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Airframe Components — Drag and Weight
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* Technologies to reduce weight and drag are crucial
regardless of selected configuration

Often previous drag and weight reduction concepts in
conflict with each other

— e.g. —increased span at cost of increased weight...

— NASA investing in broadly applicable technology developments

NASA has many partners in this research
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Typical Contributions to Drag - Subsonic
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Drag Reduction Technology Approach

— Skin Friction Drag — Laminar Flow (LF) Technologies,

Active Flow Control (AFC) for wetted area reduction
turbulent drag reduction

— Induced Drag - configuration dominated, increased
aspect ratio, wing tip devices, adaptive trailing edges,
active load alleviation, enabled by lightweight/multi-
functional structures

Active and
— Interference Drag — configuration dominated, Passive Concepts
propulsion/airframe integration, trim characteristics

— Wave Drag - configuration dominated, shock/boundary
layer interactions, adaptive trailing edges/compliant
structures

— Roughness Drag — joints, fasteners, manufacturing,
operations
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Lightweight Structures — Materials and Manufacturing

» Materials — Nanotubes, fabrics, coatings, resins

» Structures — Tailored load paths, integral curvilinear stiffeners,
unitized structures, compliant structures, damage tolerance

« Manufacturing — Stitching, resin infusion , free-form fabrication,

surface engineering, tooling, joints, surface quality
Electron Beam Free

Carbon Nanotube (CNT) yarn.  Stitched Composites Form Fab

Large-scale CNT Sheets Integrated Curvilinear Stiffeners HLFC - Insect Adhesion
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Stitched Unitized Structures

* Not “black aluminum”
* “Fail-safe” damage tolerance

e Load tailoring and weight estimation tools :
— Integrate alternate technologies (cabin noise, etc.) Pultruded Rod Stitched

* Expect 10% weight reduction compared to Efficient Unitized
conventional composites Structure (PRSEUS)

* Easier tooling
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Drag Reduction by Laminar Flow Technologies

* Laminar flow aerodynamically mature, but not N+2 HWB300
extensively used on transonic transport aircraft

. . ) -15.9%
— Demonstrated in several aerodynamic flight experiments
— NLF on 787 nacelles, passive HLFC on 787 stabilizers/fin [-2.0% |
— Receptivity to surface roughness is topic for research -2.6%

e Address critical barriers to practical laminar flow
application — surface roughness, manufacturing, | 18-5%
contamination, energy balance

 Develop confidence to conduct highly integrated 8.6%
flight tests

— Validated practical passive and active solutions
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Approach for Laminar Flow is Mission Dependent
HLFC
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Laminar Flow Technology Maturation

* Develop and demonstrate usable and robust aero
design tools for NLF, HLFC

— Link transition prediction to high-fidelity aero design tools

* Explore limits of crossflow control through Discrete
Roughness Elements (DRE)

— Practical Mach, Re demonstration at relevant C, Crossflow

— Relax surface quality requirements? Instability
» Seek opportunities to integrate NLF, HLFC, and/or DRE

into flight weight systems

— Understand the system trades through demonstration

* Assess/develop high Re ground test capability ‘

w

7 Anafy3|s compared to NTF transition
measurements at Re = 22 M/ft
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Flight Demonstration of DRE
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Previous DRE demo to Re

Fly DRE on NASA G-Ill wing'g
unit Re “16M

Primary Goal: DRE increase e
— Design for NLF to 15-20M Re wi
— Use DRE to delay transition at 22 —30M"Rq |

Discrete

Roughness
flow by 50% Elements

Secondary Goal: DRE relax surface guz

Demonstrate validity at Mach, C,, and Re
addressing potential need for reconfigura

Laminar Flow Glove
Wing
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Wetted Area Reduction — Active Flow Control

Increased On-Demand Rudder Effectiveness

Vertical tail sized for engine-out on takeoff

— More effective rudder yields smaller tail, less weight
and skin friction drag

— AFC operates only on take-off and landing

— Result in smaller required tail, reduced weight
AFC effectiveness assessment — 2 actuation
schemes
Detailed integration analysis study

Flight test in 20137

Flow Control
Actuators

Sensors

Use flow control on aft fuselage
(SRW) to reduce pressure
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Potential Reduction in Fuel Consumption

2025 EIS (TRL = 6 in 2020) Benefits relative to 777-200LR “like” vehicle
N+2 adv. "tube-and-wing” N+2 HWB300 Reference Fuel Burn = 279,800 Ibs

-0.7%

-1.1%

Fuel Burn = 159,500 Ibs ‘ll/ -1.1%

-120,300 Ibs (-43.0%)  Fuel Burn = 140,400 Ibs
-139,400 Ibs (-49.8%)
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Nasa

Closing Remarks

* Technologies to achieve NASA subsonic fuel burn
reduction goals
— Broadly applicable technologies for drag and weight
— Some technologies may enable new configuration

— Additional technologies: active load alleviation, compliant
flap flight test, flexible wing design, etc.

e Key Airframe System Technology Demonstrations
— Multi-bay PRSEUS pressure/combined load test
— High Reynolds number demonstrations of DRE, NLF, HLFC

* Partnerships are key part of portfolio
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