product meets the guality requirements. The degree
of conformance to quality regquirements usually must bhe
determined by analysis, while functional reguirements are
demonstrated by testing. S0E performs a function
complementary to software development engineering. Their
common goal ig to ensure that a safe, reliable, and quality
engineered software product is developed.

B, Software Qualities

Qualities for which an SQF evaluation is to be done must
first be selected and requirements set for them. Some
commonly uged gualities are reliability, maintainability,
transportability, interoperability, testability, useability,
reusability, traceability, sustainability, and efficiency.
Some of the key ones are discussed below.

1. Reliability

Hardware reliability is often defined in terms of the Mean-
Time-To-Failure, or MITF, of a given set of eguipment. 2An
analogous notion is ugseful for scftware, although the
failure mechaniasms are different and the mathemabtical
predictions used for hardware have not yeib been usefully
applied to software. BSoftware reliability is often defined
as the extent to which a program can be sxpected Lo perform
intended functions with reguirsd precision over a given
pericd of time. Softwarse relisbility enginesring is
concerned with the detection and correction of errorg in the
software; even more, it is concerned with technigques oo

htip:/fsate. gsfe nasa. gov/assure/agh. tx1

7302002 9:19 AM



iZof26

compensate for unknown software errors and for problems in
the hardware and data environments in which the software
migt operate.

2. Maintainability

Software maintainability is defined as the ease of finding
and correcting errors in the software. It is analogous to
the hardware guality of Mean-Time-To-Repalr, or MTTR. While
there is as yebt no way to directly measure or predict
software maintainability, there is a significant body of
knowledge about software attributes that make software
gagier to maintain. These include modularity, self
{internal} documentation, code readability, and structured
coding techniques. These same attributes alsc improve
gustainability, the ability to make improvements to the
software.

3. Transportability

Transportability is defined as the ease of transporting a
given set of software to a new hardware and/or operating
system environment.

4. Intercperabilitcy

Software intercperability is the ability of two or more
software sygtems to exchange information and to mutually use
the exchanged information.

5. Efficiency

Efficiency is the extent to which software uses minimum
hardware resources to perform its functions.

There are many other software gualities. Some of them will
not be important to a specific software system, thus no
activities will be performed to assessg or improve them.
Maximizing some gualities may cause others to be decreased.
For example, increasing the efficiency of a piece of
software may require writing parts of it in assembly
language. This will decrease the transportability and
maintainability ©f the software.

C. Metrics

Metrics are guantitative values, usually computed from the
design or code, that measure the guality in question, or
gome attribute of the software related to the quality. Many
metrics have besen invented, and a number have been
successfully used in specific enviromments, but none has
gained widespread acceptance.

o. A Software Quality Engineering Program

The two software gualities which command the most attention
are reliability and maintainability. Some practical
programs and technigques have been developed to improve the
reliability and maintainability of goftware, even 1f they
are not measurable or predictable. The types of activities
that might be included in an S0E program are degoribed here
in terms of these two gualities. These activities could be
uged as a model for the S0QE activities for additional
quaiitias.

1. oualitvies and Atvributes

http://sate gsfe.nasa.gov/assure/agh.txi

73072002 9:19 AM



130f26

An initial step in laying out an BQE program is to select
the gualities that are important in the context of the use
¢f the software that is being developed. For example, the
highest priority gqualities for flight software are usually
reliability and efficiency. If reviged flight software can
be up-linked during flight, maintainability wmay be of
interest, but congiderations like transportability will not
drive the design or implementation. On the other hand, the
use of science analysis software might reguire ease of
change and maintainesbility, with reliability a concern and
efficiency not a driver at all.

After the software qualities are selected and ranked,
gpecific attributes of the scoftware that help o increase
those ¢ualities should be identified. For example,
modularity is an attribute that tends to increase both
reliability and maintainability. Modular software is
designed to result in code that is apportioned inte small,
self-contained, functionally unique components or units.
Modular code iz easisr to maintain, because the interactions
between units of code are easily understood, and low level
functions are contained in few units of cede. Modular code
ig also more reliable, because it is easier to completely
test a small, self contained unit.

