
10f26 

SOFTWARE ASSURANCE GUIDEBOOK, NASA-GB-A201 

I. OVERVIEW 

A. Concepts and Definitions 

Software assurance is the planned and systematic set of 
activities that ensures that software processes and products 
conform to requirements, standards, and procedures. 
"Processes" include all of the activities involved in 
designing, developing, enhancing, and maintaining software; 
"products" include the software, associated data, its 
documentation, and all supporting and reporting paperwork. 

The three mutually supportive activities involved in the 
software life cycle are management, engineering, and 
assurance. Software management is the set of activities 
involved in planning, controlling, and directing the 
software project. Software engineering is the set of 
activities that analyzes requirements, develops designs, 
writes code, and structures databases. Software assurance 
makes sure the management and engineering efforts put forth 
result in a product that meets all of its requirements. 

Software assurance is not an organization, but a set of 
related activities. It is unlikely that any NASA Center or 
NASA contractor has a single organizational entity that 
performs all of the functions defined in this guidebook. 
The guidebook should be read as guidance to activities that 
are vital to the success of a software project. Some 
considerations for organizational structuring to enhance the 
probability of success are given in the section on 
establishing a software assurance activity. 

B. Goals of Software Assurance 

Software development, like any complex development activity, 
is a process full of risks. The risks are both technical and 
programmatic; that is, risks that the software will not 
perform as intended or will be too difficult to operate, 
modify, or maintain are technical risks, while risks that 
the project will overrun cost or schedule are programmatic 
risks. The goal of software assurance is to reduce these 
risks. For example, coding standards are set to specify a 
minimum quality of code. If no standards are set, there 
exists some risk that the code will not come up to a minimum 
usable standard, and that the code will require rework. If 
standards are set but there is no explicit process for 
assuring that all code meets the standards, then there is 
some risk that some coders will produce code that does not 
meet the standards. The assurance process involved is 
quality assurance, and to have no quality aSsurance activity 
is to increase the risk that unacceptable code will be 
produced. 

Similarly, the lack of a nonconformance reporting and 
corrective action system increases the risk that problems in 
the software will be forgotten and not corrected, or that 
important problems will not get priority attention. Other 
risk-related can be to upport all of the 
activities in this The point s that software 
assurance activities to reduce r sks, 

C. Purpose of this Guidebook 

http://sate.gsknasa.gov!assure!agb.txl 

7i30f2002 9: 19 AM 



20f26 

The purpose of this Software Assurance Guidebook is to 
provide assistance, in the form of guidance, to NASA 
managers responsible for software acquisition and 
development and for establishing software assurance 
requirements. 

The style of the guidebook is intended to be tutorial rather 
than directive. It is hoped that the reader will find the 
following sections an easily understood introduction to 
software assurance and a useful guide to formulating and 
addressing software project needs related to assurance. 

The remainder of this guidebook will touch on each major 
activity within software assurance: software quality 
assurance, software quality engineering, verification and 
validation, nonconformance reporting and corrective action, 
safety, and security. Section II, Establishing a Project 
Software Assurance Activity, is designed to assist managers 
in starting a new assurance activity or improving an 
existing assurance program. 

II. ESTABLISHING A PROJECT SOFTWARE ASSURANCE ACTIVITY 

A. Concepts and Definitions 

Every software development, enhancement, or maintenance 
project includes some assurance activities. The types, 
amount, and formality of such activities are decisions of 
the project manager, based on an assessment of the project, 
its risks, and its development and operational environments. 

Even a simple, one person development job has assurance 
activities embedded in it, even if the programmer denies 
that tlqu<;tlity assurance" plays any part in what is to be 
done. Each programmer has some idea of how code should be 
written, and this idea functions as a coding standard for 
that programmer. Likewise, each of us has some idea of how 
documentation should be written, and this is a personal 
documentation standard. Each programmer reviews his/her 
products to make sure they meet their internal standards, 
and this is an assurance review or audit. Each programmer 
tests and inspects his/her own work, and these are 
verification and validation processes. The list could go 
on, but the idea should be clear. A project software 
assurance program involves the processes that each 
programmer goes through, but requires the planning and 
formal establishment of project, rather than personal, 
standards and processes. 

B. Tailoring Software Assurance to the Project 

Specific project characteristics and risks influence 
assurance needs t and assurance planning should be tailored 
to reflect this fact. Characteristics that should be 
considered include safety and mission criticality of the 
software, schedule and budget, size and complexity of the 
product to be produced, and size and organizational 
complexity of the development staff. 

The relat of critical to assurance 1 B as one '-N'ould 
expect: the more critical the software, the more 
and formal the software assurance effort must be. 
relat of schedule and is not int.ui tive, 
however; the the and schedule, the more 

http://satc. gsk nasa.gov I assureiag b. txl 

7/30/20029: 19 AM 



30f26 

critical it is to have a well planned and effective 
assurance effort. This does not mean that projects with more 
resources can afford to be lax, it just means that tight 
resources increase risks that should be offset by a strong 
assurance program. 

The projected size of the software to be produced influences 
the level of assurance required. A large project requires 
explicit and detailed standards for all of the products in 
order to get at least a minimum standard of quality from the 
varied ideas and experience of many different programmers. 
In addition, a large project requires significant efforts in 
testing and other verification activities, which have to be 
planned and the plans followed. In short, just due to the 
size of the activity, a significant and formal assurance 
program must be established or risks of poor quality 
products must be accepted. On the other hand, a small 
project may require little formal assurance I and on a very 
small one, the assurance efforts may be left to the 
programmer involved if adequate, informal planning is done. 

Another factor that influences assurance planning is the 
project's organizational structure. A small, centralized 
development staff can easily participate in reviews and 
inspections, keep each other informed on the status of 
nonconformances, and help each other in meeting coding and 
documentation standards. A large or dispersed staff will 
have many different ideas of the best ways of doing things 
and many more difficulties in communicating them. In the 
latter case, a more formal assurance program and a larger 
assurance effort will be needed. 

A last but very important characteristic is the difference 
between the requirements of a software providing 
organization and a software acquiring organization. A 
software provider actually develops the products by 
developing designs and writing code, etc., and therefore 
needs a full assurance program. An acquirer does not 
develop software and thus can limit its assurance activities 
to those that ensure that the provider is adhering to agreed
to methods and standards and producing the agreed-to 
products. 

C. Creating the Software Assurance plan 

An effective assurance program requires planning and follow 
through; it cannot simply evolve along with the project. 
Adequate assurance planning ensures that the assurance 
activities are focused on the quality requirements and risks 
associated with the specific project. 

The purpose of creating a software assurance plan is to 
document/specify the conduct of the activities that will 
comprise software assurance for a specific project. Armed 
with information about the project and the available 
software assurance resources, the project manager is ready 
to develop the plan. A useful guide for documenting 
assurance plans is provided in the assurance sections of the 
SMAP Management Plan Documentation Standard. In addition, 
the should be considered: 

plan software assurance in ion with management 
during the 

http://satc,gsfc.nasa.gov!assure/agb.txt 

7130/20029: 19 AM 



40f26 

Phase assurance activities properly. For example, 
design standards must be produced well before design is 
to be done. 

