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. ¥— NASA In-House Space Transportation Architecture Study

Opening Remarks

Focus of study is on NASA’s human transportation
requirements for Earth-to-orbit transportation through 2020
* Space Station (baseline case)
* Human Exploration (excursion case)

Goal is to significantly reduce NASA’s costs by leveraging
the investment of the commercial launch industry and
estimating the marginal cost to NASA

Fundamental questions:

* Industry: “Can industry meet NASA'’s requirements and be competitive in
the commercial market?”

* NASA: “Can industry meet NASA'’s requirements and be competitive in
the commercial market?” AND “Can NASA tailor our requirements to
utilize commercial launch assets? If not, what are NASA’s alternatives?”

STAS5029.1
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Study Background

- The President’s National Space Transportation Policy directs
that a decision will be made by the end of the decade on
development of a next generation reusable launch system.

NASA is initiating U.S. industry led studies to determine:

(1) If the Space Shuttle system should be replaced,

(2) If so, when the replacement should take place and
how the transition should be implemented,
(3) If not, what is the upgrade strategy to continue safe

and affordable flight of the Space Shuttle.

Five industry studies and an agency “in-house” study were conducted

2222222222
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Study Organization

NASA
Chief Engineer

NAC Task Force
(Advisory & Review)

I_

Industry Architecture
Studies

Deputy Chief Engineer
for Space Transportation
Study Manager

Independent Analysis
and Assessment

Government
Advisory Board

In-House

Architecture Study
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NASA In-House Study Team

¥— NASA In-House Space Transportation Architecture Study

Scott Graham LeRC (study lead)

Steve Cook MSFC

Joe Hamaker MSFC

Mike Gaunce ARC

Roger Lepsch LaRC | ki
Frank lzquierdo KSC G f}:
Pepper Phillips KSC -:‘5\.{7" g 'V \WI
Kent Joosten JSC N B
Rod Wallace JSC

Lt. Col. Jay McDaniel USAF (detailed to Code R)

Additional support from:

« MSFC: Eric Shaw, Andy Prince, Robert Shepard, Tom Dickerson, Ed Threet, Fayssal Safie,
Bonnie Hankins, Dave Mercer, Bill Eoff, Bruce Shelton, Mike Crabb, Rich Drinkard

« KSC: Carey McCleskey, Edgar Zapata

« JSC: Bret Drake, Doug Whitehead, Elric McHenry, Mac Henderson, Jan Railsback,

« LaRC: Bill Cirillo, Ted Talay, Paul Tartabini

* Futron: Louis Fussell

 SAIC: Maurice Hale, Joseph Fragola, Gaspare Maggio, Mary Heck, Joseph Minarick,
Pat Odom, Dave Taylor, Lee Varnado, Bill Escher, Jay Laue, Howard Lester,
Spencer Hill, Mike Tripp
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Briefings Received

¥— NASA In-House Space Transportation Architecture Study

Requirements

* |SS servicing/maintenance/logistics

* Human exploration

* JSC human rating
Transportation elements

* Shuttle capabilities

* Shuttle upgrade plans

* Shuttle commercialization/privatization (USA)
Reusable First Stage (a.k.a. Liquid Flyback Booster)
X-38/CRV
VentureStar/X-33

EELV (both Atlas V and Delta 1V)
USAF views on the value of competition (EELV experience)
X-37 (Advanced Technology Vehicle)
Advanced reusable transportation concepts (LaRC concept studies)
RLV crew module study

* RLV cargo carrier study

* Exploration transportation concepts (e.g., Magnum)
Past studies

* Hawthorne Report

* Access to Space Study

STAS5033
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Requirements

¥— NASA In-House Space Transportation Architecture Study

Continue to fly shuttle safely as long as required

Architectures must meet the mission model through 2020
* Added one Shuttle-equivalent flight/year to ISS for contingency

* Did not consider ISS module/element change-out/addition after assembly
complete (not in mission model)

* Analyses extended to 2030 to encompass new element life-span
Must be able to support the ISS microgravity requirement
while providing adequate servicing

* 30 day continuous

* 180 days per year
NASA / private investments must show a reasonable return on
investment over a finite timeframe

* Exception: safety and obsolescence upgrades and human exploration

STAS5039



Requirements (Continued)

¥— NASA In-House Space Transportation Architecture Study

Considered the effect of JSC developed NASA Human Rating
Requirements (JSC 28354)

* 0.99 cumulative probability of crew safe return over duration of program
* Provide for crew escape across the flight envelope

Current budget plans
* Shuttle cost: $2.4B/yr for 8 flights (FY99 $’s);
* Additional available budget: $300M/yr

STAS5040



Key Groundrules & Assumptions

¥— NASA In-House Space Transportation Architecture Study

Representative, previously studied transportation elements
used to construct and evaluate architecture themes

Included only those elements needed to transfer people and/or
cargo to and from final Earth orbit

Existing commercial launch services can satisfy all national
launch requirements except ISS and human exploration

Government operated vehicles will not compete with the private
sector

No major changes in ISS transportation requirements until after
initial construction complete
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Key Groundrules & Assumptions (continued)

- For the exploration excursion, assumed continuous human Mars
mission capability beginning in 2014

" Funding information provided in constant FY99 dollars

- Architecture costs compared to a baseline including:

* Budgeted Shuttle operational costs

* Additional space transportation budget

* Estimated average NASA science mission launch costs

- Market capture model drivers are vehicle payload mass
capability and price per flight

" Technology Readiness Level 6 or greater required prior to
system development decision

- Commercialization of any element has no impact on mission
reliability



Evaluation Criteria

¥— NASA In-House Space Transportation Architecture Study

Discounted Life Cycle Cost to NASA
- Technical Risk (i.e. Probability of Successful Deployment)

Reliability (i.e. Probability of Mission Success)

Quantitative

Safety (i.e. Probability of Crew Loss)

Intangible Criteria
* Resiliency
Continuity
Competition
Mission Capabilities
U.S. Competitiveness
U.S. Technological Leadership

Qualitative

STSA5036.ppt
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Mission Model

Scientific

Mission
Model

Exploration

Commercial
LEO

Emerging

Markets

" Ensure the Architecture
Supports ISS Servicing

- Determine the Potential to
Leverage the Commercial
Marketplace to Reduce NASA'’s
Cost

- Assess the Architecture’s
Ability to Expand the Space
Economy and Support
Exploration

Commercial
GTO
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Mission Model Ground Rules and Assumptions

¥— NASA In-House Space Transportation Architecture Study

- The mission model projects launch service requirements
to 2020. For sources that do not project to 2020, the last
three years of the source are repeated

" Emerging market flights enabled at $1,000/Ib or less

- Mission model does not include foreign government
payloads for countries with indigenous launch capability



Mission Model Methodology

¥— NASA In-House Space Transportation Architecture Study

Data Sources
* |SS: JSC/LaRC Data
NASA Science: STAS Guidelines and National Mission Model
DoD: National Mission Model
* Commercial LEO: FAA Model
* Commercial GTO: COMSTAC Report
Emerging Markets: Commercial Space Transportation Study (CSTS)
* Exploration: Exploration Office at JSC

Payload Classification
* Two Classes of ISS Servicing
- Shuttle or Shuttle Equivalent (Architectures 1, 2 and 4)
- 25K Ibs to ISS (Architectures 3 and 5)
* National Mission Model used for NASA Science and DoD
* Commercial LEO Classifications same as FAA
* All GTO Missions (Commercial and USG) Classified Consistent with COMSTAC

Multiple Manifesting
* No Multiple Manifesting of NASA Scientific or DoD LEO Payloads

* Multiple Manifesting of Commercial LEO Missions Built into Source Material
* GTO Payloads Multiple Manifested in Market Analysis Model

STAS5043b
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Non-ISS Payload/Flight Rates
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Exploration Earth-to-Orbit Requirements

¥— NASA In-House Space Transportation Architecture Study

Current estimates for human Mars missions indicate spacecraft mass
in low earth orbit ~880 klbs - approximately equal to ISS final mass

* Reduced ~50% from previous studies due to different mission strategies,
advanced propulsion technologies

43 flight ISS assembly strategy does not provide acceptable
exploration assembly capability

* Large aeroshells for planetary aerocapture and entry

* Potentially large quantities of cryogenic propellant

* Planetary injection windows
When packaging inefficiencies and loss of aerocapture are

considered, number of launches increases rapidly with decreasing
launch vehicle capability

* 40 - 50 flights every 26 months for STS equivalent payload capability

* On-orbit integration becomes exceedingly complex
Human Mars mission studies indicate efficient vehicle design and
launch packaging with 180 kibs (80 metric tons) capability to orbit

80 metric ton-class vehicle captures maximum commonality with
existing infrastructure

STAS5046.1
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Development of Architectures

¥— NASA In-House Space Transportation Architecture Study.

