
i

NASA/CR-2013-218111

Version 1.0

October 2013

Context-Based Software Risk Model (CSRM)
Application Guide

Prepared by:

ASCA Inc., Redondo Beach, CA

Prepared for:

Office of Safety and Mission Assurance

NASA Headquarters

Contract No. GS-23F-0049R NNH11CD84D

i

NASA/CR-2013-218111
Version 1.0

CONTEXT-BASED SOFTWARE RISK MODEL

(CSRM) APPLICATION GUIDE

Prepared by:

ASCA Inc., Redondo Beach, CA

Prepared for:

Office of Safety and Mission Assurance

NASA Headquarters

Contract No. GS-23F-0049R NNH11CD84D

National Aeronautics and Space Administration

NASA Headquarters

Washington, D.C. 20546

October 2013

 ii

This page intentionally left blank.

 iii

NASA STI Program … in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space

science. The NASA scientific and technical

information (STI) program plays a key part in

helping NASA maintain this important role.

The NASA STI program operates under the

auspices of the Agency Chief Information

Officer. It collects, organizes, provides for

archiving, and disseminates NASA’s STI.

The NASA STI program provides access to

the NASA Aeronautics and Space Database

and its public interface, the NASA Technical

Report Server, thus providing one of the

largest collections of aeronautical and space

science STI in the world. Results are

published in both non-NASA channels and by

NASA in the NASA STI Report Series,

which includes the following report types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results of

NASA Programs and include extensive data

or theoretical analysis. Includes compilations

of significant scientific and technical data and

information deemed to be of continuing

reference value. NASA counterpart of peer-

reviewed formal professional papers but has

less stringent limitations on manuscript length

and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary or

of specialized interest, e.g., quick release

reports, working papers, and bibliographies

that contain minimal annotation. Does not

contain extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical

conferences, symposia, seminars, or other

meetings sponsored or co-sponsored

by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, projects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to

NASA’s mission.

Specialized services also include creating

custom thesauri, building customized

databases, and organizing and publishing

research results.

For more information about the NASA STI

program, see the following:

Access the NASA STI program home page

at http://www.sti.nasa.gov

E-mail your question via the Internet to

help@sti.nasa.gov

Fax your question to the NASA STI Help

Desk at 443-757-5803

Phone the NASA STI Help Desk at

443-757-5802

Write to:

NASA STI Help Desk

NASA Center for Aerospace Information

7115 Standard Drive

Hanover, MD 21076-1320

 iv

This page intentionally left blank.

 v

ACKNOWLEDGMENTS

The project manager and the authors express their gratitude to present and past NASA Office of
Safety and Mission Assurance (OSMA) management for their support in developing the CSRM
framework and this document. A special thanks goes to all the colleagues that have assisted us
throughout the years in the development work: Ms. Karen Fisher, Safety and Mission Assurance
Manager, Commercial Crew Programs and formerly Software Assurance Manager, Constellation
Program, for her support and the opportunity provided to develop and apply many of the CSRM
features in actual production projects; to Mr. Roger Boyer and his team (Messrs. Kenneth Chen,
Henk Roelant, Michael Stewart and Dr. Richard Heydorn) at the NASA Johnson Space Center,
and to Dr. Allen Nikora at the Jet Propulsion Laboratory, for their technical input and their
assistance in locating and making available system documentation and data relevant to the
development of this framework. We also thank Ms. Martha Wetherholt, NASA Fellow for
Software Assurance, for keeping us appraised of related software assurance developments
within the Agency and for providing comments that have helped improving the quality of this
Guide.

NASA PROJECT MANAGER

Dr. Homayoon Dezfuli NASA Headquarters

CONTRACTOR PROJECT MANAGER

Dr. Sergio Guarro ASCA Inc.

AUTHORS

Dr. Sergio Guarro ASCA Inc.

Dr. Michael Yau ASCA Inc.

Mr. Scott Dixon ASCA Inc.

 vi

This page intentionally left blank.