Complete tool development or procurement before the 
tools are needed. Especially important is the development 
of test tools and test data sources. 

D. Project Structure Considerations 

In planning and establishing a software assurance program, 
one consideration is the software project organization and 
the location in that organization of the assurance 
activities. Experience has indicated, both in hardware and 
software, that some assurance functions are best done by 
organizational entities that are separate from the ones 
doing engineering activities. Software Quality Assurance 
(SQA) is one activity that should be organizationally 
separated from the producing organizations. 
Administratively, the SQA organization should report no 
lower than the project manager; indeed, many large 
successful software producing organizations have the BQA 
organization report administratively to top corporate 
management and interface with the project manager. The 
reason for this separation of function is that the BQA 
organization is management's arm that assures that standards 
are met and that procedures are followed. If SQA is not 
independent of the development activity, clear and impartial 
assessment will be difficult. 

In addition, many organizations have had success using an 
independent test team, or at least an independent test 
development team. The team is responsible for developing 
test plans, procedures, and test cases for formal acceptance 
tests. Independence is required because these tests should 
be requirements driven and not influenced by the design 
structure and coding details. 

E. Completion Criteria 

Because of the nature of software, it is difficult to 
ascertain the status of a development or maintenance 
activity. It is important, therefore, to define criteria 
for the completion of specific development stages. For 
example, during the implementation phase, one has to do the 
lowest level detailed design of small program elements, code 
the elements, and unit test them. When a significant number 
of program elements are involved, it is difficult for anyone 
to ascertain the status of the units without specific 
completion criteria. For example, if there is a criterion 
that detailed design is complete only after the rework that 
finishes a design inspection, then the design can be said to 
be either complete or incomplete depending on the status of 
the rework. 

The setting of completion criteria is a management activity, 
but the audit of records is an SQA activity. The accuracy 
of the reported status can then be determined. This is 
important to both providers and acquirers of software, and 
this "status auditing!! is an important SQA function. 

"~"'''W'ELd'Lion of the Software Assurance Plan 

Once the project needs have been determined and the software 
assurance lS f the must be 

http:// satc_ gsfc. nasa. gOY ! assure! agb. txl 

7130/20029; 19 AM 



50f26 

implemented. Qualified, trained staff must be obtained, and 
special training must be made available where needed. If 
standards and procedures are not available for reuse on this 
project, they must be written. Staff must be trained in the 
standards and procedures, since merely writing them down 
does not guarantee compliance. All of the above are 
management activities, but the assurance staff is a resource 
to help complete them. 

Staff devoted purely to assurance activities is usually 
small compared to the project staff. On the other hand, it 
is important to have people with specific assurance 
responsibilities, even if they must be shared 
organizationally with other duties. Too often the truism 
that nquality is everybody's business II becomes "quality is 
nobody's business ll if specific responsibilities are not 
assigned. 
G. Sources of Help 

In addition to this guidebook, there are other sources of 
help in planning and implementing a software assurance 
program. First, there is a NASA software planning 
requirement, stated in NMI 2410.10. In addition, there are 
Center requirements and guidance documents. All NASA Centers 
have assurance organizations that provide varying degrees of 
support, assistance, and actual performance of software 
assurance activities. 

H. Summary 

Software assurance is an essential part of the development 
and maintenance of software. Software assurance forms part 
of the triad of activities, along with software management 
and software engineering that, taken together, can provide a 
successful software development, enhancement, or maintenance 
activity. This guideboOk is intended to increase the 
general understanding in NASA of what comprises software 
assurance and how it is to be planned and implemented. 

III. SOFTWARE QUALITY ASSURANCE 

A. Concepts and Definitions 

Software Quality Assurance (SQA) is defined as a planned and 
systematic approach to the evaluation of the quality of and 
adherence to software product standards, processes, and 
procedures. SQA includes the process of assuring that 
standards and procedures are established and are followed 
throughout the software acquisition life cycle. Compliance 
with agreed-upon standards and procedures is evaluated 
through process monitoring, product evaluation, and audits, 
Software development and control processes should include 
quality assurance approval points, where an SQA evaluation 
of the product may be done in relation to the applicable 
standards. 

B. Standards and Procedures 

standards and for software 
is critical, since these the framework 

from which the software evolves, Standards are the 
established criteria to which the software are 

Procedures are the Established criteria to which 
the and control processes are 

http:// satc. gsfc. nasa. gOY lassure/agb. tx 1 

7/30!2002 9:19 AM 



6 of 26 

Standards and procedures establish the prescribed methods 
for developing softwarei the SQA role is to ensure their 
existence and adequacy. Proper documentation of standards 
and procedures is necessary since the SQA activities of 
process monitoring, product evaluation, and auditing rely 
upon unequivocal definitions to measure project compliance. 

Types of standards include: 

Documentation Standards specify form and content for 
planning, control I and product documentation and provide 
consistency throughout a project. The NASA Data Item 
Descriptions (DIDs) are documentation standards defined 
within NASA Software Documentation Standard, NASA-STD-2100-91. 

Design Standards specify the form and content of the 
design product. They provide rules and methods for 
translating the software requirements into the software 
design and for representing it in the design 
documentation. 

Code Standards specify the language in which the code 
is to be written and define any restrictions on use of 
language features. They define legal language 
structures, style conventions, rules for data structures 
and interfaces, and internal code documentation. 

Procedures are explicit steps to be followed in carrying out 
a process. All processes should have documented procedures. 
Examples of processes for which procedures are needed are 
configuration management, nonconformance reporting and 
corrective action, testing, and formal inspections. 

If developed according to the NASA DID, the Management Plan 
describes the software development control processes, such 
as configuration management, for which there have to be 
procedures, and contains a list of the product standards. 
Standards are to be documented according to the Standards 
and Guidelines DID in the Product Specification. The 
planning activities required to assure that both products 
and processes comply with designated standards and 
procedures are described in the QA portion of the Management 
Plan. 

C. Software Quality Assurance Activities 

Product evaluation and process monitoring are the SQA 
activities that assure the software development and control 
processes described in the project's Management Plan are 
correctly carried out and that the project1s procedures and 
standards are followed. Products are monitored for 
conformance to standards and processes are monitored for 
conformance to procedures. Audits are a key technique used 
to perform product evaluation and process monitoring. 
Review of the Management Plan should ensure that appropriate 
SQA approval points are built into these processes. 