¢ Reviewed conclusions of past architecture studies (previous STAS,
Human Transportation Study, Access to Space, etc.)

¢ Determined options for ISS transportation ranging from current to

new systems: 5 Major Themes
Shuttle Shuttle w/RFS EELV New TSTO New SSTO

¢ Developed baseline cases and options/excursions
— Evaluated both USG and commercially funded options

¢ Phased in new systems based on:
— Technologies at TRL 6 prior to ATP decision
— Technology developments consistent with Code R Goal 9 and 10 roadmaps
— Shuttle transition strategy: phase out Shuttle as soon as possible after appropriate test
and transition period for new systems
¢ Focused on attributes of systems, not specific system designs
— Developed “reference” system concepts STAS5048
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A database of approx. 40 vehicle elements was developed for this study
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3—EELV Based Transportation
Partial ISS Downmass

¥ — NASA In-House Space Transportation Architecture Study.

11999 | 2000 | 2001) 2002 | 2003 | 2004 | 2005 | 2006 2007 | 2008 | 2009 2010 | 2011 [2012] Q2020

Human Related Missions
Shuttle

‘ Phaseout Decision
International Space Station Crew / Logistic

<

CCTV
Decision

EELV Heavy + Solids
w/CCTV

ISS Crew Up / Limited Cargo Down

EELV Heavy
w/ATV

Science/DoD/Commercial Payloads

Atlas Il /
Delta Il Delta IV

New Elements

ATV g

Solid / /
Boosters

STP4708.3p



3—EELV Based Transportation
Partial ISS Downmass
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Technical Risk
Reliability
Safety

Cost

Business Analysis
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Risk
Reliability and
Safety
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Technical Risk - Definition

Definition - The probability of a programmatic delay time in
months beyond the baseline I10C.

Description - The metric used is the 50 percentile of the
estimated delay time distribution which accounts for potential
developmental and integration difficulties of new technologies
critical to deployment. Methodology accounts for the number
of new technologies and difficulty of their integration.

Metric - Median programmatic delay time (months).
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Technical Risk - Assumptions & Caveats

¥— NASA In-House Space Transportation Architecture Study

All critical technologies are at TRL 6 or greater prior to the
start of development.

Development program technical risk is the discriminating
architectural risk. It may or may not be the dominant program
risk.

All system/vehicle performance requirements are met.

Specific subsystem technologies were selected for each
element. They may or may not be the “best” technologies to
implement the architecture.

Schedule and cost risk are treated as a function of the
technical risk.

Integration is an exponential function of the weighted average
of the critical technologies across these technology areas.

Risk distribution can be formed by a linear combination of the
integration complexity and development program duration.siss:



Technical/Programmatic Risk Methodology

¥— NASA In-House Space Transportation Architecture Study

Determine the number of critical developmental technologies in:
* Propulsion
* Airframe (structures and TPS)
* Avionics (GN&C)
Assign relative risk contribution weightings for these technology areas:

Staged Comb (%) Gas Gen (%)
Propulsion 50 40
Airframe 30 35
Avionics 20 25

For each vehicle, multiply risk weightings by the number of required technologies and
sum over technology areas.

To account for integration complexity, form the exponential function of the weighted
average.

Select the delay time distribution shape based on integration complexity and duration of
the development program.

* Form a linear combination of these two variables to define parameters of the delay risk distribution
(gamma).

Determine the value of delay time at 50 percent cumulative probability. Delay time is
input to cost modeling to account for the cost of a potential delay due to technical risk.

STAS5056.2
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Results approximate; actual impact depends on contractor business base,
degree that program elements are integrated, etc.
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eay I e eayCo t

Ar hite ture e ent onth

I ion
th er entie

Space Shuttle with RFS 2.5 | 55

Bimese TSTO - Dual Mode 3.8 | 247

Optimized TSTO 8.8 | 247

SSTO 13 | 500
RFS Exists: |

RFS Booster with Upperstage ~0 | ~0

RFS Based TSTO 1.5 | 229
EELV Exists: i

EELV w/CTRV .03 | ~0

EELV w/CTV .03 | ~0




Element Technical Risk-
Observations and Conclusions
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The STAS technical risk methodology, while sufficient to
discriminate, likely under predicts the total program risk (e.g.,
political risks, production risk, etc.).

TRL 6 is a critical assumption. It assumes the technology
program was fully successful. It also implies no decision
should be made to go forward with an architecture until TRL 6
iIs demonstrated.

The particular technologies selected may over predict the risk
compared to a more conventional implementation (e.g., TSTO).
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Reliability - Definition

- Definition - Mission Success Reliability - The probability of
meeting all mission objectives, including payload delivery
and intact vehicle return.

- Description - The metric used is an aggregated mean
estimate of the probability of abort due to benign engine
shutdown during ascent, and the probability of vehicle loss
due to catastrophic engine failure during ascent or TPS
failure during descent.

- Metric - Mission success reliability

SSSSSSSSSS



Reliability - Assumptions & Caveats
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Main propulsion systems contribute majority of operational
reliability risk.

For new elements premature engine shutdown failures are
independent (no common cause failures).

On-pad abort probability not included in model.

Shuttle mission reliabilities derived from Shuttle Program

Office input
* Total mission catastrophic failure rate: ~1/250
- Without RTLS abort risk
* Total mission catastrophic failure rate: ~1/500

- With phase lll upgrades
- Without RTLS abort risk
* Total mission non-catastrophic failure rate: ~1/100

EELV mission reliabilities (Air Force requirement)
* Medium lift: 0.975
* Heavy lift: 0.970

Commercialization has no effect on mission reliability.

STAS5057.3
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Reliability - Methodology

" For each new element an estimate of engine shutdown/failure
rate is generated using an heritage-based design approach.

- The design heritage approach accounts for:
* Engine cycle

* Thrust class

* Time of staging and engine cut-off

* Power level

- USG Program Office estimates used for shuttle and EELVs.

~ Minimum engine burn time to achieve orbit estimated (booster
or orbiter engine out); aka “Press to MECO”
* LOV = Stages (1-Eng Rel.") (total burn time)

* MS=1-[LOV + (1-LOV) (St%eS(LEng Rel..") (time to press to MECO))]

- General methodology and inputs were coordinated with NASA
center S&MA representatives (KSC, MSFC, and JSC)
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Element Reliability - Observations & Conclusions

_ NASA In-House Space Transportation Architecture Study.

- At the architecture level, increases in mission reliability due to
engine out have to be traded against performance loss (i.e.,
possibility of additional flights to meet mission model).

" Phase lll upgrade reliability improvements, if realized, double
Shuttle mission reliability and have a significant positive impact
on architecture level reliability and safety.

" New systems have no more than about a factor of 2 increase in
mission reliability (compared to Shuttle with Phase Ill upgrades).

SSSSSSSSSS
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®L] e inition
The probability of safe return of the crew

®Je ri tion
The metric used is 1 minus the mean of all probabilities of a loss of crew
event, given the catastrophic failure per mission probability, and crew
survivability factor, based on the geometric separation between the crew
module and the sources of catastrophic failure.