Context-Based Software Risk Model (CSRM) Application Guide

vii

Table of Contents

1 Introduction and Guide Outline .. 1

2 CSRM Overview .. 5

2.1 Basic Concepts and Definitions ... 5

2.1.1 Software Risk .. 5

2.1.2 Software Defects and Software Failures ... 5

2.1.3 Software Reliability Terminology .. 8

2.2 Space System Software Failure Lessons Learned ... 9

2.3 CSRM Concept and Analytical Formulation .. 13

2.3.1 Software Risk Expression in Traditional Reliability Models .. 13

2.3.2 CSRM Logic-Analytical Framework ... 14

2.4 Principal Objectives and Characteristics of CSRM Application ... 16

2.4.1 Software Function and Response Mode Identification Objectives 16

2.4.2 Condition and System Design Coverage ... 16

2.4.3 Explicit Representation of Routine Software Functionality .. 17

2.4.4 Time Dependency of Software Failure Probability ... 18

2.4.5 Models for Identification of Individual Risk Contributors... 19

2.5 CSRM Application Process .. 20

2.5.1 Specification-Level CSRM .. 21

2.5.2 Design-Level CSRM .. 21

3 Specification-Level CSRM Application ... 23

3.1 Step 1: Identification of Mission-Critical Software Functions .. 23

3.2 Step 2: Mapping of Software Functions to PRA Logic Model Events 26

3.2.1 Case 1: Software Functions Modeled in Existing PRA ... 26

3.2.2 Case 2: Software Functions Not Modeled in Existing PRA .. 28

3.3 Step 3: Expansion of CSRM Entry-Point Events via Dedicated Logic Models 29

3.3.1 Logic Model Development for “Simple” Pivotal Events .. 30

3.3.2 Logic Model Development for “Complex” Pivotal Events .. 31

 viii

3.4 Step 4: Identification of Basic Event Cut-sets for CSRM Entry-Point Events 34

3.5 Step 5: Probabilistic Quantification of SW Contribution to Mission Risk 35

4 Design-Level CSRM Application ... 39

4.1 Step 1: Identification of Mission-Critical Software Functions .. 40

4.2 Step 2: Mapping of Software Functions to PRA Logic Model Events 40

4.3 Step 3: Expansion of CSRM Entry-Point Events via Dedicated Logic Models 41

4.4 Step 4: Identification of Basic Event Cut-sets for CSRM Entry-Point Events 43

4.5 Step 5: Probabilistic Quantification of SW Contribution to Mission Risk 44

5 Modeling and Quantification of Software Failure Modes 49

5.1 CSRM Modeling Detail and Representation of Software Failure Modes 49

5.2 Software Risk Quantification .. 52

5.2.1 Basic Types of Software Reliability Data ... 53

5.2.2 Parameter Estimation with SR Data .. 54

5.2.3 Parameter Estimation with SP Data and Parametric Models ... 60

5.2.4 Parameter Estimation with SD Data and SW Reliability Growth Models (SRGMs) 61

5.2.5 Parameter Estimation with SO Data ... 63

5.2.6 Parameter Estimation with RT Data ... 63

5.2.7 Parameter Uncertainty Estimation ... 64

5.2.8 Use of Multiple Data Sources in Parameter Estimation ... 65

5.2.9 Quantification of Specific Software Failure Modes .. 66

6 Summary .. 69

7 References .. 71

 ix

List of Figures

Figure 2-1: Software Defects by Development Phase .. 6

Figure 3-1: Mission Timeline Information for PA-1 System [10] .. 24

Figure 3-2: PA-1 Mission Event-Tree for Identification of Key Software Functions 25

Figure 3-3: CSRM Entry-Point Events Identified in PA-1 PRA Event-Tree Model.. 27

Figure 3-4: CSRM Entry-Point Events Identified in PA-1 PRA Fault-Tree Model ... 27

Figure 3-5: Entry Point for SW Analysis in the CxP Level 2 PRA for ISS ... 28

Figure 3-6: Entry Point for GN&C SW Failure in the CxP Level 2 PRA for ISS .. 29

Figure 3-7: Fault Tree Model for the Canard Deployment Software Function ... 30

Figure 3-8: DFM Model for the PA-1 Attitude Control Function .. 33

Figure 4-1: Mini AER Cam Spacecraft and Thruster Arrangement ... 39

Figure 4-2: Mini AER Cam Mission Event Tree Showing Critical Software Functions 40

Figure 4-3: Top Level DFM Model of the Mini AER Cam System .. 41

Figure 4-4: Lower-Level DFM Model of the GN&C Sub-System ... 42

Figure 4-5: Lower-Level DFM Model of the Propulsion Sub-System .. 42

Figure 4-6: The 3 Phases of a Yaw Correction ... 47

Figure 5-1: DFM Model for Illustration of SW Failure-Mode Representations .. 51

List of Tables

Table 2-1: Causes of Major NASA Mission Failures*, 1998-2007. .. 10

Table 3-1: System Actuations and Maneuvers in PA-1 Mission [11] .. 25

Table 3-2: Software Failure Modes Represented in the DFM Model ... 33

Table 3-3: DFM-Produced Cut-Sets for Failure of PA-1 GN&C Function... 34

Table 5-1: Software Failures in Launch Vehicles in the Past 20 Years .. 57

Table 5-2: Software Failures and Anomalies in Launch Vehicle Database ... 57

Table 5-3: LV Flight-Software Failure Probability by Functional Mode .. 58

 x

Table 5-4: LV Flight-Software Failure Probability by Functional Mode Excluding 1st Flights 58