Product evaluation is an SQA activity that assures standards 
are being followed. Ideally, the first products monitored 

SQA should be the projectls standards and procedures. SQA 
assures that clear and achievable standards exist and then 
evaluates iance of the software to the 
established standards < Product evaluation assures that the 
software reflects the of the applicable 
standard as identified in the Management Plan. 

http:// sate. gsfc. nasa. gOY ! assure! agb. tXl 

7!3()!2002 9; 19 AM 



7of26 

Process monitoring is an SQA activity that ensures that 
appropriate steps to carry out the process are being 
followed. SQA monitors processes by comparing the actual 
steps carried out with those in the documented procedures. 
The Assurance section of the Management Plan specifies the 
methods to be used by the SQA process monitoring activity. 

A fundamental SQA technique is the audit, which looks at a 
process and/or a prcduct in depth, comparing them to 
established procedures and standards. Audits are used to 
review management, technical, and assurance processes to 
provide an indication of the quality and status of the 
software product. 

The purpose of an SQA audit is to assure that proper control 
procedures are being followed, that required documentation 
is maintained, and that the developer's status reports 
accurately reflect the status of the activity. The SQA 
product is an audit report to management consisting of 
findings and recommendations to bring the development into 
conformance with standards and/or procedures. 

D. SQA Relationships to Other Assurance Activities 

Some of the more important relationships of SQA to other 
management and assurance activities are described below. 

1. Configuration Management Monitoring 

SQA assures that software Configuration Management (CM) 
activities are performed in accordance with the CM plans, 
standards, and procedures. SQA reviews the CM plans for 
compliance with software CM policies and requirements and 
provides follow-up for nonconformances. SQA audits the CM 
functions for adherence to standards and procedures and 
prepares reports of its findings. 

The eM activities monitored and audited by SQA include 
baseline control, configuration identification, 
configuration control, configuration status accounting, and 
configuration authentication. SQA also monitors and audits 
the software library. SQA assures that: 

Baselines are established and consistently maintained 
for use in subsequent baseline development and control. 

Software configuration identification is consistent and 
accurate with respect to the numbering or naming of 
computer programs, software modules, software units, and 
associated software documents. 

Configuration control is maintained such that the 
software configuration used in critical phases of 
testing, acceptance, and delivery is compatible with the 
associated documentation. 

Configuration status accounting is performed accurately 
including the recording and of data reflecting 
the software's configuration identification, 

to the identification/ and the 
errleIlII<3L10n 

Software 
a series of 

authentication is established 
reviews and audits that exhibit 

http://satc. gsfc. nasa. gOY lassure! ag b. tx 1 

7130120029,19 AM 



80f26 

the performance required by the software requirements 
specification and the configuration of the software is 
accurately reflected in the software design documents. 

Software development libraries provide for proper 
handling of software code, documentation, media, and 
related data in their various forms and versions from the 
time of their initial approval or acceptance until they 
have been incorporated into the final media. 

Approved changes to baselined software are made 
properly and consistently in all products, and no 
unauthorized changes are made. 

2. Verification and validation Monitoring 

SQA assures Verification and Validation (V&V) activities by 
monitoring technical reviews, inspections, and walkthroughs. 
The SQA role in formal testing is described in the next 
section. The SQA role in reviews, inspections, and 
walkthroughs is to observe, participate as needed, and 
verify that they were properly conducted and documented. 
SQA also ensures that any actions required are assigned, 
documented, scheduled, and updated. 

Formal software reviews should be conducted at the end of 
each phase of the life cycle to identify problems and 
determine whether the interim product meets all applicable 
requirements. Examples of formal reviews are the 
Preliminary Design Review (PDR) I Critical Design Review 
(CDR), and Test Readiness Review (TRR) , A review looks at 
the overall picture of the product being developed to see if 
it satisfies its requirements. Reviews are part of the 
development process, designed to provide a ready/not-ready 
decision to begin the next phase. In formal reviews, actual 
work done is compared with established standards. SQA's 
main objective in reviews is to assure that the Management 
and Development Plans have been followed, and that the 
product is ready to proceed with the next phase of 
development. Although the decision to proceed is a 
management decision, SQA is responsible for advising 
management and partiCipating in the decision. 

An inspection or walkthrough is a detailed examination of a 
product on a step-by-step or line-o£-code by line-of-code 
basis to find errors. For inspections and walkthroughs, BQA 
assures, at a minimum, that the process is properly 
completed and that needed follow-up is done. The inspection 
process may be used to measure compliance to standards. 

3. Formal Test Monitoring 

SQA assures that formal software testing, such as acceptance 
testing, is done in accordance with plans and procedures. 
SQA reviews testing documentation for completeness and 
adherence to standards. The documentation review includes 
test plans, test specifications, test procedures, and test 
reports. SQA monitors testing and provides follow-up on 
nonconformances. By test monitoring, SQA assures software 

and readiness for deli,;'p,'v 

The ectives of SQA formal software 
are to assure that: 

The test are the software 

http://satc.gsfc.nasa.gov/assure!agb.txl 

7130120029:19 AM 



90f26 

requirements in accordance with test plans. 

The test procedures are verifiable. 

The correct or "advertised ll version of the software is 
being tested (by SQA monitoring of the CM activity) . 

The test procedures are followed. 

Nonconformances occurring during testing (that is, any 
incident not expected in the test procedures) are noted 
and recorded. 

Test reports are accurate and complete. 

Regression testing is conducted to assure 
nonconformances have been corrected. 

Resolution of all nonconformances takes place prior to 
delivery. 

Software testing verifies that the software meets its 
requirements. The quality of testing is assured by 
verifying that project requirements are satisfied and that 
the testing process is in accordance with the test plans and 
procedures. 

E. Software Quality Assurance During the Software 
Acquisition Life Cycle 

In addition to the general activities described in 
subsections C and D, there are phase-specific SQA activities 
that should be conducted during the Software Acquisition 
Life Cycle. At the conclusion of each phase, SQA 
concurrence is a key element in the management decision to 
initiate the following life cycle phase. Suggested 
activities for each phase are described below. 

1. Software Concept and Initiation Phase 

SQA should be involved in both writing and reviewing the 
Management Plan in order to assure that the processes, 
procedures, and standards identified in the plan are 
appropriate, clear, specific, and auditable. During this 
phase, SQA also provides the QA section of the Management 
Plan. 

2. Software Requirements Phase 

During the software requirements phase, SQA assures that 
software requirements are complete, testable, and properly 
expressed as functional, performance, and interface 
requirements. 

3. Software Architectural (Preliminary) Design Phase 

SQA activities during the architectural (preliminary) design 
phase include: 

Assuring adherence to approved 
in the Management Plan< 

all software 
80ftware components_ 

standards as 

are allocated to 

http://satc.gsknasagov/assure!agb.txl 

7130/20029: 19 AM 



10 of26 

Assuring that a testing verification matrix exists and 
is kept up to date. 

Assuring the Interface Control Documents are in 
agreement with the standard in form and content. 

Reviewing PDR documentation and assuring that all 
action items are resolved. 

Assuring the approved design is placed under 
configuration management. 