®Sae re return ean anyo the o o ing
(1) Successful mission
(2) Safe intact abort
(3) Crew escape/survival w/potential loss of vehicle

®L] etri
1 Mean number of flights between crew loss events

STAS5058.1
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® o ontri utor to re o
(1) Loss of vehicle probability

(2) Geometric distance between crew module & source of failure

®[Cre odue uri aiity a torrange ro to

a edonananaogyo iitaryairrate a e y te

he o errangein ude outo theen eo ea ort ie ee tion
10 10.99 used for EELV
10 [0.8 used for other new vehicles

® hee ui aent aea orten eo e ora re oduei
adi tan e eter
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¥— NASA Space Transportation Architecture Study

Architecture Level Safety / Reliability Summary

Current
Shuttle

150

Reliability

Mean Number of Missions Between Loss of Mission

Shuttle Based Architecture
Shuttle w/RFS Based Architecture

EELV Based Architecture
TSTO Based Architecture
SSTO Based Architecture

<€ Through 2020

B Through 2030

5175.2



Ar hite ture e e i eia iity Saety e ut
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edian e oy ent eay onth 0 2 0 9 13
| ight eighted eia ity 0.9929 | 0.9935 | 0.9730 | 0.9947 | 0.9957
eanNu ero i ion et aiure 141 155 37 190 230
ro o u e u argodei ery| 24% 27% 0% 34% 35%
| ight eightedSaety 0.9979 | 0.9985 | 0.9993 | 0.9990 | 0.9990
eanNu ero i ion et aiure 475 686 1,344 961 995
ro ono re o e ent 65% 74% 90% 86% 86%
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Economics
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® wunding in or ation ro idedin on tant do ar

®[A ar hite ture o aredtoa a eine NASAS a e ran ortation
eeren eCo to i ion eryear
Shuttle costs of $2.4 billion/year
Additional Space Transportation Budget at 2$300 million/year
NASA Science Mission ELV launch costs estimated at 2 $350 million/year

®Jie y e ot a u eindu try edde eo ent rogra u ing
ature te hno ogie greater than ore ua to
MSFC estimated vehicle systems
KSC estimated facilities and operations

®L re urring ot on i tent ith atet SA e ti ate
Added nonrecurring cost for human rating and for EELV/human module integration

®Co to te hnoogy aturation te hni a ri and ata tro hi
unreia iityin uded e 1i toea har hite ture

®Co to e oratione ur iononyin ude earthto or ittran ortation
eg ent
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®[ntegrated ar hite ture ®ehi e u ine an

ie y e ot toNASA Price/Demand curves
Market capture

Vehicle financial metrics
- Investment/Revenues
- Cash flows

- ROI metrics

- Industry viewpoint
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@ Steady State Shutte Co tA u tion
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ota | iedi aria e

Adut ent or SA i ien ie -200" .

Adut ent or ha e -1282 :

Adut entor S -1503 .

Note

1 JSC/USA projections of $300 M/year discounted to $200 M/year to reflect
anticipated cost sharing with USA.

2 Based on JSC projections of Phase Ill upgrades savings.

3 Based on KSC projections of RFS savings.
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Flight Rate

Architecture 2 Flight Rate
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Architecture 3 Flight Rate
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- USG LCC Undiscounted

- USG LCC Discounted @ 10%

- Peak Year Funding (Year)

- Avg. $/lb LEO
ISS Price/Flight (Rate)
Com'l Price/Flight (Rate)
Emerging Price/Flight (Rate) NA
Exploration Delta LCC
Discounted

[I'ndu try Ca e No n enti e

- USG LCC Discounted at 10% NA

- Avg. $/b LEO NA
[I'ndu try Ca e S

- USG Capitalization Required NA

- USG LCC Discounted at 10 NA

- Avg. $/Ib LEO NA

[11'S undedCa e
- USG LCC Discounted @ 10%
- Peak Year Funding (Year)
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Economic Observations

Net Present Value (@10%) of Life Cycle Cost to NASA of all
Architectures are +/-10%
Time Phased Life Cycle Costs are Significantly Different
* Shuttle and Shuttle/RFS => Lower Investment, Lower Savings
* EELV Least Cost Effective of All => High Investment, Low Savings
* TSTO and SSTO => Higher Investments, Higher Savings
All Architectures with New Investments Exceed Available Budget in
Peak Year Funding
* USG Funded Approach Requires Highest Peak Year Funding
* USG Incentives Reduce Peak Year Funding
All Architectures Generate $0.5B to $1.0B Wedge in Outyear Savings
°* EELV ~ $0.5B
* SSTO ~ $1.25B

Closure of USG Business Case (NASA Breakeven @ 10%)
Accomplished with Incentives Ranging from Guaranteed Loan to $3B in
Capitalization Plus Loan

STAS5122.1



Economic Observations (continued)
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Industry Business Cases Close with $1B Capitalization plus USG
Guaranteed Loan and ISS Servicing Market

Lowest NASA LCC is Provided by Architectures which are
Commercially Developed

* Benefits US Commercial Launch Industry

* Stimulates the Emerging Market

* Lowers NASA’s Peak Year Funding from USG Funded Case
Business Analysis Yields Highest Outyear Savings Potential for
TSTO and SSTO

* Lowest Prices for NASA ISS Servicing, Largest NASA Savings Wedge

* Largest Commercial Market Capture, Largest Emerging Market Stimulus

Promise of Emerging Market will not Encourage Commercial Operators
to Lower Prices

* Inexpensive Flights do not Contribute to Commercial Viability

* Incentives should be Contingent upon Enabling the Emerging Market

Exploration Excursion Delta Cost was Lowest for Architectures
1,2 and 4

STAS5122.2
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ono i

ro Con
Ar hite ture [JSmallest uncertainty band in cost [Significant CS workforce, overhead,
Shutt e estimates infrastructure
[JLowest investment cost
Ar hite ture OSignificant CS workforce, overhead,
Shutt e S infrastructure
Ar hite ture [JSmall cost uncertainty in EELV boosters [JExpendable elements increase costs
at higher flight rates
[JHigh cost uncertainty in human-rated
elements
Ar hite ture [(JFully Reusable offers potential for high [IHigh uncertainty band in cost estimates
SO flight rate economies
[JHigh element cost
Ar hite ture CFully Reusable offers potential for high [JNo Shared infrastructure
SS O flight rate economies

[JHighest uncertainty band in cost
estimates

[JHigh element cost
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ro Con
Ar hite ture Lowest overall risk (technical, cost,
Shutt e schedule)

Ar hite ture Lowest risk compared to any new Stage integration risk

Shutt e S development

Ar hite ture Low booster development risk for gov't Added aerodynamic element on top of
EELV may pose additional flight control
and structural problems

Ar hite ture TSTO offers lowest technical risk for Stage integration risk

SO achieving full reusability
Ar hite ture Highest risk

SS O
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ro Con
Ar hite ture Reliability consistent with all but the most
Shutt e revolutionary concepts at the lowest cost

Ar hite ture Reliability consistent with all but the most

Shutt e S revolutionary concepts at the lowest cost

Ar hite ture Significantly lower reliability as compared

to any other architecture
Ar hite ture
SO
Ar hite ture Factor of two reliability improvement over

SS O

Architecture 1

STAS5107.3
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Sa ety

ro Con
Ar hite ture Proven performance All RSRM failures are catastrophic
Shutt e
Low crew survivablility (essentially no
crew escape during ascent)
Ar hite ture Improved first stage safety in eliminating Low crew survivability (essentially no
Shutt e S TAL or RTLS aborts crew escape during ascent)
Ability to verify nominal booster engine
performance prior to launch commit
Eliminates potential of castastrophic
incident in VAB which would eliminate
single national asset for integration of
vehicles
Ar hite ture Ability to verify nominal engine Use of escape system highly probable
performance prior to launch commit 'due to high catastrophic failure rate
Crew module location enhances crew
survivability (crew escape)
Ar hite ture Ability to verify nominal engine Due to configuration, escape envelope
SO performance prior to launch commit imay be limited
Provides for crew escape
Ar hite ture Ability to verify nominal engine Due to configuration, escape envelope
SS O performance prior to launch commit imay be limited

Provides for crew escape

STAS5107.4
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Continuity

ro Con
Ar hite ture Highest synergy with existing launch in- Difficult to address commercial operation
Shutt e frastructure and ISS interfaces. due to policy and legislative barriers/[ |
launch rate limitations.
Ar hite ture Establishes a roadmap for gradually re- Difficult to address commercial operation
Shutt e S placing STS components with (perhaps) due to policy and legislative barriers/[ |
commercially funded elements, with in- launch rate limitations.
creased market capture as time progresses.
Evolves from existing shuttle infrastructure
Ar hite ture Takes advantage of EELV production and Development of new human space
launch processing capabilities. Strong transportation element required
connection to EELV commercial market.
The development of a CTV may be de-
rivative of a CRV for the ISS. The CTV
can also be utilized for alternate access
when launched on an EELV.
Ar hite ture The development of a CTV may be de- All new booster, launch facilities, and
SO rivative of a CRV for the ISS. The CTV human space vehicle element required.
can also be utilized for alternate access
when launched on an EELV.
Ar hite ture Cleanest transition due to independence All new booster, launch facilities, and
SS O from existing shuttle infrastructure.( human space vehicle element required.

The development of a CTV may be de-
rivative of a CRV for the ISS. The CTV
can also be utilized for alternate access
when launched on an EELV.

STAS5107.6




¥ —=NASA In-House Space Transportation Architecture Study.