Not all software qualities are so simply related to
measurable design and code attributes, and no guality is so
gimple that it can be easily measured. The idea is to select
or devise measurable, analyzable, or testable desgign and
code attributes that will increase the desired cualities.
Attributes like information hiding, strength, cchesion, and
coupling should be considered.

Z. Quality Evaluations

Onge some decisions have been made about the quality
objectives and software attributes, guality evaluations can
be done. The intent in an evaluation is to measure the
effectiveness of a standard or procedure in promoting the
desired attributes of the scoftware product. For example,
the design and coding standards should undergo a guality
evaluation. If modularity is desired, the standards should
clearly say so and should set standards for the size of
units or components. Since internal documentation is linked
to maintainability, the documentation standards should be
alear and require good internal documentation.

Quality of designs and code should alsc be evaluated. This
can be done ag @ part of the walkthrough or inspection
process, or a quality audit can be done. In either case,
the implementation is evaluated against the standard and
againsgt the svaluator’s knowledge of good scftware
engineering practices, and examples of poor gquality in the
product are identified for possible correction.

3. Nonconformance Analysis

One very useful S0F activity is an analysis of a project's
noneenformance records.  The nonconformances should be
analvzed for unsxpectedly high numbers of events in specific
gectiong or modules of code.  If areas of code are found
chat have had an unusually high error count lassuming it is
ot because the code in question has been tested more
thoroughly), then the oode should be examined. The high

http://satc.gsfo.nasa.gov/assure/agh, x|

7/30/2002 9:19 AM



14 of 26

error count may be due to poor guality code, an
inappropriate design, or requirements that are not well
understood or defined. In any case, the analysis may
indicate changes and rework that can improve the reliabilivy
of the completed software. In addition to code problenms,
the analysis may also reveal scoftware development or
maintenance processes that allow or cause a high proportion
of errors to be introduced into the software. If so, an
evaluation of the procedures may lead to changes, or an
audit may discover that the procedures are not being
followed.

4. Fault Tolerance Engineering

For software that must be of high reliability, a fault
tolerance activity should be established. It should
identify software which provides and accomplishes critical
functions and requirements. For this software, the
engineering activity should determine and develop techniques
which will ensure that the needed reliability or fault
tolerance will be attained. Some of the technigues that
have been developed for high reliability environments
include:

Input data checking and error tolerance. For example,
if out-of-range or missing input data can affect
reliability, then sophisticated error checking and data
interpolation/extrapolation schemes may significantly
improve reliability.

Proof of correctness. For limited amounts of code,
formal "proof of correctness" methods may be able to
demongtrate that no errors exist.

N-Item voting. This is a design and implementation
scheme where a number of independent sets of software and
hardware operate on the same input. Some comparison
(voting! scheme is used to determine which ocutput to use.
Thisg 1s especially effective where subtle timing or
hardware errors may be present.

Independent development. In this scheme, one or more
of the N-items are independently developed units of
software. This helps prevent the simultanecus failure of
all items due tc a common coding error.

E. Techniques and Tools

Some of the useful fault-telerance techniques are described
under subsection D, above. Standard statistical techniques
can be used to manipulate nonconformance data. In addition,
there is considerable experimentabicn with the Failure Modes
and Effects Analysis (FMEA} technigue adapted from hardware
reliability engineering. In particular, the FMEA can be
uged to identify failure modes or other assumable {hardware)
gyetem states which can then lead the gquality engineer to an
analysis of the software that controls the system as it
assumesg those states.

There are also tools that are useful for guali

sngineering. They Include avetem and aoftware simulators,
which allow the modeling of system behavior; dynamic
analyzers, which detect the portions of the code that are
uged most intensively; software tocls that are used to
compute metrics from code or designs; and a host of special

http//satc.gsfe.nasa. gov/assure/agh.txi

T302002 %19 AM



150f26

purpose tools that can, for example, detect all system calls
to help decide on portabiiity limits.