4. Software Detailed Design Phase 

SQA activities during the detailed design phase include, 

Assuring that approved design standards are followed. 

Assuring that allocated modules are included in the 
detailed design. 

Assuring that results of design inspections are 
included in the design. 

Reviewing CDR documentation and assuring that all 
action items are resolved. 

5. Software Implementation Phase 

SQA activities during the implementation phase include the 
audit of: 

Results of coding and design activities including the 
schedule contained in the Software Development Plan. 

Status of all deliverable items. 

Configuration management activities and the software 
development library. 

Nonconformance reporting and corrective action system. 

6. Software Integration and Test Phase 

SQA activities during the integration and test phase 
include: 

Assuring readiness for testing of all deliverable 
items. 

Assuring that all tests are run according to test 
and procedures and that any nonconformances are reported 
and resolved. 

Assuring that test reports are complete and correct. 

Certifying that testing is complete and software and 
documentation are ready for delivery. 

in the Test Readiness Review and 
all action items are 

:. Software Acceptance and Delivery Phase 

As a minimum, SQA activities the 8oft\flare acceptance 

http://satc.gsfc.nasa.gov/assure/agb.tx\ 

7!30!2002 919 AM 



and delivery phase include assuring the performance of a 
final configuration audit to demonstrate that all 
deliverable items are ready for delivery. 

8. Software Sustaining Engineering and Operations Phase 

During this phase, there will be mini-development cycles to 
enhance or correct the software. During these development 
cycles, SQA conducts the appropriate phase-specific 
activities described above. 
F. Techniques and Tools 

SQA should evaluate its needs for assurance tools versus 
those available off-the-shelf for applicability to the 
specific project, and must develop the others it requires. 
Useful tools might include audit and inspection checklists 
and automatic code standards analyzers. 

IV. SOFTWARE QUALITY ENGINEERING 

A. Concepts 

Software Quality Engineering (SQE) is a process that 
evaluates, assesses, and improves the quality of software. 
Software quality is often defined as the degree to which 
software meets requirements for reliability, 
maintainability, transportability, etc., as contrasted with 
functional, performance, and interface requirements that are 
satisfied as a result of software engineering. 

Quality must be built into a software product during its 
development to satisfy quality requirements established for 
it. SQE ensures that the process of incorporating quality 
in the software is done properly, and that the resulting 
software product meets the quality requirements. The degree 
of conformance to quality requirements usually must be 
determined by analysis, while functional requirements are 
demonstrated by testing. SQE performs a function 
complementary to software development engineering. Their 
common goal is to ensure that a safe, reliable, and quality 
engineered software product is developed. 

B. Software Qualities 

Qualities for which an SQE evaluation is to be done must 
first be selected and requirements set for them. Some 
commonly used qualities are reliability, maintainability, 
transportability, interoperability, testability, useability, 
reusability, traceability, sustainability, and efficiency. 
Some of the key ones are discussed below. 

1. Reliability 

Hardware reliability is often defined in terms of the Mean~ 
Time-To-Failure, or MTTF, of a given set of equipment. An 
analogous notion is useful for software, although the 
failure mechanisms are different and the mathematical 
predictions used for hardware have not yet been useful 
applied to software. Software reliabil is often defined 
as the extent to which a program can be to perform 
intended functions with 

of time. Software reliabi is 
concerned with the detection and correction of errers in the 
software; even more, it is concerned with techniqtleS to 

http:// sate. gsf c. nasa, go v! a<;surc/ ag b, tx 1 

II of 26 7/30/2002 9: 19 AM 



12of26 

compensate for unknown software errors and for problems in 
the hardware and data environments in which the software 
must operate. 

2. Maintainability 

Software maintainability is defined as the ease of finding 
and correcting errors in the software. It is analogous to 
the hardware quality of Mean-Time-To-Repair, or MTTR. While 
there is as yet no way to directly measure or predict 
software maintainability, there is a significant body of 
knowledge about software attributes that make software 
easier to maintain. These include modularity, self 
(internal) documentation, code readability, and structured 
coding techniques. These same attributes also improve 
sustainability, the ability to make improvements to the 
software. 
3. Transportability 

Transportability is defined as the ease of transporting a 
given set of software to a new hardware and/or operating 
system environment. 

4. Interoperability 

Software interoperability is the ability of two or more 
software systems to exchange information and to mutually use 
the exchanged information. 

5. Efficiency 

Efficiency is the extent to which software uses minimum 
hardware resources to perform its functions. 

There are many other software qualities. Some of them will 
not be important to a specific software system, thus no 
activities will be performed to assess or improve them. 
Maximizing some qualities may cause others to be decreased. 
For example, increasing the efficiency of a piece of 
software may require writing parts of it in assembly 
language. This will decrease the transportability and 
maintainability of the software. 

C. Metrics 

Metrics are quantitative values, usually computed from the 
design or code, that measure the quality in question, or 
some attribute of the software related to the quality. Many 
rnetrics have been invented, and a number have been 
successfully used in specific environments, but none has 
gained widespread acceptance. 

D. A Software Quality Engineering Program 

The two software qualities which command the most attention 
are reliability and maintainability. Some practical 
programs and techniques have been developed to improve the 
reliability and maintainability of software, even if they 
are not measurable or predictable. The types of activities 
that might be included in an SQE program are described here 
in terms of these two ities. These activities could be 
used as a model for the SQE activities for additional 

ities. 

1. Qualities and Attributes 

http://satc,gsknasa.gov/a%urciagb.tx! 

7!30!2002 9:19 AM 



An initial step in laying out an SQE program is to select 
the qualities that are important in the context of the use 
of the software that is being developed. For example, the 
highest priority qualities for flight software are usually 
reliability and efficiency. If revised flight software can 
be up-linked during flight, maintainability may be of 
interest, but considerations like transportability will not 
drive the design or implementation. On the other hand, the 
use of science analysis software might require ease of 
change and maintainability, with reliability a concern and 
efficiency not a driver at all. 

After the software qualities are selected and ranked, 
specific attributes of the software that help to increase 
those qualities should be identified. For example, 
modularity is an attribute that tends to increase both 
reliability and maintainability. Modular software is 
designed to result in code that is apportioned into small, 
self-contained, functionally unique components or units. 
Modular code is easier to maintain, because the interactions 
between units of code are easily understood, and low level 
functions are contained in few units of code. Modular code 
is also more reliable, because it is easier to completely 
test a small, self contained unit. 

Not all software qualities are so simply related to 
measurable design and code attributes, and no quality is so 
simple that it can be easily measured. The idea is to select 
or devise measurable, analyzable, or testable design and 
code attributes that will increase the desired qualities. 
Attributes like information hiding, strength, cohesion, and 
coupling should be considered. 