Co

etition

ro Con

Ar hite ture No competition

Shutt e
Ar hite ture Potential ops cost savings may allow
Shutt e S NASA to maintain Shuttle for a longer
Ar hite ture transition.

S O and
Ar hite ture Lower ops cost will expand the available

SS O space market and allow for more com-
petitors.

Ar hite ture Dual source EELV allows competition. Nothing competing with EELV

STAS5107.7
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Ar hite ture
Shutt e

ionCa a iity

ro

Minimizes ISS microgravity impacts
because few ISS missions required

Certified, verified, and proven concept
Supports ISS EVA Requirements

STS is probably most flexible vehicle.
Supports orbital missions that will be
difficult to match with purely commercial
vehicles

Provides good support for exploration ETO
requirements due to shared production,
processing facilities and launch

Con

Ar hite ture
Shutt e

S

Minimizes ISS microgravity impacts
because few ISS missions required

STS is probably most flexible vehicle.
Supports orbital missions that will be
difficult to match with purely commercial
vehicles

Provides good support for exploration ETO
requirements due to shared production,
launch, and processing facilities. Probably
provides lowest DDT&E and recurring
cost exploration ETO

STAS5107.8
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Ar hite ture

i ionCa a iity ont

ro

Con

ISS CRV rotation requires CRV to perform a
entry which uses up mission life just for recycle

May be difficult to maintain current
Orbiter's mission capabilities in limited
mass CCTV. No combined crew/cargo
missions. May be unable to support down-
mass requirements. Support of exploration
ETO requirements are minimal

Ar hite ture
SO

May be possible to maintain Shuttle Orbiter's
mission capabilities due to upmass/
downmass, performance margins

Provides some support for exploration ETO
due to use of Bimese as boosters and
some shared facilities

Provides capability for simultaneous transfer
of crew and cargo to ISS

Ar hite ture
SS O

Alternate access capability provided with
development of CTV, which can be launched
on either the SSTO or EELV

More frequent interruption of ISS micro-
gravity environment

Probably will abandon many Shuttle unique
mission capabilities due to severe vehicle mass
and operational limitations. Provides little direct
support for exploration ETO requirements

STAS5107.8a
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. Ar hite ture
Ca aiity

‘ | | | 4 | 5

A ent eror an eto SS 40.3K 48K 22K/35K*** 55K 25K
on a eror an e ro SS 41.2K 45K 22K/9K 60K 60K
No No

ay oad Ser i e No
ehi e S No No No
Onorita e vy No No No
Aouto ehi e No No No
ay oad Sate ite etrie a No No No
ay oad Sate ite Ser i ing No No No
ehi e generated aterandga e No No No
tended on or it duration No No No
S ientii ator No No No
Cre and ayoad aun hed and returned together No No
erry : No
Cre ioted ehi e

Cre ayoad u ort

u an ntera tion trou e hooting re air et
nta ta ort a a iity

ay oad Sate ite e oy ent

Cre ae odue

Autono ou O eration

aun htoa ai uth

*  [Maximum abort landable payload based on minimum duration / crew mission
** [Maximum nominal end of mission cargo return
*** [Full downmass/partial downmass 0 STAS5110.1
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ro Con
Ar hite ture Shuttle has a demonstrated 95+% launch Orbiter turnaround time limiting flight rate
Shutt e 'probability for each month of the year (limited surge capability)
Ar hite ture
Shutt e S
Ar hite ture EELV expendability ensures production
capability
Developed EELV/CCTYV could provide
alternate access for all architectures
Multiple EELV suppliers provides alternate
access
Ar hite ture TSTO provides greater potential for
SO margin/robustness
Single element provides for less complex Larger weight and performance penalties
Ar hite ture ground and flight operations incurred for extra design margins that
SS O

would provide a more robust/forgiving
vehicle.

STAS5107.5
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S Co etiti ene

Con

Ar hite ture Does not capture additional market share
Shutt e for the U.S.
Ar hite ture May allow commercial sector to capture Does not capture additional market share
Shutt e S limited additional GTO/LEO markets for the U.S.
through evolution of RFS into partially
reusable and reusable TSTO systems
Ar hite ture NASA use of EELV could lower costs to
enable greater market capture
Ar hite ture Flexibility and potentially lower costs of the
SO TSTO vehicle may allow additional global
market capture
Ar hite ture Significantly lower costs result from the
SS O SSTO concept, additional global market

should be captured

STAS5107.9
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Con
Ar hite ture No major technological advancements
Shutt e
Lowest level of technology development
Ar hite ture Paths exist to incorporate advancing Low initial level of technology investment

Shutt e S technology in the RFS and in the eventual
reusable upper stage. System can be used
until higher technology elements are ready

Ar hite ture Little advanced technology
Ar hite ture Technology developed in several areas to
SO support new vehicle development
Ar hite ture By being the most technologically challeng-
SS O ing option, the SSTO vehicle element,

pushes key material, structure, and manu-
facturing technologies that may find applica-
tions in other industries/DoD

STAS5107.11
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®[Airra e \

e hnoogy e uire ent or

[lLarge scale, manufacturable composite tanks and structures

[Durable, long life ceramic and metallic thermal protection sfStem

[Durable hot structures (leading edges, elevons, etc.)

[LLarge scale, integrated life cycle demonstrations of airframe s
(tanks, structures, TPS)

thrusters, nozzles)
[Lightweight feedlines and ducts
[Long life, high performance turbomachinery(’
[lLow cost, expendable upperstage engines
[Propellant densification
Non-toxic OMS / RCS

[Automated rendezvous and capture
‘Automated ground processing, pre fllgh iﬁ]ﬁ@[ﬁﬁ m@] posit iﬁ]n@h 0

[Containerized payloads
[Automated maintenance

STAS 5114
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®[Nationa S a e oi yChange e uired

| [Architecture 1 and 2
1 [ [Commercial Payloads on Shuttle: /i inate Section Illl  a

[Architecture 3,4, 5
1[4 [None

®L egi ation
] [Architecture 1

1 [4 [Commercial Payloads on Shuttle: rd arty ia iity Insurance
] Jn o ercia | hts

/Architecture 2, 4, 5

] 4 [Joan uarantees
0 [ Oud et or NASA ontri utions to e eop ent
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Ar hite ture Does not meet JSC human rating requirements

Ar hite ture Partial downmass:
- No return of logistics carriers (MPLM, ULC) spares, maintenance items, etc.
- ~50% return of unpressurized user cargo
- Loss of carriers/spares/equipment presents an annual cost (~$250M) and
1 continuing production line issue
- Buildup of cargo/debris on orbit

CRYV design modifications required due to launch on EELV

Ar hite ture ISS Common Berthing Mechanism lifetime exceeded

ISS microgravity quiescent period (req't of 180 days) violated by ~40 to 120 days
[(1st cut analysis - may be able to relieve)

Loss of estimated 500 science hours annually due to inability to transport
additional crew members along with logistics carriers for maintenance and
‘cargo load/unload

Ar hite ture CRYV design modifications required due to potential commonality with CTV

STAS5112
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Aternate A e toS a e

®LAr hite ture doe note e ti eya o aternatea e
Significant cost associated with developing a new CTV and integrating on EELV

®LAr hite ture aya o oraternatea e
Keep Shuttle with RFS and enable new TSTO with RFS
Would require the use of the projected outyear savings to NASA of

the RFS

®LAr hite ture inherentya o aternatea e
Two approximately equal capability / price EELV's
Would require human rating two systems (not included in economics analyses)

®LAr hite ture and aya o oraternatea e
Launch humans to ISS on CTV / EELV
- Would require upfront CTV design impacts
— Would require human rating and integration on an EELV(s) (~ $700M delta)
Would require the use of the projected outyear savings to NASA of
the new RLV

STAS5150
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®Annua u iantrai to SS ota e y o ete
Four Progress @ 5,170 Ibs payload each
Two Soyuz @ 1,060 Ibs payload and three crew each (6 month rotation)

® ui aentadditiona ight

: Additiona Annua Additiona Annua
Ar hite ture : :
ight Cargo ight Cre
Shutt e to
Shutt e to
Signi i ant grade
a ed artia A CcC CcC
on a
aed u C Cargo C Cre
on a
Ne o Stage

to Or it

Ne Sing e Stage
to Or it
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®L yinga o eriaiedS a eShutte ith i itedu grade
Ar hite ture oudo er ignii ant ot a ing iththe
o e tte hni a ri