V. VERIFICATICN AND VALIDATION
A. Concepts and Definitions

Software Verification and Validation (V&V} 1is the process of
ensuring that software being developed or changed will
satisfy functional and other requirements (validation} and
each step in the process of building the software vields the
right products {verification). The differences bestween
verification and validation are unimportant except to the
theorist; practitioners use the term V&V to refer to all of
the activities that are aimed at making sure the software
will function as required.

V&V is intended to he a systematic and technical evaluation
of software and associated products of the development and
maintenance processes. Reviews and tests are done at the
end of each phase of the development process to ensure
software requirements are complete and testable and that
design, code, documentation, and data satisfy those
regquirements.

B, Activities

The two major V&V activities are reviews, including
inspections and walkthroughs, and testing.

1. Reviews, Inspections, and Walkthroughs

Reviews are conducted during and at the end of each phase of
the life cyecle to determine whether established
regquirements, design concepts, and specifications have been
met. Reviews consist of the presentation of material to a
review board or panel. Reviews are most effective when
conducted by personnel who have not been directly involved
in the development of the software being reviewed.

Informal reviews are conducted on an as-needed basis. The
developer chooses a review panel and provides and/or
presents the material to be reviewed. The material may be
ag informal as a computer listing or hand-written
documentation.

Formal reviews are conducted at the end of each life cycle
rhaze. The acguirer of the software appoints the formal
review panel or beard, who may make or affect a go/ne-go
decision to proceed to the next step of the life cycle.
Formal reviews include the Software Requirements Review, the
Software Preliminary Design Review, the Software Critical
Design Review, and the Scftware Test Readiness Review.

An inspection or walkthrough is a3 detailed examination of a
product on a step-by-gtep or line-of-code by line-of-code
bagis. The purpose of conducting inspections and
walkthroughs ie to find errors. The group that does an
inspection or walkthrough is composed of pesrs from
development, test, and guality assurance.

Z. Testing

Tegting is fthe operation of the software with real or
3 v

http://sate. gsfe.nasa.gov/assure/agh.txt

TG00 915 AM



16 of 26

gimulated inputs to demonstrate that a product satisfies its
requirements and, if it does not, to identify the specific
differences between expected and actual results. There are
varied levels of software tests, ranging from unit or
element testing through integration testing and performance
testing, up to software system and acceptance tests.

a. Informal Testing

Informal tests are done by the developer to measure the
development progress. "Informal™ in this case does not mean
that the tests are done in a casual manner, just that the
acqguirer of the scftware isg not formally involved, that
witnessing of the testing is not regquired, and that the
prime purpcse of the teste is to find errors. Unit,
component, and subsystem integration tests are usually
informal tests.

Informal testing may be regquirements-driven oy design-
driven. Reguirements-driven or black box testing is done by
selecting the input data and other parameters based on the
gsoftware requirements and observing the outputs and
reactions of the software. Black box testing can be done at
any level of integration. In addition to testing for
gsatisfaction of requirements, some of the objectives of
requirements-driven testing are to ascertain:

Computational correctness.

Proper handling of boundary conditions, including
extreme inputs and conditions that cause extreme cutputs.

State transitioning as expected.
Proper behavior under stress or high load.
Adeguate error detection, handling, and recovery.

Design-driven or white box testing is the process where the
tester examines the internal workings of code. Design-
driven testing is done by selecting the input data and cther
parameters based on the internal logic paths that are to be
checked. The goals of design-driven tegting include
ascertaining correctness of:

A1l paths through the code. For most software
products, this can be feasibly done only at the unit test
ievel,

Bit-by-bit functioning of interfaces.
Size and timing of critical elements of code.
b. Formal Tests

Formal testing demonstrates that the software is ready for
itg intended use. A formal test should include an acgquirer-
approved test plan and procedures, quality assurance
witnesses, a record of all discrepancies, and a test repori.
Formal testing is always requirements-driven, and its
purpose iz to demonstrate thar the software meets its
regquirenants,

[

Rach software development project should have at least one
& -
£

formal test, the accesptance tegt that concludes th

hitp://sate.gsfc nasa. gov/assure/agh txi

TRG002 319 AM



hitp://satc. gsfe.nasa. gov/assure/agh.txi

development activities and demonstrates that the software is
ready for operations.