2. Quality Evaluations 

Once some decisions have been made about the quality 
objectives and software attributes, quality evaluations can 
be done. The intent in an evaluation is to measure the 
effectiveness of a standard or procedure in promoting the 
desired attributes of the software product. For example, 
the design and coding standards should undergo a quality 
evaluation. If modularity is desired, the standards should 
clearly say so and should set standards for the size of 
units or components. Since internal documentation is linked 
to maintainability, the documentation standards should be 
clear and require good internal documentation. 

Quality of designs and code should also be evaluated. This 
can be done as a part of the walkthrough or inspection 
process, or a quality audit can be done. In either case, 
the implementation is evaluated against the standard and 
against the evaluator!s knowledge of good software 
engineering practices, and examples of poor quality in the 
product are identified for correction. 

3. Nonconformance Analysis 

One very useful SQB act 
nonconformance records. 

is an analysis of a project!s 
The nonconformances should be 

for 
sections or modules of code. 
that have had an unusual 
not because the code in 

numbers of events in 
If areas of code are found 

error count it is 
has been tested more 

t then the code should be examined, The 

http:// satc.gsfc. nasa. gov! assure! ag b. txl 

13 of26 7/30/2002 9: 19 AM 



140f26 

error count may be due to poor quality code, an 
inappropriate design, or requirements that are not well 
understood or defined. In any case, the analysis may 
indicate changes and rework that can improve the reliability 
of the completed software. In addition to code problems, 
the analysis may also reveal software development or 
maintenance processes that allow or cause a high proportion 
of errors to be introduced into the software. If SOt an 
evaluation of the procedures may lead to changes, or an 
audit may discover that the procedures are not being 
followed. 

4. Fault Tolerance Engineering 

For software that must be of high reliability, a fault 
tolerance activity should be established. It should 
identify software which provides and accomplishes critical 
functions and requirements. For this software, the 
engineering activity should determine and develop techniques 
which will ensure that the needed reliability or fault 
tolerance will be attained. Some of the techniques that 
have been developed for high reliability environments 
include: 

Input data checking and error tolerance. For example, 
if out-of-range or missing input data can affect 
reliability, then sophisticated error checking and data 
interpolation/extrapolation schemes may significantly 
improve reliability. 

Proof of correctness. For limited amounts of code, 
formal "proof of correctness 11 methods may be able to 
demonstrate that no errors exist. 

N-Item voting. This is a design and implementation 
scheme where a number of independent sets of software and 
hardware operate on the same input. Some comparison 
(voting) scheme is used to determine which output to use. 
This is especially effective where subtle timing or 
hardware errors may be present. 

Independent development. In this scheme, one or more 
of the N-items are independently developed units of 
software. This helps prevent the simultaneous failure of 
all items due to a common coding error. 

E. Techniques and Tools 

Some of the useful fault-tolerance techniques are described 
under subsection D, above. Standard statistical techniques 
can be used to manipulate nonconformance data. In addition, 
there is considerable experimentation with the Failure Modes 
and Effects Analysis (FMEA; technique adapted from hardware 
reliability engineering. In particular, the FMEA can be 
used to identify failure modes or other assumable (hardware) 
system states which can then lead the quality engineer to an 
analysis of the software that controls the system as it 
assumes those states. 

There are also tools that are useful for 
include system and software simulators? 

which allow the model of system behavior; dynamic 
V"0YQ, which detect the of the code that are 

used most software tools that are used to 
compute metrics from code or aE,slgns; and a host of 

http://satc.gsfc.nasa.gov!assure/agb.txl 

7J30i2002 9:19 AM 



150f26 

purpose tools that can, for example, detect all system calls 
to help decide on portability limits. 

V. VERIFICATION AND VALIDATION 

A. Concepts and Definitions 

Software Verification and Validation (V&V) is the process of 
ensuring that software being developed or changed will 
satisfy functional and other requirements (validation) and 
each step in the process of building the software yields the 
right products (verification). The differences between 
verification and validation are unimportant except to the 
theorist; practitioners use the term V&V to refer to all of 
the activities that are aimed at making sure the software 
will function as required. 

V&V is intended to be a systematic and technical evaluation 
of software and associated products of the development and 
maintenance processes. Reviews and tests are done at the 
end of each phase of the development process to ensure 
software requirements are complete and testable and that 
design, code, documentation, and data satisfy those 
requirements. 

B. Activities 

The two major V&V activities are reviews, including 
inspections and walkthroughs, and testing. 

1. Reviews, Inspections, and Walkthroughs 

Reviews are conducted during and at the end of each phase of 
the life cycle to determine whether established 
requirements, design concepts, and specifications have been 
met. Reviews consist of the presentation of material to a 
review board or panel. Reviews are most effective when 
conducted by personnel who have not been directly involved 
in the development of the software being reviewed. 

Informal reviews are conducted on an as-needed basis. The 
developer chooses a review panel and provides and/or 
presents the material to be reviewed. The material may be 
as informal as a computer listing or hand-written 
documentation. 

Formal reviews are conducted at the end of each life cycle 
phase. The acquirer of the software appoints the formal 
review panel or board, who may make or affect a go/no-go 
decision to proceed to the next step of the life cycle. 
Formal reviews include the Software Requirements Review, the 
Software Preliminary Design Review, the Software Critical 
Design Review, and the Software Test Readiness Review. 

An inspection or walkthrough is a detailed examination of a 
product on a step-by-step or line-of-code by line-of-code 
basis. The purpose of conducting inspections and 
walkthroughs is to find errors. The group that does an 

"~~~~~:~~~~:~tor walkthrough is composed of peers from 
j test, and assurance. 

2. Testing 

Testing is che operation of the software with real or 

http://satc, gs f c. nas.a. gOY I assure/ag b. txt 

7!30!20()2 9:19 AM 



160f26 

simulated inputs to demonstrate that a product satisfies its 
requirements and, if it does not, to identify the specific 
differences between expected and actual results. There are 
varied levels of software tests, ranging from unit or 
element testing through integration testing and performance 
testing. up to software system and acceptance tests. 

a. Informal Testing 

Informal tests are done by the developer to measure the 
development progress. "Informal" in this case does not mean 
that the tests are done in a casual manner, just that the 
acquirer of the software is not formally involved, that 
witnessing of the testing is not required, and that the 
prime purpose of the tests is to find errors. Unit, 
component, and subsystem integration tests are usually 
informal tests. 

Informal testing may be requirements-driven or design
driven. Requirements-driven or black box testing is done by 
selecting the input data and other parameters based on the 
software requirements and observing the outputs and 
reactions of the software. Black box testing can be done at 
any level of integration. In addition to testing for 
satisfaction of requirements, some of the objectives of 
requirements-driven testing are to ascertain: 

Computational correctness. 

Proper handling of boundary conditions, including 
extreme inputs and conditions that cause extreme outputs. 

State transitioning as expected. 

Proper behavior under stress or high load. 

Adequate error detection, handling, and recovery. 

Design-driven or white box testing is the process where the 
tester examines the internal workings of code. Design
driven testing is done by selecting the input data and other 
parameters based on the internal logic paths that are to be 
checked. The goals of design-driven testing include 
ascertaining correctness of: 

All paths through the code. 
products, this can be feasibly 
level. 