This architecture does not expand the U.S. share of the commercial market
Requires an additional 25% reduction in annual operations cost

®LAn S u grade Ar hite ture a o orin re enta ar hite ture
e oution ith i itedte hni a ri
It has low life cycle cost, offers marginal increases in reliability and

safety compared to Shuttle, but has high peak year funding
Requires a commercialized Shuttle

® a ed Shuttere a e ent y te Ar hite ture ho itt e
ene it

While Architecture 3 has the best overall safety and the lowest technical
risk for any new system,

It has the highest life cycle cost, highest peak year funding, lowest
reliability and largest loss of mission capability (launch vehicle & I1SS)
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®SS O S O Ar hite ture and a ear too erthe highe t

o er ia otentia
Many similiarities exist between SSTO and TSTO based architectures in

terms of safety, reliability and NASA LCC

However, significant technical risk remains, especially in SSTO,
and needs additional technology investment prior to ATP

TSTO boosters provide an evolutionary path for Exploration

® hei ato a inde endent o anie hi e not e a uated
ayo era athtoena e uti e o etitor inthe ongrun or

SS eriing
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® oratione ur ion

1 [Architectures 1,2 and 4 require an additional ~15% discounted LCC
1 [Architectures 3 and 5 require an additional ~20% discounted LCC
1 [since exploration must bear the entire cost of the RSRB

® 10 o u ianin o e entin SS annua a edon a

1 [LLogistics: Single additional flight in architectures 1,2,4 and 5.
One to two additional flights for architecture 3

1 [Crew rotation: [ One additional flight in architectures 1,2 and 4.
One to two additional flights for architecture 3.
Two for architecture 5



enera Con u ion and Recommendations
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®[Study ti era eo doe nota o o tand a ety ad antage to
e u yde on trated
oth econo ic per circuarA- andsaetyi pro e ents
shou d e considered throu h to eta ore accurate

representation o ne ehice eneits | enti era eo ne ehice
operations

®CA ar hite ture ha eadi ounted ie y e o tto NASAo

a roi atey

[1 No significant Life Cycle Cost savings (undiscounted reference cases)
1 to NASA between architectures.

®na ar hite ture e e t a ignii ant annua outyear udget
edge yri de eoed hi edge oud eu edto
[1 Offset costs of human exploration
[1 Bolster technology developments
[1 Shuttle upgrades
[1 Provide alternate access (CTV on EELV, Shuttle etc.)
[1 Other.....
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®[] i nota hie ed riortoA thenrri te hnia ot
hedue ha eenundere ti ated hi i e e ia ytrue or
ar hite ture andtoa e ere tent or ar hite ture

®[Additiona te hnoogyin et ent | ere uiredtoa hie e
orne reua e ehi e riortoA

Techno o ies and e peri enta ehices are needed to de onstrate
assu edi pro e entsinde eop entand operations cost

®Aternatea e orhu an and argoto SSin rea e the Nation
aiityto o ete i ion a anned utha a o iated ot
ri and aetyi a't

®LA iitytoa hie e o etition orhu antran ortation i e ery
di iutintoday o eria aret ae
]
ore study is re uired to etter understand the co  onaity o
co ercia payoaddei ery and hu an space i ht
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®1 heS a eShuttei a a a etran ortation y te NASA
lha adea ignii antin et entinthede eo entand utii ation
o tho e a a iitie

INASA shoudanay e each o these capa iities decide hich o
‘those it ants to retain on a Shutt e rep ace ent syste

® 1 he ot eneit o hae u grade orS a e Shutte need etter
'de inition

L]

1 ore study is re uired to etter understand the cost ene it trades

INASA shoud seect haselll p radesthat o er si niicant sa ety and
reia iityi pro e ents orany architecture hich eeps Shutte a ter

®[LSignii antyredu ed Shutte ot a e the ae orne vy te
tore a e Shutt e in the near ter oredi i ut o e er Shutte
‘lightrate a a iity 1 it o eria otentia and i note and
the S hareo the a e ar et
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®LAr hite ture tudyre ut arede endenton 1 ion ode and
a o iatedre uire ent

NASA shou d aintain an inte rated ission ode hich oud
e the repository ora p anned and proposed issions Thisa o sa
CO on asis orco parison o uture space transportation a ternati es

NASA shou d und a study to etter uantiythee er in ar et

®1hei at oane ehi eto erie SShaenot een uy
a e ed ro eitheran SSor ehi e er e ti e
rior to any ina decision concernin ane ehice s to ser ice ISS the
ISS pro ra shou d conduct an assess ent o the ie cyce costi pacts
o Shutterepace entaterISSasse yco pete ThelSS

pro ra shoudidentiy oth ir and desiredre uire entso ane space
transportation syste

®O eration ot area aor ontri utortoa ehi e ie y e ot
O e ero eration ode aredi i utto aidatedueto a o

dataand odeingi aturity
urrent operations capa i ity prediction cost esti ation data co ection syste s
e Shutte - - etc andre uire ents ana ysis shoud

eau ented

STAS5152
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®Co te ti ate orar hite ture and i ey ha e agreater un ertainty
inthea tua de eo entando eration ot o aredto

ar hite ture and

L]

Needto ode anay e and co pare cost uncertainty o a architectures

®Cn hou e tudy ha highightedthedi i utyina yingthe SC u an
1 ating re uire ent to ar hite ture e e anay i

L]

'] e uire entsshoud ereor uatedtoena e co parisons o architectures

®Ja o tandardanayti a te hni ue or o aring ot ri
reia iity and a ety
L]
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®[Notenough no edgei a aia etodayto o it to a Shutt e
re a e ent

eco endation ocusin on ays to reduce the uncertainty

] tainresuts ro on- oin  pro ra S and additiona round
de onstrations

] eror ri orous ehice trades desi nandris assess ent

| sti ated eariestti era e orrepace entdecision

®L NASAi ri ariyintere tedin aintaining the uni ue a a iitie

o theS a eShutte eriing re et hieredu ingit ot
or SStran ortationat o ri it houd ur ueAr hite ture
no ingthate entua y Shutte i ha eto ere a ed

®L] NASAIi intere tedin ti uatingthe o eria ar et
andena ingane an iono the S ar et hare it houd ur ue
Ar hite ture or
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Intangible Attributes

In-House Space Transportation Architecture Stud

B Resiliency

— Ability of “system” to react minimally or favorably to variations in uncertainty (predicted or
actual)

* Robustness, Flexibility, Margin, ...
B Continuity
— Synergy with existing, planned, or future space transportation systems and/or elements
» Linkage between government and commercial ventures
» Heritage-based; evolutionary
B Competition

— Fosters continuing space transportation competition within industry (including
international) to drive costs down as low as possible in all market segments

B Mission Capabilities

— Inherent capabilities of a system or element (i.e., a vehicle) within an architecture,
independent of current needs or requirements

» Growth potential for future missions
B U.S. Competitiveness

— The ability of an architecture or vehicle element to ensure that U.S industry remains
competitive in the global marketplace and enables the U.S. to increase its market share

B U.S. Technological Leadership
— Fosters continued U.S. leadership in space technology
— The ability to rapidly respond to problems and challenges with innovative solutions

Attr.bu
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a in o arth Or it

nita

ar Ar hite ture

a Co arion

3,500

[ 1988 JSC Case Study
] 1989 JSC Case Study
11990 NASA 90-Day Study
[]1 1991 Synthesis Group
& 1995 NASA MRM v1.0
11997 NASA MRM v2.0
] 1998 NASA MRM v3.0
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Groundrules & Assumptions - General

Timeframe studied: FY01 - 20:
* No new DDT&E starts until FYO1.
* To close economic analyses, examining payback out to 2030 (a
representative life span of new launch systems).
NASA operated systems will not compete with private
commercial services.

Space launch policy and regulation changes (if any) will be
documented

The United States must be the primary lead for architecture
development and operation, with international participation
encouraged. (Non-US launchers available for commercial
market.)

“Assured Space Access” is desired, but not a requirement.

STAS5041.1



Groundrules & Assumptions - Mission Model

¥— NASA In-House Space Transportation Architecture Study

Final architectures must meet the consolidated
government/commercial mission model

Sources for developing this mission model are:

* |SS Servicing — Baseline requirements for the Shuttle and a 25K Ibs. to
ISS RLV provided by LaRC. One CRYV flight every three years is added
beginning in 2004. One contingency flight per year is added to support
unforeseen ISS needs.

* NASA Scientific — Mission model in STAS guidelines.

* Department of Defense — Air Force Space Command “National Mission
Model” dated August 1998.