In addition to the final acceptance test, other formal
testing may be done on a project. For example, if the
apftware 18 to be developed and delivered in increments or
builds, there may be incremental acceptance tests. As a
practical matter, any contractually required test is usually
consideraed a formal test; others are "informal.®

After acceptance of a software product, all changes to the
product should be sccepted as a result of a formal fest.
Post acceptance testing should include regression testing.
Regression testing involves rerunning previously used
acceptance tests to ensure that the change did not disturb
functionsg that have previously been accepted.

C. Verification and Validation During the Software
Aoguisition Life Cyeole

The V&V Plan should cover all V&V activities to be performed
during all phases of the life cycle. The V&V Plan Data Item
Degeription (DID) may be rolled out of the Product Agsurance
Plan DID contained in the SMAP Management Plan Documentation
Standard and DID.

1. Software Concept and Initiation Phase

The major V&V activity during this phasge is to develop a
concept of how the gystem is to be reviewed and tested.
Simple projects may compress the life cycle steps; if so,
the reviews may have Lo be compresged. Test concepts may
involve simple generation of test cases by a user
representative or may reguire the development of elaborate
simulators and test data generators. Without an adequate
V&V concept and plan, the cost, schedule, and complexity of
the project may be poorly estimated due to the lack of
adequate test capabilities and data.

2. Software Regquirements Phase
V&V activities during this phase should include:
Analyzing software requirements to determine if they
are consistent with, and within the scope of, system

requirements.

Assuring that the requirements are testable and capable
of being satisfied.

Creating a preliminary version of the Acceptance Test
Plan, including a verification matrix, which relates
requirements to the tests used to demonstrate that
regquirenents are satisfied.

Beginning development, if needed, of test bedes and test
data generators.

The phase-ending Software Requirements Review (SRR},

3. Software Arvchitectural (Preliminary] Design Phase

1
)
o}
o
o
oo
o
[
i
3
[}
ot
e
[

VeV artivities during this phas

oy

tpdating the preliminary version of the Acceptance Test

17of26 773072002 9:19 AM



Plan and the verification matrix.

Conducting informal reviews and walkthroughs or
ingpections of the preliminary software and data base
designs.

The phase-ending Preliminary Design Review (PDR) at
which the allocation of reguiremsnts to the software
architecture is reviewed and approved.

4. Software Detailed Design Phase
V&V activities during this phase should include:
Completing the Acceptance Test Plan and the
verification matrix, including test specifications and
unit test plans.
Conducting informal reviews and walkthroughs or
ingpections of the detailed software and data base

designs.

The Critical Design Review {(CDR) which completes the
software detailed design phase.

5. Software Implementation Phase

V&V activities during this phase should include:
Code inspections and/or walkthroughs.
Unit testing software and data structures.
Locating, correcting, and retesting errors.

Development of detailled test procedures for the next
two phases.

6. Software Integration and Test Phase

Thig phase is a major V&V effort, where the tested units
from the previous phase are integrated inte subsystems and
then the final system. Activities during this phase should
include:

Conducting tests per test procedures.

Documenting test performance, test completion, and
conformance of test results versus expected results.

Providing a test report that includes a summary of
nonconformances found during testing.

Locating, recording, correcting, and retesting
nonconformances,

The Tegt Resadinesg Review {TRR}, confirming the
product’'s readiness for acceptance testing.

Software Acceptance and Delivery Phasze
V&V activities during this phase should include:

oy

£ L

g that
E31

&
[
I,

By test, analvsils, and ingpection, demonstrab
the developed svetem meets its functional, perio

%
b3
f4it

18 of 26

hitp://sate. gsfe nasa. gov/assure/agh.tx

738/2002 9119 AM



19 0f 26

and interface reguirements.
Locating, correcting, and retesting nonconformances.
The phase-ending Acceptance Review {AR).
a. Software Bustaining Engineering and Operaticns Phase

Arnyy V&V activities conducted during the prior seven phases
are conducted during this phase as they pertain to the
revision or update of the goftware.