For most software 
done only at the unit test 

Bit-by-bit functioning of interfaces. 

Size and timing of critical elements of code. 

b. Formal Tests 

Formal testing demonstrates that the software is ready for 
its intended use. A formal test should include an 
approved test plan and procedures, quality assurance 
witnesses, a record of all discrepancies, and a test report. 
Formal testing is always re~~irements-driven! and its 
purpose is to demonstrate that the software meets its 

Each softvJare project should have at least one 
fo:!::"mal test, the acceptance test that concludes the 

http://satc.gsfc.nasa.govfassure/agb.1Xl 

7/30/20029: 19 AM 



170f26 

development activities and demonstrates that the software is 
ready for operations. 

In addition to the final acceptance test, other formal 
testing may be done on a project. For example, if the 
software is to be developed and delivered in increments or 
builds, there may be incremental acceptance tests. As a 
practical matter, any contractually required test is usually 
considered a formal test; others are "informal.!! 

After acceptance of a software product, all changes to the 
product should be accepted as a result of a formal test. 
Post acceptance testing should include regression testing. 
Regression testing involves rerunning previously used 
acceptance tests to ensure that the change did not disturb 
functions that have previously been accepted. 

C. Verification and Validation During the Software 
Acquisition Life Cycle 

The V&V Plan should cover all V&V activities to be performed 
during all phases of the life cycle. The V&V Plan Data Item 
Description (DID) may be rolled out of the Product Assurance 
Plan DID contained in the SMAP Management Plan Documentation 
Standard and DID. 

1. Software Concept and Initiation Phase 

The major V&V activity during this phase is to develop a 
concept of how the system is to be reviewed and tested. 
Simple projects may compress the life cycle steps; if so, 
the reviews may have to be compressed. Test concepts may 
involve simple generation of test cases by a user 
representative or may require the development of elaborate 
simulators and test data generators. Without an adequate 
V&V concept and plan, the cost, schedule, and complexity of 
the project may be poorly estimated due to the lack of 
adequate test capabilities and data. 

2. Software Requirements Phase 

V&V activities during this phase should include: 

Analyzing software requirements to determine if they 
are consistent with, and within the scope of, system 
requirements. 

Assuring that the requirements are testable and capable 
of being satisfied. 

creating a preliminary version of the Acceptance Test 
Plan, including a verification matrix, which relates 
requirements to the tests used to demonstrate that 

are satisfied. 

Beginning development, if needed, of test beds and test 
data generators. 

The phase-ending Software Requirements Review (SRR}. 

Phase 

V&V activities this should include: 

the lIDln,allY version of the Acceptance Test 

http://satc. gsf c. na~a, gov! assure/agb. txl 

7/30/20029:19 AM 



180f26 

Plan and the verification matrix. 

Conducting informal reviews and walkthroughs or 
inspections of the preliminary software and data base 
designs. 

The phase-ending Preliminary Design Review (PDR) at 
which the allocation of requirements to the software 
architecture is reviewed and approved. 

4. Software Detailed Design Phase 

V&V activities during this phase should include: 

Completing the Acceptance Test Plan and the 
verification matrix, including test specifications and 
unit test plans. 

Conducting informal reviews and walkthroughs or 
inspections of the detailed software and data base 
designs. 

The Critical Design Review (CDR) which completes the 
software detailed design phase. 

5. Software Implementation Phase 

V&V activities during this phase should include, 

Code inspections and/or walkthroughs. 

Unit testing software and data structures. 

Locating, correcting, and retesting errors. 

Development of detailed test procedures for the next 
two phases. 

6. software Integration and Test Phase 

This phase is a major V&V effort, where the tested units 
from the previous phase are integrated into subsystems and 
then the final system. Activities during this phase should 
include: 

Conducting tests per test procedures. 

Documenting test performance, test completion, and 
conformance of test results versus expected results. 

providing a test report that includes a summary of 
nonconformances found during testing. 

Locating, recording/ correcting, and retesting 
nonconformances. 

The Test Readiness Review (TRR}, confirming the 
product's readiness for acceptance testing. 

Software Acceptance and Del,v·P1'v Phase 

V&V activit.ies t.his should include: 

By test, , and 
the system meets its funct.ional, 

t.hat 

http:// sate. gs fe. nasa. gOY I assure/ agb, txl 

7:30120029:19 AM 



and interface requirements. 

Locating, correcting, and retesting nonconformances. 

The phase-ending Acceptance Review (AR). 

8. Software Sustaining Engineering and Operations Phase 

Any V&V activities conducted during the prior seven phases 
are conducted during this phase as they pertain to the 
revision or update of the software. 

D. Independent Verification and Validation 

Independent Verification and Validation (IV&V) is a process 
whereby the products of the software development life cycle 
phases are independently reviewed, verified, and validated 
by an organization that is neither the developer nor the 
acquirer of the software. The IV&V agent should have no 
stake in the success or failure of the software. The IV&V 
agent IS only interest should be to make sure that the 
software is thoroughly tested against its complete set of 
requirements. 

The IV&V activities duplicate the V&V activities step-by
step during the life cycle, with the exception that the IV&V 
agent does no informal testing. If there is an IV&V agent, 
the formal acceptance testing may be done only once, by the 
IV&V agent. In this case, the developer will do a formal 
demonstration that the software is ready for formal 
acceptance. 
E. Techniques and Tools 

Perhaps more tools have been developed to aid the V&V of 
software (especially testing) than any other software 
activity. The tools available include code tracers, special 
purpose memory dumpers and formatters, data generators, 
simulations, and emulations. Some tools are essential for 
testing any significant set of software, and, if they have 
to be developed, may turn out to be a significant cost and 
schedule driver. 

An especially useful technique for finding errors is the 
formal inspection. Formal inspections were developed by 
Michael Fagan of IBM. Like walkthroughs, inspections 
involve the line-by-line evaluation of the product being 
reviewed. Inspections, however, are significantly different 
from walkthroughs and are significantly more effective. 
Inspections are done by a team, each member of which has a 
specific role. The team is led by a moderator, who is 
formally trained in the inspection process. The team 
includes a reader, who leads the team through the itemj one 
or more reviewers, who look for faults in the item; a 
recorder, who notes the faults; and the author, whc helps 
explain the item being inspected. 

This formal, highly structured inspection process has been 
extremely effective in finding and eliminating errors. It 
can be applied to any product of the software development 
process, including documents, , and code. One of its 

side benefits has been the direct feedback to the 
veW,Wt,L !,~u!hnY, and the icant in 

that results, 

http://satc.gsfc.nasa.gov/assureiagb.txl 

19 of 26 7/30/2002 9: 19 AM 



20 of 26 

VI. NONCONFORMANCE REPORTING AND CORRECTIVE ACTION 

A. Concepts and Definitions 

The purpose of a Nonconformance Reporting and Corrective 
Action (NRCA) system or procedure is to report, analyze, and 
correct nonconformances and collect information from which 
reports on the overall status of nonconformances can be 
made. A nonconformance, often called a problem, 
discrepancy, anomaly, fault, or error, is any failure of any 
software document, code, or data structure to meet its 
requirements or standards. Corrective action is a general 
name for the process by which nonconformances are corrected 
and controlled. 