Table 5-5: Ratios of ISAs in Five Software Sub-function Failure Categories ... 60

 xi

Acronyms and Abbreviations

ACM Attitude Control Motor

ADL Abort Decision Logic

CCMT Cell-to-Cell Mapping Technique

CSRM Context-based Software Risk Model

CxP Constellation Program

DFM Dynamic Flowgraph Methodology

ESA European Space Agency

ESD Event Sequence Diagram

ET Event Tree

FT Fault Tree

FTA Flight Test Article

GN&C Guidance, Navigation and Control

GPS Global Positioning System

ISA Incident Surprise Anomaly

ISS International Space Station

JPL Jet Propulsion Laboratory

LAS Launch Abort System

LOC Loss of Crew

LOM Loss of Mission

MC Mission Condition

MGS Mars Global Surveyor

Mini AER Cam Miniature Autonomous Extravehicular Robotic Camera

MVL Multi-Valued Logic

 xii

PA-1 Pad Abort-1

PDF Probability Density Function

PRA Probabilistic Risk Assessment

PSA Probabilistic Safety Assessment

RT Risk-informed Test

SD System-specific Debugging

SO System-specific Operational

SP Surrogate Parametric

SR Surrogate Raw

SRGM Software Reliability Growth Model

SRM Solid Rocket Motor

SRMA Software Risk Modeling and Assessment

SW Software

TAYF Test As You Fly

V&V Verification and Validation

VMC Vehicle Management Computer

VSIL Virtual System Integration Laboratory

Context-Based Software Risk Model (CSRM) Application Guide

xiii

Preface

Software risk is defined as follows in NASA-SP-2011-3421 Probabilistic Risk Assessment

Procedures Guide for NASA Managers and Practitioners [1]:

“Software risk is the possibility of events by which the software used within a system may fail to

successfully execute its mission-critical or safety-critical system functions, under the conditions

that are to be covered according to the concept of operation of the system designed to carry out

the mission, and under the design envelope that is derived from, and consistent with, that

concept of operation.”

The approach to risk modeling and assessment covered in this Guide is strictly related to the

above definition, rather than to other interpretations of software risk to which a reader may

have been exposed in different contexts. Indeed, diverse, and sometimes even partially

conflicting, concepts of software failure, reliability, and risk may be found within different areas

of the space system technical community, depending on the background and type of technical

function of the individuals using the terms. One such interpretation, common especially among

software engineers and programmers, is that software risk relates primarily to the development

of software code from a given set of specifications, so that software coded consistently with its

detailed specifications, and certified to be such by traditional "V&V" (validation and verification

processes), can be generally accepted as being reliable and low-risk. Another common view is

that software can be globally viewed as a system segment that, although deterministically

designed and assembled from a set of logic and algorithmic building blocks, eventually ends up

behaving randomly in terms of manifestation of its "bugs" and failures, and that a good portion

of this random or pseudo-random behavior originates from hard-to-predict interactions

between those deterministic constructs and the computer memory and platforms that provide

the material hosting devices for their execution. These interpretations have reasonable

foundation and validity, especially for certain kinds of software functionality. However their

validity is not absolute and, in light of the factual experience of software-related mission

failures that have occurred in space systems, appear not to be fully adequate to address the

special risk characteristics of the high-criticality software applications that are the primary

concern in the processes discussed in [1] and in this Guide.

Elements of software risk, under certain conditions, have escaped the vigil attention of

reliability and safety analysts and emerged in difficult to scrutinize areas where very low

probability, very high consequence scenarios may hide their potential for occurrence, which is

typical in technological systems that are recognized to be "risky," regardless of whether they

are primarily hardware or software driven. In fact, by their very nature, very low probability

events and scenarios potentially affecting these systems often fall outside the direct witnessing

 xiv

experience of those charged with the task of failure-proofing and safety-assuring them, and are

therefore difficult to foresee and prevent with suitable countermeasures. The probabilistic

safety / risk assessment (PSA/PRA) process was originally developed explicitly with the intent to

identify such hard to anticipate scenarios and prioritize their "containment" according to a set

of logically organized, rational criteria. However, in the early years of PSA/PRA development

software was a poorly understood entity in the reliability and safety assessment community,

and therefore was routinely left out of any PSA/PRA analysis. In large part the CSRM process

discussed in this Guide is nothing more than the long overdue extension of standard PSA/PRA

logic and probabilistic analysis to the software components of a system. However, we would be

naïve if we did not recognize that what appears to a PSA/PRA insider to be a natural extension

of such logic and probabilistic analysis techniques may look foreign to others, thus some

upfront clarification is due, and addressed in particular to those who deal with software on the

frontlines of development, testing and assurance activities.