* Commercial LEO — FAA Office of Commercial Space Transportation “LEO
Commercial Market Projections,” May 1998.

* Commercial GTO — COMSTAC Commercial Mission Model Update, May
1998.

* Emerging Markets — Commercial Space Transportation Study (CSTS),
May 1994.

* Exploration — Exploration Transportation Program Office at MSFC.

STAS5041.2
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Groundrules & Assumptions - Mission Model (cont)

For component mission models that do not project launch
rates to 2020, the launch rates for the last three years
available will be repeated through 2020.

Included only those transportation elements required to
transfer people and cargo from the Earth’s surface to final
Earth orbit.

Did not consider Bantam class missions.

Did not consider foreign government payloads if those
countries have an indigenous launch capability.

* Launch vehicle and payload classification for:

* All GTO missions based on the COMSTAC methodology.

* Commercial LEO vehicles developed using the FAA “LEO Commercial
Market Projections.”

* US government LEO missions developed using the National Mission
Model.
No emerging market flights occur until the price per flight is
less than $1000 per pound, then vehicle which creates this
market captures all available flights.

STAS5041.3



Groundrules & Assumptions - Mission Model (cont)

_ NASA In-House Space Transportation Architecture Study.

Concerning multiple manifesting:
* No multiple manifesting of NASA Scientific and DoD payloads.

* Multiple manifesting of LEO commercial missions built into the source
material.

* Multiple manifesting of GTO missions is performed for the large (i.e., 18 K Ibs
to GTO) vehicles.

Human exploration requirements are treated as a cost
“excursion.”

All exploration vehicles (i.e., Magnum) have the same 80 metric
ton lift capability.

Commercial development of the magnum core vehicle was not
explicitly expanded.

If a launch system captures the mission weight requirement,
assume it also captures the mission volume requirements.

Shuttle, TSTO, and SSTO vehicles will use the new low cost
upper stage for GTO missions.

STAS5041.4
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Groundrules & Assumptions - Mission Model (cont)

- The competitive marketplace is modeled on existing and
future commercial ELVs and RLVs. Future vehicles must be
in the development stage to be included in the competitor
model. Capabilities and prices from the “International Space
Industries Report (ISIR),” 8 Jun 98, supplemented with data
from the AIAA “International Guide to Space Launch
Systems,” 2nd edition and selected briefings on EELV
capabilities and prices.

" International competitor pricing structure fixed over time.

" The market capture models for the commercial and
government markets assume rational competitor behavior
based on the economic theory of the oligopoly market. The
drivers for the market capture model are vehicle payload
mass capability and price per flight.

" No more than 50% of the projected DoD EELV market is
available to transition to a new launch vehicle to maintain
alternate access.
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Groundrules & Assumptions - Mission Model (cont)

Any new vehicle must take market share from existing
competitors:
* For ISS missions, transition period is two years.
* For all other missions, assumes five years to build customer base.
* Initial market penetration is 20% and grows at a 50% rate.

Assumed market growth rate allows payloads to adapt to
emerging launch system environments.

Existing commercial launch services and architectures can
satisfy all national launch requirements (i.e., NASA scientific,

DoD, and commercial payloads) except ISS and human
exploration.

STAS5041.6



Groundrules & Assumptions - International Space Station
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“ Will be operated through 2020.

No major changes in ISS transportation until after initial
construction is complete, including:

* No new systems.

* No Shuttle commercialization.

Did not consider subsequent module change out/addition
after initial construction complete.

Did not consider crew rescue, except Crew Return Vehicle
(CRV) rotation flights every three years. (CRV initially placed
on-station in 2004 on a manifested ISS mission.)

Did not consider CRV replacement flight after an emergency
use.

Did not consider any late or early cargo access requirements
during ground processing.

For crew rotation systems, assumed.:

* Four rotation flights per year (starting in 2005).
* Four astronauts being rotated per flight.

STAS5041.7
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Groundrules & Assumptions - ISS (cont)

- Extra vehicular activity (EVA) capability on new systems and
subsequent impacts on ISS not addressed.

- The Design Analysis Cycle (DAC) 6 traffic model was used.

- The station remote manipulator system will be used for cargo
manipulation.

- 1SS deorbit not a space transportation requirement, but a
desired attribute.

" In the baseline, assumed international partners will continue
to meet their launch and support obligations. Excursions
captured in Mission Model sensitivity analysis.

- Small independent companies may be able to support ISS
missions post 2010. (Just getting on their feet with small
payload class missions now.)



iy Groundrules & Assumptions - EELVs & Human Exploration
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The Evolved Expendable Launch Vehicle (EELV) “core”
vehicle planned to be operational in 2001.

Estimated EELV prices (in FY99 $s):
* EELV Medium - $65M
* EELV Heavy - $140M
* EELV Heavy + - $145M

EELV mission reliabilities (as provided by the Air Force) are:
* EELV Medium - 0.975
* EELV Heavy - 0.970

Human space transportation (including to and from the ISS)
is domestically a unique NASA requirement:
* For the Exploration Excursion, assumed it will be a Mars mission.

* |dentify architecture growth potential to enable human exploration for
2014 opportunity.

* Mars exploration mission requires 80 metric ton lift capability.

STAS5041.9
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Groundrules & Assumptions - Space Shuttle

- Shuttle operational costs (as budgeted) are:

* $2.4B for 5-8 missions per year.
* Missions 9 and 10 are $90M each.

- Loss of vehicle failure frequency estimated at 1 in 500
(ascent only) and 1 in 250 for overall flight envelope; with
mission success probability of 1 in 100 (i.e., 0.99) to deliver
payload to correct orbit. (Phase lll upgrades will increase
mission success probability to 1 in 200, or 0.995.)

" Program termination costs will be included, if necessary
(architecture dependent).

" No Shuttle Phase lll upgrades except in those architectures
recommending keeping the Shuttle until 2020.

- Assume all required Phase Il/lll upgrades are paid for out of
existing operational baseline (i.e., $2.4B/year).
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Groundrules & Assumptions - Economic Analyses

- Costs were estimated with consistency valued above
absolute accuracy.

- All funding information provided in constant FY99 dollars.

- Additional space transportation budget available is $160M in
FY01 and $300M/year thereafter (in then year dollars).

- Architecture costs compared to a baseline consisting of
budgeted Shuttle operational costs (i.e., $2.4B/year) plus
additional available space transportation budget (described
above) plus average NASA science mission launch costs
(estimated at $325M/year).

" Previous study estimates used as a basis for Cost Estimating
Relationships (CERs) to estimate new vehicles.

" New ways of doing business were assumed,; i.e., Skunkworks
development (rapid prototyping, firm requirements, single
management authority, small technical staff, customers on-
site, contractor inspections, limited outside access, timely
funding, report only important work, simple drawing release).



Groundrules & Assumptions - Economic Analyses (cont)

_ NASA In-House Space Transportation Architecture Study.

Unreliability costs will be included in life cycle cost and
economic analyses:

* Catastrophic unreliability cost will be estimated by adding the expected
vehicle losses over the life of the mission model into initial fleet production
and estimating the cost of downtime, investigations and fleet
modifications as 2 months' net revenue and 25% of vehicle unit cost
distributed on a per-flight basis. (Note: inclusion of these costs reflect
self-insurance by the launch provider, and as such will replace the cost of
commercially-obtained vehicle insurance.)

* Mission unreliability cost, estimated as the cost of re-flight of unsuccessful
missions, is a second-order cost and will not be included.

* Economic impact of meeting JSC human-rating safety requirements will

be quantified by extending flight test program and delaying revenues from
ISS servicing missions.

Payload losses (i.e., dollars) are not factored into the cost of
launch vehicle loss.
Development cost spreads are:

* Four years using 60% cost / 50% time beta distribution.

* HL-20, HL-42 and Crew Transfer Vehicle, and Cargo Carrier Transfer
Venhicle are spread over six years.
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Groundrules & Assumptions - Economic Analyses (cont)

Production costs are spread over three years using 30% /
40% | 30%.

NPV benefits evenly distributed across entire US
government, other customers, and launch contractors.

For government funded investments:

* 10% discount rate for US government NPV calculations to measure
economic worth of investments.

* 10% is composed of 7% OMB real rate plus 3% inflation.

For industry funded investment:

* 25% hurdle rate (BTROE) required for “Wall Street” viability of commercial
programs and to calculate commercial price per flight.

* 149% debt interest rate, 40% debt ratio.