D. Independent Verification and Vvalidation

Independent Verification and Validation (IV&V}! is a process
whereby the products of the software development life cycle
phases are independently reviewed, verified, and validated
by an organization that is neither the developer nor the
acgquirer of the software. The IV&V agent should have no
stake in the success or failure of the software. The IV&V
agent's only interest should be to make sure that the
software is thoroughly tested against itg complete set of
requirements.

The IV&V activities duplicate the V&V activities step-by-
step during the life cycle, with the exception that the IVeV
agent dees no informal testing. If there is an IVEV agent,
the formal acceptance testing may be done only once, by the
IV&V agent. In this case, the developer will do a formal
demonstration that the software is ready for formal
acceptance.

E. Technigques and Tools

Perhaps more tools have been developed to aid the V&V of
software (especially testing) than any other software
activity. The tocols available include code tracers, special
purpose memory dumpers and formatters, data generators,
gimulations, and emulations. Some tools are esgsential for
testing any significant set of software, and, if they have
to be developed, may turn out to be a significant cost and
schedule driver.

An especially useful technigque for finding errore is the
formal inspection. Formal inspections were developed by
Michael Fagan of IBM. Like walkthroughs, inspections
involve the line-by-line evaluation of the product being
reviewed. Insgpections, however, are significantly different
from walkthroughs and are significantly more effective.
Inspections are done by a team, each member of which has a
specific role. The team is led by a moderator, who is
formally trained in the inspection process. The team
includes a reader, who leads the team through the item; one
or more reviewers, who look for faults in the item; a
recorder, who notes the faults; and the author, who helps
explain the item being inspected.

This formal, highly structured inspection process has been
extremely effective in finding and eliminating errors. It
can be applied to any product of the software development
process, including documents, design, and zcode.  One of its
important sids benefits has bsen the direct feedback to the
developer/author, and the significent improvement in quality
that results.

http://satc.gste.nasa gov/assure/agh.txi

F30/20062 9:19 AM



http://sate. gsfe.nasa.gov/assure/agh.txr

VI. NCRCONFCORMANCE REPORTING AND CORRECTIVE ACTION
A Concepts and Definitions

The purpose of a Nonconformance Reporting and Corrective
Action (NRCA} system or procedure is Lo report, analyze, and
correct nonconformances and collect informarion from which
reports on the overall status of nonconformances can be
made. A nonconformance, often called a problem,
discrepancy, anomaly, fault, or error, is any failure of any
software document, code, or data structure to meeb its
requirements or standards. Corrective action is a general
name for the process by which nonconformances are corrected
and ceontroliled.

The need for a NRCA system arises early in the software life
cycle, as soon as the first documents and other products are
developed. A NRCA system should track nonconformances,
assign priorities, record their dispositions, note the
version of the product in which they are corrected, notify
the originator of the nonconformance about the actions
taken, and produce management reports.

B. Activities
1. Nonconformance Detection and Reporting

By definition, a nonconformance is a deviation of any
product from its requirements or standards. Nonconformance
reports may be filed against any product in any phase of the
software life cycle by anyone associated with the project.
Normally, the NRCA system is used after a product is first
approved or baselined by its developer and released for
wider use. For example, while a developer is unit testing
his/her code, errors found may be tracked only locally.
After the code is declared correct and released for
integration, the NRCA system is used to inform users of the
code about nonconformances and to assure that the
nonconformances are corrected and not overlocked.

Usually, a special form is used to make the nonconformance
report. Examples of the information the form might contain
are:
Date and time of detection of the nonconformance.
Brror identification (report number and title}.
Reporting individual and organization.
Individual responsible for corrective action.
Criticality of the nonconformance.
Statement of the nonconformance.

proposed fix for the nonconformance.

Identifier of the unit of code, data, or documentation
in which corrective action must be taken.