The need for a NRCA system arises early in the software life 
cycle, as soon as the first documents and other products are 
developed. A NRCA system should track nonconformances, 
assign priorities, record their dispositions, note the 
version of the product in which they are corrected, notify 
the originator of the nonconformance about the actions 
taken, and produce management reports. 

B. Activities 

1. Nonconformance Detection and Reporting 

By definition, a nonconformance is a deviation of any 
product from its requirements or standards. Nonconformance 
reports may be filed against any product in any phase of the 
software life cycle by anyone associated with the project. 
Normally, the NRCA system is used after a product is first 
approved or baselined by its developer and released for 
wider use. For example, while a developer is unit testing 
his/her code, errors found may be tracked only locally. 
After the code is declared correct and released for 
integration, the NRCA system is used to inform users of the 
code about nonconformances and to assure that the 
nonconformances are corrected and not overlooked. 

Usually, a special form is used to make the nonconformance 
report. Examples of the information the form might contain 
are: 

Date and time of detection of the nonconformance. 

Error identification (report number and title) . 

Reporting individual and organization. 

Individual responsible for corrective action. 

Criticality of the nonconformance. 

statement of the nonconformance. 

Proposed fix for the nonconformance. 

Identifier of the unit of code, data, or documentation 
in which corrective action must be taken. 

in which the nonconformance was 

Life in which the nonconformance was 

http:// sate. gsfc. nasa. go v la<;sure/ag b. tXl 

713012002 9 J 9 AM 



21 of26 

detected. 

Final closure resolution. 

Date and/or version of the configuration item in which 
the correction will be included. 

Date on which the nonconformance is closed. 

A DID for a discrepancy report is given in the Management 
Control and Status Reports volume of the NASA Documentation 
Standard. 

2. Tracking and Management Reports 

After the report is prepared by the individual who found the 
nonconformance, the data are entered into some form of 
controlling system. Data base management systems are often 
used to help automate the otherwise laborious clerical 
effort of tracking the nonconformances and providing 
management reports. 

A nonconformance tracking and reporting system should be 
able to provide management reports containing such 
information as error and correction status, the number of 
errors found per product, and the criticality of open 
problems. The data enable the impact of nonconformances to 
be evaluated so that the use of resources may be 
prioritized. 

3. Impact Assessment and Corrective Action 

Nonconformance reports should be evaluated for criticality 
and level of importance. Factors to be considered include: 

The impact of not correcting the nonconformance. 

The resources required for correcting the 
nonconformance. 

The impact on other baselined items if the 
nonconformance is corrected. 

If the decision is made to correct a nonconformance, there 
should be procedures to control the corrective action 
process. Such procedures should include followup to ensure 
the nonconformance has been documented and corrected in the 
appropriate version of software, and to assure that adequate 
testing, including regression testing, is done. 

C. Interrelationships 

NRCA is a basic and fundamental tool for project management 
and for software assurance. As such, it impacts and 
interacts with many software management, development, and 
assurance activities. For example, eM has to track the 
product changes and versions that result from correcting 
nonconformances. In addition, some nonconformance reports 
will contain requirements changes disguised as 
nonconformances. These reports should result in the 
of a request, 

If the nonconformance is in a code or data 
for V&V activities must 

that the is indeed satisfactori 

DYT"lJ;,~,. f those 
tests to ensure 

corrected, In 

http://satc.gsfc.nasa.gov/assure/agb,txl 

7130120029: 19 AM 



220f26 

addition, regression testing is needed to make sure that no 
new problems have been introduced by the fix. 

SQA must assure that proper procedures are followed in 
processing nonconformances, and that shortcuts are not taken 
since they would threaten product integrity. SQA must also 
ensure that the modified product still meets its standards. 
SQA may use the numbers of nonconformances detected in 
specific areas of the system or that occurred in specific 
life cycle phases to identify process or product areas that 
might benefit from an audit. 

The NRCA system is a useful tool for SQE, since it is often 
true that a product or component of a product with a large 
number of nonconformances is of poor quality and/or 
reliability and needs to be reexamined. In systems with 
significant safety and/or security requirements, the safety 
and security staffs will review nonconformances both to 
assure that their requirements are not compromised and to 
look for weaknesses that the problems might have uncovered. 

D. Techniques and Tools 

Each project should consider an automated tracking system 
for nonconformance reports and an automated updating 
capability to identify and record the product changes that 
occur as a result of the resolution of the nonconformances. 

VII. SOFTWARE AND SYSTEM SAFETY 

A. Concepts and Definitions 

System safety is concerned with the possibility of 
catastrophic failure of systems in such a way as to 
compromise the safety of people or property, or result in 
mission failure. Software safety is definable only in the 
system context. Software has no inherent dangers; however, 
systems controlled or monitored by software do fail, and 
some failures of some systems will have safety impacts. To 
the extent that system failures can be caused or fail to be 
prevented by software, there is a need for an activity 
called "software safety.ll 

If we are to be concerned with the safety of software only 
in a system context, we must then be concerned with 
nonconforrnances in the software and with the software 
requirements as well. Indeed, the most serious problems 
with software-based systems are those that develop when the 
software requirements are incorrect, inappropriate, or 
incomplete for the system situation. 

B. Software Problems 

System failures that are caused by software are due to one 
of two types of software problems: nonconformances (or 
failures to satisfy requirements) or an error or omission in 
the software requirements. A nonconformance may be simple 
{the most common 

(i .0., a 
launch). The 
verification 

is a coding error or l1bug!!) I or more 
subtle timing error that delays a shuttle 

pOint about nonconformances is that 
to 

detect them and assurance 
are 

are 
and 

to prevent 
them; 
based on 

these 
8[.el;l'~lized ication of 

safety program 
them are the 

http://sate. gs fc.na~a. gOY / assurc/ag b. txl 

7/30/20029;19 AM 



23 of 26 

safety and reliability of software controlled systems. 

An error or omission in requirements is less tractable. The 
software may perform exactly as required, but the 
requirements do not correctly deal with some system state. 
When the system enters the undefined state, unexpected and 
undesirable behavior may result. This type of problem 
cannot be handled within the software discipline; it results 
from a failure of the system and software engineering 
processes which developed and allocated the system 
requirements to the software. 