US government incentives applied to any program that
enables phase-out of the Shuttle, including:
* $1B development assistance from NASA.

* US government guaranteed loan (7% rate, 80% debt, and 10% fee scored
on NASA budget).

* |SS servicing advance purchase agreements from NASA.



Groundrules & Assumptions - Economic Analyses (cont)
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Costs of government loan guarantees (i.e., 10%) are book
kept against the NASA budget.

Operations life cycle cost contributions performed using the
KSC Architectural Assessment Tool (AAT - parametric model)
which relies on multiple information sources including:

* The Access-to-Space Study Work Breakdown Structure that identified

Space Shuttle operations cost elements (exclusive of STS Capability
Development and Shuttle Production & Ops Capability).

* The Shuttle Operations Zero Base Cost Study.

* System attributes and priorities as defined in the Guide for the Design of
Highly Reusable Space Transportation Systems and Appendix E of the
HRST Study Integration Task Force Operations report titled An
Operational Assessment of Concepts and Technologies for Highly
Reusable Space Transportation.

Facility cost estimates generated by KSC AAT are discounted
by 50% to reflect:
* Utilization of existing facilities versus new facilities.

* Calibration to recent bottoms-up estimates (e.g., Reusable First Stage)
and known programs (e.g., X-33).

* Other management/engineering efficiencies.

STAS5041.14
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Groundrules & Assumptions—Technical Risk Failure

Technology Readiness Levels (TRLs) are required to be 6 or greater prior to
system development decision:
* Technologies will mature per Code R technology roadmaps.

* Need for accelerating these technologies developments will be documented and
priced.

* Key technology developments beyond Code R roadmaps will be documented and
priced.
Following a successful experimental program:

* An unconditional commitment has been made to continue with a specific
architecture plan.

* No decision points assumed to cancel or transfer to another architecture once
development has begun.

Technology base assumed constant and applicable across all architectural
elements for simplicity; may not provide the optimum solution.

Schedule and cost risk are treated as a functional of the technical risk.

Integration is an exponential function of the weighted average of the critical
technologies across these technology areas.

Risk distribution can be formed by a linear combination of the integration
complexity and development program duration.

All system/vehicle performance requirements were met.

STAS5041.15
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Groundrules & Assumptions - Mission Reliability

Main propulsion systems contribute a majority of the
operational reliability risk.

Premature engine shutdown failures are independent (i.e., no
common cause failure).

On-pad benign shutdown not counted against mission
reliability.
Loss of vehicle risk during an abort not considered.

All crew escape modules (i.e., Crew Transfer Vehicles) will
have a probability of survival of 0.99.

Commercialization of any architecture element has no impact
on mission reliability.

Prior to transitioning to a new human transportation system:

* Fly the new system until JSC Human Rating Requirements are met.
(Example — SAIC VentureStar study recommendation of 18 flights
(minimum) before Shuttle transition begins.)

* Shuttle transition will take 2 years after this point.

STAS5041.16



Constraints
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Total of eleven weeks provided to complete the study
(including three major holidays):

* Precluded detailed vehicle analyses; used currently available data and
estimates.

* Required examining architecture attributes based upon generalized
representative element models. (For example, representative Single-
Stage-to-Orbit vehicle vice all possible variants.)

* Condensed 39 evaluation criteria down to smaller manageable set of
highest priority required attributes.

Team not allowed to participate in contractor architecture
studies, including the mid-term reviews.

Study focused on ISS servicing as primary mission objective.

STAS5041.17



Groundrules & Assumptions - Economic Analyses (cont)
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- To model technical risk cost, authority to proceed (ATP) date
established when all required technologies are estimated to
be at TRL 6 or greater. The 50th and 80th percential delays
were then added to the development program cost resulting
in slipping the initial operational capability (I0C) date
accordingly.
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Groundrules & Assumptions - Catastrophic Failure

Main propulsion systems and TPS contribute a majority of
the catastrophic failure risk for reusable vehicles.

- A catastrophic engine failure will result in immediate loss of
the vehicle.

"~ Vehicle staging increases potential of the TPS damage and
subsequent failure.

Two contributions to crew loss:

* Geometric distance of crew module and source of failure.

* Loss of vehicle probability.
Crew module survivability factor ranges from 0.8 to 0.99
based on a anology of military aircraft escape systems. The
lower range includes out of the envelope aborts (l.e.,
ejections).
The equivalent safe abort envelope for a crew module is at a
geometric distance of greater than or equal to 30 meters.

STAS5041.19



Market Analysis

Demand Curve Assumption

Segment
ISS Servicing

* Marquee Vehicle
Captures all Flights

* 2 Year Transition from
Shuttle

e Linear Transition Rate

1

7| Architecture 3 ‘
T (EELV Full) |

~a
T Architecture 1
N (Shuttle) | /W\

‘ Architecture 5
| ss10)

- |

%

0 SEZANIVAN

® M Architecture 3

pos -

(EELV Partial)
L P P
/; ; N /¢ +
& s

S

ey l\

‘ Architecture 4
(TSTO)

7

Ar e2
‘ (Shuttle/RFS) ‘ i

PFEPPEFEFESPIEISIEFSS

Summary Notes

Two Vehicle Classes: Shuttle
Equivalent and 25K Ibs to ISS

Crew Vehicle Performs
Exploration Functions

Existing Commercial

» Economic Theory of Oligopoly

« Commercial GTO, 2 0:8 y=‘-16.95‘7x5+‘84.787‘x4-17‘1.64x3‘+ used to Determine Market
CommerCiaI LEO’ DOD g 0.6 175.77x% - 91.395x + 19.436 Ca ture
and NASA Scientific g b - .
_ § " . - At market equilibrium, competing
. Competltor§: Curren:t and 2 , ] vehicles share markets (1/N each)
Future ELV's & RLV’s g o - Vehicle gains/loses market as
- Data from COMSTAC, i price is set lower/higher
FAA’ DOD’ NASA’ ISI.R, .1.20.0% 60.0% 70.0% 80.0% 90.0% 100.0% 110.0% 120.0% 130.0% 140.0% 150.0% ¢ MOdeI Driven by VehiCIe
AIAA, EELV Companies RLV PPF Relative to Market Equilibrium Capability and Price Per Flight
Elastic
New ( ative) « Summary Data from CSTS
* New (specuiative) o Plot of Flight Rate Curves
Business Opportun|t|es g %0 ‘Z:( ForStelecteg \:ehizlecClasses . Demand curve derlved from
. £ 100 .
* Marquee Vehicle Captures £ | =« CSTS (but adjusted downward)
Il Fligh e , . .
all Flights : — * Driven by Price and Vehicle

 Enabling Price: < $1000/Ib.

10 15 20 25 30 35 40

Price Per Flight

Capability 5100.bak



Government Funded Cases
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ISS Shuttle Mission Model
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Shuttle Equivalent ISS Traffic Model
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SSTO Flight Rate

Minimum Case
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SSTO Equivalent ISS Traffic Model
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EELV Partial Downmass Flight Rate
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2 | Shuttle with Phase Il Upgrades 0.995 200 2.10E-03 475 0.9929 141
2A | Commercial Shuttle 0.995 200 2.10E-03 475 0.9929 141
3 | Shuttle with RFS 0.995 200 1.26E-03 791 0.9937 160
4A | TSTO RFS w/small upper stage 0.9900 100 1.38E-03 7249 0.9898 99
4B | RFS Based TSTO 0.9944 177 8.95E-04 1118 0.9935 153
5C | Bimese Dual Mode 0.9965 284 8.64E-04 1157 0.9956 228
5D | Bimese Single Mode 0.9953 215 1.62E-03 617 0.9937 159
6 | Optimized TSTO 0.9943 176 9.04E-04 1106 0.9934 152
7 | SSTO (VentureStar) 0.9975 394 7.43E-04 1345 0.9967 305
9 | 0 [EELV - Medium 0.9750 40 2.50E-02 401 0.975 40
10 | O [EELV - Heavy 0.9700 33 3.00E-02 33 0.97 33
11 | 0 [EELV - Heavy+ 0.9692 32 3.08E-02 32 0.969 32
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Safety Results
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Crew Safety Comparison
No. of Missions CEV No. of Missions Improvement
Between LOV Survivability | Between Crew Loss Factor Over
Element Current Shuttle
1. Shuttle with RSRB's 237 N/A 237 -
2. Shuttle with Phase llI 475 N/A 475 2
Upgrades
3. Shuttle with Phase IlI 791 N/A 791 3
& IV RFS
4. RFS Based TSTO 1118 0.8 5589 24
5. Bimise Dual Mode 1157 0.8 5780 24
6. Optimized TSTO 1106 0.8 5530 23
7. SSTO 1345 0.8 6725 28
8. EELV Heavy + 48 0.99 4750 20