Life cycle phagze in which the nonconformance was
yoduced.

gy
int

Life cyele phasgse in which the nonconformance was

TA02002 911G AM



hitp://satc.gsfe.nasa gov/assure/agh.tx

detected.
Final closure resolution.

Date and/or version of the configuraticon item in which
the correction will be included.

Date on which the nonconformance is closed.

A DID for a discrepancy report is given in the Management
Control and Status Reports volume of the NASA Documentation
Standard.

2. Tracking and Management Reports

After the report is prepared by the individual who found the
nonconformance, the data are entered into some form of
controlling system. Data base management systems are often
used to help automate the otherwise laborious clerical
effort of tracking the nonconformances and providing
managemernt reports.

A nonconformance tracking and reporting system should be
able to provide management reports containing such
information as error and correction status, the number of
ervorsg found per product, and the c¢riticality of open
problems. The data enable the impact of nonconformances to
be evaluated go that the usge of resources may be
prioritized.

3. Impact Assessment and Corrective Action

Nencenformance reports should be evaluated for criticality
and level of importance. Factors to be considered include:

The impact of not correcting the nonconformance.

The resources required for correcting the
nonconformance.

The impact on other baselined items if the
nonconformance is corrected.

If the decision is made to correct a nonconformance, there
should be procedures to control the corrective action
process. Such procedurss should include followup to ensure
the nonconformance has been documented and corrected in the
appropriate version of software, and to assure that adeguate
testing, including regression testing, is done.

<. Interrelationships

NRCA i a basic and fundamental tool for project management
and for software assurance. As such, it impacts and
interacts with many scfiware managenent, development, and
asgurance astivitieg., For example, CM has to track the
product changes and versions that result from correcting
noncenformances.  In addition, some nonconformance reports
will contain reguirements changes disguised as
nonconformances. These reports should result in the opening
0f a changs requsst,

¥
£

h

the nonconformancs 1s in g code or data product, thoze
respongible for V&Y agtivities must develop tests o ensurs
that the problem is indeed satisfactorily coryvected. In

A ofle 730/2002 919 AM



220f 26

addition, regression testing is needed to make sure that no
new problems have been introduced by the fix.

80A must assure that proper procedures are followed in
processing nonconformances, and that shortcuts are not taken
since they would threaten product integrity. SCA must also
ensure that the modified product still meets its standards.
S0A may use the numbers of nonconformances detected in
specific areas of the system or that occurred in specific
life cycle phases to identify process or product areas that
might benefit from an audit.

The NRCA system is a useful tocl for SQE, since it ig often
true that a product or component of a product with a large
number of nonconformances is of poor guality and/or
reliability and needs to be reexaminsd. In systems with
significant safety and/or sscurity requirements, the safety
and security staffs will review nonconformances both to
assure that their requirements are not compromised and to
look for weaknesses that the problems wmight have uncovered.

. Techniques and Tools

Bach project should consider an automated tracking system
for nonconformance reports and an automated updating
capability to identify and record the product changes that
ccouy as a result of the rescolution of the nonconformances.

VII. SOFTWARE AND SYSTEM SAFETY
A. Concepts and Definitions

System safety is concerned with the possibility of
catastrophic failure of systems in such a way as to
compromise the safety of people or property, or result in
mission failure. Software safety is definable only in the
system context. Software has no inherent dangers; however,
systems controlled or monitored by software do fail, and
sone fallures of some systems will have safety impacts. To
the extent that svstem failures can be caused or fail to be
prevented by software, there is a need for an activity
called "software safety."

If we are to be concerned with the safety of software only
in a system context, we must then be concerned with
nonconformances in the software and with the software
regquirements as well. Indeed, the most sericus problems
with software-based systems are those that develop when the
software requirements are incorrect, inappropriate, or
incomplete for the gystem situation,

a, Software Problems

System fallures that are caused by ascftware are due to one
of two types of software problemg: nonconformances {(or
failures to satisfy requirements) or an error or omission in
the software requirements. A nonconformance may be gimple
{(the meost common is a coding ervor or "bug"), or more
complex {i.e., a subtle timing error that delays a shutile
launch! . The important point aboub nonconformances iz that
verification and validation technigues are desi d to
detsct them and assurance technigues are design to preven
them; improvements in these methods and a safety program
based on specialized application of them are improving the

o
€
£

o
1]
ek

http://sate. gsfe.nasa.gov/assure/agh .t

TAI002 9:19 AM



23026

safety and reliability of software controlled systems.