C. Methods for Improving Software Safety 

Improving the software development process and building 
better software are ways to increase system reliability, 
i.e., by producing software with fewer faults. Intuitively, 
more reliable software is probably safer software, but from 
a safety standpoint more concentration on safety-related 
software functions is needed. A first order approach is to 
identify the critical software that controls system safety
related functions and give it special attention through the 
development and testing process. This is just a special 
case of the "build it better" method, but it focuses scarce 
resources on critical areas. 

D. Software Safety Program (Example) 

System hazard analysis may indicate that some software 
requires a more formal safety program because it is included 
in a safety critical system component. The software safety 
program begins with a preliminary software safety analysis. 
The purpose of the preliminary software safety analysis is 
to identify software controlled functions that affect the 
safety critical component and the software components that 
execute the functions. These software components are safety 
critical. when a safety critical software component is 
identified, then software safety activities are initiated on 
that component and continued through the requirements, 
design, and code analyses and testing phases in the software 
development process. 

1. Requirements Analysis 

Software safety requirements analysis forms the basis for 
subsequent software safety activities. The process of 
requirements analysis evaluates both software and interface 
requirements. The analysis is intended to identify errors 
and deficiencies in the software requirements that could 
result in the identified hazardous system states. 
Techniques employed in performing requirements analysis 
include criticality analysis; specification analysisi and 
timing, sizing, and throughput analysis. 

Criticality analysis evaluates each requirement in 
terms of the safety objectives derived for a given 
software component. This evaluation is to determine 
whether the requirement has safety implications. If so, 
the requirement is deemed critical and must be tracked 
throughout the software ; that is, 
through design, f and It must be 
traceable from the ication all the 
way to the code and 

Specification evaluates the 

http://satc. gsfc, nasa. gOY lassurcf agb, txl 

7/30/20029: 19 AM 



240f26 

correctness, consistency, and testability of identified 
software safety critical requirements. Specification 
analysis considers each requirement singly and all 
requirements as a set. 

Timing, sizing, and throughput analysis evaluates 
software requirements that relate to execution time, 
memory allocation, and channel usage. Timing, sizing, 
and throughput analysis focuses on noting and defining 
program constraints based on maximum required and 
allowable execution times, maximum memory usage and 
availability, and throughput considerations based on 1/0 
channel usage. 

2. Design Analysis 

Design analysis verifies that the program design correctly 
implements safety critical requirements. 

Design logic analysis evaluates the equations, 
algorithms, and control logic of the software design. 

Design data analysis evaluates the description and 
intended usage of each data item used in design of the 
critical component. Interrupts and their effect on data 
must receive special attention in safety critical areas 
to verify that interrupts and interrupt handling routines 
do not alter critical data items used by other routines. 

Design interface analysis verifies the proper design of 
a software component's interfaces with other components 
of the system, including hardware, software, and 
operators. 

Design constraint analysis evaluates the design 
solutions against restrictions imposed by requirements 
and real-world limitations. The design must be responsive 
to all known or anticipated restrictions on the software 
component. These restrictions may include timing, 
sizing, and throughput constraints, equation and 
algorithm limitations, input and output data limitations, 
and design solution limitations. 

3. Code Analysis 

Code analysis verifies that the coded program correctly 
implements the verified design and does not violate safety 
requirements. The techniques used in the performance of 
code analysis mirror those used in design analysis. 

4. Safety Testing 

Software safety testing verifies analysis results, 
investigates program behavior, and confirms that the program 
complies with safety requirements. Special safety testing, 
conducted in accordance with the safety test plan and 
procedures, establishes the compliance of the software with 
the safety requirements. Safety testing focuses on locating 
program weaknesses and identifying extreme or unexpected 
situations that could cause the software to fail in ways 
that would cause a violation of The 

E. 

effort is limited 
classified as 

Techniques and Tools 

software 
critical items. 

http://sarcgsfc.nasa.gov!assurc!agb.txl 

7130/2002 9: 19 AM 



25 of 26 

In the last few years, there has been much effort to adapt 
methods used in hardware safety and reliability to software. 
Tools like fault tree analysis and sneak circuit analysis 
have been applied to software with some success. Modeling 
of software using Petri nets has been tried, and other 
modeling techniques have been advocated, but with only 
limited success to date. While some techniques may have 
some limited usefulness, their success depends heavily on 
the ability of the analyst that applies them, 

VIII, SECURITY ASSURANCE 

A, Concepts and Definitions 

NASA policy states that automated information resources 
shall be provided with a level of security and integrity 
consistent with the potential harm from their loss, 
inaccuracy, alteration, unavailability, or misuse. Software 
is itself a resource and thus must be afforded appropriate 
security. Software also contains and controls data and 
other NASA resources; it must be designed and implemented to 
protect those resources. Software security assurance is the 
process of ensuring that the above requirements are 
satisfied during all phases of the software life cycle, 

B. Automated Information Security 

Policy for automated information security (AIS) is contained 
in NMI 2410,7, "Assuring the Security and Integrity of NASA 
Automated Information Systems." Very briefly, the policy 
states that security protection provided for a system must 
be appropriate to its sensitivity. It also states that the 
sensitivity of a system is based on the sensitivity of the 
information being handled by the system. Sensitivity is 
based on the impact on NASA of inaccurate, altered, 
disclosed, or unavailable information. 

The AlS process begins by considering and categorizing the 
information that is to be contained in the system. The 
information, including both programs and data, should be 
categorized according to its sensitivity. For example, in 
the lowest category, the impact of a security violation is 
minimal; the impact on NASAls missions, functions, or 
reputation is negligible, or result in the loss of no 
tangible asset. For a top category, however, the impact may 
pose a threat to human life; may have an irreparable impact 
on NASA's missions, functions, image, or reputation; or may 
result in the loss of significant assets or resources. 

Based on the categorization, security requirements should be 
developed. The security requirements should encompass 
system access control, including network access and physical 
access; data management and data access; environmental 
controls (power, air conditioning, etc.! and off-line 
storagej human resource security; and audit trails and usage 
records. 

C. Security Assurance Activities 

assurance activities are directed to that 
information (or to be) by an 
information has been 
category and the 

http://salc . gsfc. nasa. gOY / a<;sure/ agb. txl 

7130/20029: J 9 AM 



260f26 

have been developed and met in the system being developed or 
maintained. In addition, security assurance activities 
include ensuring the control and protection of the software 
being developed and/or maintained, and of software support 
tools and data. 

A minimum security assurance program should ensure that: 

A security evaluation has been performed. 

Security requirements have been established for the 
software and data being developed and/or maintained. 

Security requirements have been established for the 
development and/or maintenance process. 

Each software review and/or audit includes evaluation 
of security requirements. 

The configuration management and corrective action 
processes provide security for the existing software and 
that the change evaluation processes prevent security 
violations. 

Physical security for software and data is adequate. 

D. Techniques and Tools 

Off-the-shelf packages are available to be used to support 
security requirements. If used, they must be evaluated and 
their effectiveness assured. 

http:// satc, gsfc.nasa. gOY !assurei ag b _ tx 1 

7!30!2002 919 AM 