STAS5059.ppt
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STAS Arch 1 RevA

Architecture 1 4 Feb 99

Feb 4, 1999 . .
2:21 PM Shuttle to 2020 Limited Upgrades
Activity Name 1999 | 2000 | 2001 @ 2002 | 2003 = 2004 = 2005 2006 = 2007 = 2008 = 2009 2010 | 2011 | 2012 @ 2013 @ 2014 | 2015 2016 @ 2017 2018 @ 2019 @ 2020
Shuttle Commercialization
+ Decision Q
Human Related | L>
Missions Shuttle
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EELV V
ATP
Low Cost \V/ Devlpmt \VJ
Upper Stage l
Magnum Core
ATP \ Devipmt ~»V/ W/RSRB

Magnum Core

Transfer Stage

Atlas V / Delta IV

v %

| Mars
Test Flts L>

\%

1999

2000 | 2001 = 2002 & 2003 | 2004 2005 2006 & 2007 @ 2008

2009 | 2010 2011 2012 | 2013 @ 2014 2015 2016 2017 2018 2019 @ 2020
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Architecture 2

Feb 4. 1 . P 4 Feb 98
b %S Shuttle to 2020 - Significant Upgrades
Activity Name 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 & 2008 | 2009 | 2010 | 2011 & 2012 @ 2013 @ 2014 | 2015 | 2016 | 2017 | 2018 2019 | 2020
ISS Crew / Logistics
Human Related | L~ Sshutle
Missions thuttle Shuttle g <> Commercialization
W/RSRB WIRFS
RFS Decision
O Devipmt v 1SS C / Logisti
Reusable First Stage [ Technology | | rew / Logistics
Test Flts | >
ATP RFS Derived
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ATP VA W/RFS
Magnum Core l Devipmt | Vars
| TestFits __ =" | >
ATP New TSTO
3/ W/RFS
2nd Stage Y Devipmt | ISS Crew / Logistics
TestFits L= _ | >
EELV v
Low Cost Devipmt v
Upper Stage |
Transfer Stage v v
v
Atlas V / Delta IV g S S smp
V =
1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 & 2008 | 2009 | 2010 | 2011 @ 2012 @ 2013 & 2014 | 2015 | 2016 | 2017 | 2018 2019 | 2020




Architecture 3

STAS Arch 3 RevA
Feb 4, 1999 4 Feb 99
2:24 PM Full ISS Downmass
Activity Name 1999 | 2000 | 2001 @ 2002 & 2003 2004 2005 | 2006 2007 | 2008 | 2009 2010 2011 2012 2013 | 2014 2015 | 2016 & 2017 2018 2019 2020
Shuttle
Human Related * Phaseout Begins
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Shuttle
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EELV >/ |_>
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—
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SR =X
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\Y4
Atlas V / Delta IV V. =Y
1999 | 2000 | 2001 2002 & 2003 @ 2004 2005 | 2006 2007 | 2008 | 2009 2010 2011 2012 2013 | 2014 2015 | 2016 & 2017 2018 2019 2020
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Architecture 3

FEeD 4, 1YYy .
2:24 PM Partial ISS Downmass 4 Feb 99
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Shuttle
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[ [
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Atlas V / Delta IV g =
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Architecture 4

Feb 5, 1999
110 PM New Reusable Launch System - TSTO 5 Feb 99
Activity Name 1999 | 2000 = 2001 & 2002 @ 2003 | 2004 | 2005 | 2006 = 2007 & 2008 = 2009 | 2010 | 2011 | 2012 2013 = 2014 | 2015 2016 2017 & 2018 2019 @ 2020

* Shuttle
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S [ L
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I [ |
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\
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Delta IV \% =
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e haay eV Architecture 5 5 Feb 99
1:05 PM New Reusable Launch System - SSTO
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O Devipmt
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SSTO \V4
Low Cost
Vv
Upper Stage
Atlas V / \% 5 N
Delta IV V =N
1999 | 2000 | 2001 & 2002 = 2003 = 2004 = 2005 2006 = 2007 | 2008 = 2009 | 2010 | 2011 | 2012 | 2013 @ 2014 @ 2015 2016 2017 @ 2018 | 2019 | 2020




Architecture Economics Summary

All figures in $B99 except as noted Arch #1 Shuttle | Arch #2 RFS Arch #3 EELV PD| Arch#4 TSTO | Arch#5 SSTO
2020 2030 2020 2030 2020 2030 2020 2030 2020 2030
Industry Incentive Case ($1B + loan)
LCC Undiscounted 46.1 65.9 48.9 69.3 - - 51.0 70.2 49.2 66.8
Col LCC Discounted at 10% 24.0 27.3 259 29.3 - - 26.9 30.2 26.3 29.3
PYF (FY) / Dollars/lb. To LEO, Avg 3.2 (2003) $3,400 |3.9 (2003) $3,350 - - 3.5(2005) $1,400 |3.5(2005) $670
ISS PPF / rate $287M 7 $281 7 - - $209M 7 $100M 12
Com’l PPF / rate $93M 4 $90M 5 - - $58M 16 $34M 50
Emerging PPF / rate $86M* 0 $91M* 0 - - $42M 10 $27M 32
LCC Undisc. with Exploration 54.4 81.6 57.8 85.6 - - 59.3 84.5 59.9 86.1
LCC Disc. at 10% with Explor. 271 31.7 29.2 33.9 - - 30.2 34.4 30.4 34.8
Industry Case without Incentives
LCC Undiscounted 52.2 76.6 57.5 84.1 - - 64.3 95.1 66.3 101.6
LCC Discounted at 10% 26.1 30.2 28.9 334 - - 315 36.8 31.7 37.7
PYF (FY) / Price/lb. To LEO, Avg 2.9 (2003) $4,100 |3.4(2003) $4,300 - - 4.2 (2010) $3,800 [4.5(2010) $980
Industry Case @ USG 10% IRR No Capitalization** |$1B Cap. (as above) $3B Capitalization |$0.5B Capitalization
LCC Undiscounted 48.1 69.8 49.1 69.5 - - 49.1 65.0 49.8 68.3
LCC Discounted at 10% 24.4 28.1 259 294 - - 26.8 29.5 26.3 29.5
PYF (FY) / Price/lb. To LEO, Avg 2.9 (2003) $3,700 |3.9(2003) $3,350 - - 3.9 (2005) $1,200 |3.4(2005) $685
Government Funded Case
LCC Undiscounted 49.4 71.5 52.5 73.3 59.3 81.8 54.6 67.8 52.5 63.2
Go LCC Discounted at 10% 25.5 29.3 28.5 32.0 31.8 35.7 30.7 32.9 30.2 321
PYF (FY)/ Cost/lb. To LEO, Avg 3.4 4.5 4.5 $3,040 5.4 5.3
LCC Undisc. with Exploration 55.5 82.0 58.2 83.0 71.7 102.9 60.8 78.3 62.0 81.0
LCC Disc. at 10% with Explor. 27.9 324 30.8 35.0 36.7 42.0 33.2 36.2 33.8 37.0
PYF with Exploration 3.4 4.5 4.6 5.8 5.7
Exploration Change in LCC
Commercial 8.3 15.7 8.9 16.3 - - 8.3 14.3 10.7 19.3
Commercial Exploration Delta 31 4.4 3.3 4.6 - - 3.3 4.2 4.1 5.5
Government-Funded 6.1 10.5 5.7 9.7 12.4 211 6.2 10.5 9.5 17.8
Government Exploration Delta 24 3.1 2.3 3.0 4.9 6.3 2.5 3.3 3.6 4.9
*Baseline case does not elicit emerging market response; values set in excursions 5105.bak

**IRR slightly higher than 10% with no capitalization; significantly lower without USG-guaranteed loan
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Undiscounted Architecture Summary,
2001-2010
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—&— Reference Cost
—l— $2.4B Budget
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Additional Sensitivities on SSTO

(Architecture 5, Commercial)

e On Industry Returns

— Incentives
— Price Per Flight
— Equilibrium Price and Upper Stage Price/Weight

e On USG Returns
— Incentives
— Price Per Fight
— Industry Hurdle Rate
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Sengitivity of NASA Life Cycle Cost to

Price Per Flight
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