An error or omission in reguirements is lesgs tractable. The
software may perform exactly as required, but the
requirements do not correctly deal with some gystem gtate,
When the system enters the undefined state, unexpected and
undesirable behavior may result. This type of problem
cannot be handled within the software discipline; it results
from a failure of the gystem and software engineering
processes which developed and allocated the system
reguirements to the software.

C. Methods for Improving Software Safety

Improving the software development process and building
better goftware are ways to increase system reliiability,
i.e., by producing software with fewer faults. Intuitively,
more reliable software is probably safer software, but from
a safety standpoint more concentration on safetv-related
software functions is needed. A first order approach is to
identify the critical software that controls system safety-
related functions and give it special attention through the
development and testing process. This is just a special
case of the "build it better” method, but it focuses scarce
regources on critical areas.

0. Software Safety Program (Example)

System nazard analysis may indicate that some software
requires a more formal safety program because it is included
in a safety critical system component. The scoftware safety
program beging with a preliminary software safety analysis.
The purpese of the preliminary software safety analysis is
to identify software controlled functiong that affect the
gsafety critical component and the software components that
execute the functions. These software components are safety
critical. when a safety critical software component is
identified, then software safety activities are initiated on
that component and continued through the requirements,
design, and code analyses and testing phases in the software
development process.

1. Reguirements Analysis

Software safety requirements analysis forms the basis for
subsequent software safety activities. The process of
requirements analysis evaluates both gsoftware and interface
reqguirements. The analysis is intended to identify errors
and deficliencies in the software regquirements that could
restlt in the identified hazardous system states.
Techniques emploved in performing requirements analysis
include criticality analysis; specification analysis; and
timing, sizing, and throughput analysis.

Criticality analysgis evaluates each regquiremeni in
termg of the safety ocbijectives derived for a given
software comporent. This evaluation is to determine
whether the requirement has safety implications. If so,
the requirement is deemed critical and must be tracked
throughout the software development coyele; that is,
rthrough design, ooding, and testing. It must be
traceable from the highest level gpecification al@ the
way to the code and documentation.

Specification analysis evaluates the completeness,

http://sate.gsfo nasa. gov/assure/agh.tx1

F2002 9:19 AM



24 0f 26

correctness, consistency, and testability of identified
software safety critical requivrements. Specification
analysis considers each regquirement singly and all
requirements as a set.

Timing, sizing, and throughput analysis evaluates
seftware requirements that relate to execution time,
memory allocation, and channel usage. Timing, sizing,
and throughput analysis focuses on noting and defining
program constraints based on maximum reguired and
allowable execution times, maximum memory usage and
availability, and throughput considerations based on 1/0
channel usage.

2. Design Analysis

Degign analysis verifies that the program design correctly
implements safety critical reguirements.

Design logic analysis evaluates the equations,
algorithms, and control logic of the software design.

Degign data analysis evaluates the desgcoription and
intended usage of each data item used in design of the
critical component. Interrupts and their effect on data
must receive special attention in safety critical areas
te verify that interrupts and interrupt handling routines
do not alter critical data items used by other routines.

Design interface analysis verifies the proper design of
a goftware component's interfaces with other components
of the system, including hardware, software, and
operators.

Design constraint analysis evaluates the design
solutions against restrictions imposed by regquirements
and real-world limitations. The design must be responsive
to all known or anticipated restrictions on the software
component. These restrictions may include timing,
gizing, and throughput ceonstraints, equation and
algorithm limitations, input and output data limitations,
and design solution limitations.

3, Code Analvysis

Code analysis verifies that the coded program correctly
implements the verified design and does not viclate safety
requirements. The techniques used in the performance of
code analysis mirror those used in design analvsis.

4, Safety Testing

Software safety testing verifies analyvesis results,
investigates program behavior, and confirms that the program
complies with safety regquirements. Special safety testing,
conducted in accordance with the safety test plan and
procedures, establishes the compliance of the scftware with
the safety reguirements. Safety testing focuses on locating
program weaknesses and identifving extreme or unexpected
situarions that oould cause the software to fail in ways
that would cause a violation of safety reguirements. The
gafety testing effort is limited to those software
reguirements classified as safety critical items.

B. Technigues and Tools

hitp://satc gsfo.nasa. gov/assure/agh.txi

730/2002 9:19 AM



http:ifsate gsfe.nasa.gov/assure/agh. tx1

In the last few years, there has been much effort to adapt
mathods usged in hardware safety and reliability to software.
Tools like fault tree analysis and sneak circuit analysis
have been applied to goftware with some guccess. Modeling
of software using Petri nets has been tried, and other
modeling technigues have been advocated, but with only
limited success to date. While some technigues may have
gome limited usefulness, their success depends heavily on
the ability of the analyst that applies them.

VIII. GSECURITY ASSURANCE
A. Concepts and Definitions

NASA policy states that automated information resources
shall be provided with a level of security and integrity
consigstent with the potential harm from their loss,
inaccuracy, alteration, unavailability, or misuse. Software
is itself a rescurce and thus must be afforded appropriate
security. Software also contalns and controls data and
other NASA resources; it must be designed and implemenited o
protect those resources. Software security assurance is the
process of ensuring that the above reguirements are
satisfied during all phases of the software life cycle.

B. Automated Information Security

Policy for automated information security (AIS) is contained
in MMI 2410.7, "Assuring the Security and Integrity of NASA
Automated Information Systems." Very briefly, the policy
states that security protection provided for a system must
be appropriate to its sengitivity. It also states that the
sensitivity of a system is based on the sensitivity of the
information being handled by the system. Sensitivity is
based on the impact on NASA of inaccurate, altered,
disclosged, or unavailable information.

The ALS process begins by considering and categorizing the
information that is to be contained in the system. The
information, including both programs and data, should be
categorized according to its sensitivity. For example, in
the lowest category, the impact of a security violation is
minimal; the impact on NASA's missions, functions, or
reputation is negligible, or result in the loss of no
tangible agset. For a top category, however, the impact may
pose a threat to human life; may have an irreparable impact
on NASA's missions, functions, image, or reputation; or may
regult in the loss of significant assets or resources.

Based on the categorization, security requirements should be
developed. The security requirements should encompass
gysten access control, including network access and physical
accesg; data management and data access; envivonmental
controls (power, alr conditioning, etc.! and off-line
storage; human resource gecurity; and aundit trails and usage
records.

. Ssourity Assurance Agtivities
Becurity assurance activities arve directed to ensuring that
information being {or to be) processed by an asutomated

informabion systen has been assigned a proper ssnsitiviny
category and that the appropriate protection regquiremsnis

25 0f 26 7/30/2002 9:19 AM



26 of 26

have heen developed and met in the gysgtem being developed or
maintained. In addition, security assurance activities
include ensuring the control and protection of the software
being developed and/or maintained, and of scftware support
tocls and data.

A winimum security assurance program should ensure that:
A security evaluation has been performed.

Security reguirements have been established for the
goftware and data being developed and/or maintained.

Security reguirements have been established for the
development and/or maintenance procegs.

Each software review and/or audit includes evaluation
of security requirements.

The configuration management and corrective action
processes provide security for the existing software and
that the change evaluation processes prevent security
violations.

Phnyaical security for software and data is adequate.
D. Technigques and Tools
Off-the-shelf packages are available to be used to support

gecurity requirements. If used, they must be evaluated and
their effectiveness assured.

http://satc. gsfc.nasa.gov/assure/agh ixi

730/2002 5:15 AM