A standard PSA/PRA system modeling analytical process identifies system critical functions at

the top level and proceeds to identify within these functions the logic arrangement of lower

level subsystems, modules and components that accomplish them. This process should be

applied regardless of whether the system functionality of interest is implemented in hardware,

software, or a combination thereof; in fact this important characteristic of a PSA/PRA analysis

can provide an effective tool for the integration of system reliability and safety assurance

information across the system hardware and software domain boundaries. Tools of this nature

are strongly needed because, despite guidelines and recommendations to the contrary by

procuring entities like NASA, it is still common, at the implementation level of contracting

suppliers, for the software segments of a system to be subject to assurance processes that are

applied separately, and that differ substantially in form and output from those used for the

hardware subsystems and components. This practice continues under the claim that it is

difficult, and some even say not useful, to differentiate software components by functionality

and design characteristics, and model them accordingly in risk terms, just as PSA/PRA does by

standard practice for the hardware elements of a system.

The above mentioned conceptual resistance to directly extending to software the basic

principles of PSA/PRA modeling is evident in the fact that to-date the vast majority of PSA/PRA

analyses in both the two most common application areas of space or nuclear systems do not

include software in either qualitative (logic model) or quantitative (risk contribution) form. Even

more worrisome is that such a resistance has also sometimes resulted in a combination of

misunderstanding and criticism of developments, like CSRM, that attempt to bridge the

manifest gap in software risk assessment capabilities. It is therefore important to address and

respond to the portions of criticism that appear to be the product of misunderstanding, while

 xv

taking heed of those that are constructive and need to be addressed in upcoming refinements

and/or in actual executions of the CSRM guidance.

CSRM has primarily two objectives, the practical achievement of which has been pursued

during its development and demonstrated to the extend made possible by the nature and

constraints of the applications executed to date:

1. Define an organized modeling procedure to permit, from the start of PSA/PRA
execution, or in "retrofit mode" for existing PSA/PRA system model frameworks, the
explicit inclusion in logic-format representations consistent with standard PSA/PRA
practices of the software elements of a system, and of their interactions with the system
hardware from which they receive input or that they control.

2. Define a risk-prioritized and logically organized test-space partitioning process to guide
the functional testing of critical system hardware and software interacting modules,
with the goal of reducing software-related risk to quantifiable pre-established levels, if
this possible, or to the minimum level made possible by practical test and V&V
constraints.

It should be apparent from the above that the stated objectives drive the system functional

decomposition approach that CSRM seeks to encourage in the execution of software risk

assessment. It should also be apparent that this functionally oriented view of a system seeks to

avoid the use of separate paths and distinctions in the way the various composing system

elements are to be analyzed with regard to their contribution to reliability performance and

risk. In contrast with this, some of the critical remarks addressed in the past at CSRM derive

from relatively narrow definitions, or implicit interpretations when definitions are not used, of

what constitutes a software failure. For example, some of the software-related space mission

failures addressed in CSRM publications preceding this guide have been considered by some

critics as not attributable to software, but to "human errors" and/or "design errors." One can

set aside the general counter-observation that all software errors could in fact be considered a

sub-category of human errors, since software is, directly or indirectly via various design and

coding aids, designed and coded by human agents. However, a part of the above objections

should be of true concern to those who use PSA/PRA as a tool for improving and safety-assuring

system designs. More specifically, this objection calls out as not being true "software failures"

those failures which are caused by software as a result of faulty logic or other design flaws

injected in it during the system design process. As documented both in this Guide and in earlier

publications referenced in it, such are just the type of software related failures responsible for

more than half of the critical losses suffered by NASA in high value missions during a period

spanning approximately from the mid 1990's through the mid 2000's, and a sizeable share of

similarly costly failure that have occurred in the same period in DoD space missions. Therefore

 xvi

it would appear to be ill advised to separate out these failures and declare them out-of-scope

for a methodology like PSA/PRA, which on the contrary has as its primary goals

comprehensiveness and bridge-building across discipline boundaries.

In summary, we invite the reader to keep an open mind and not let the reading and

interpretation of this Guide be influenced by his/her opinion concerning the validity of existing

and already established software "V&V" practices. The latter are undoubtedly very successful

and effective in addressing a large majority of software assurance issues, and in recognition of

this the Guide addresses how their output and results should be taken into account and

incorporated into a PSA/PRA and CSRM framework. On the other hand, as we hope will be

evident from the guidance and examples included in the Guide, the CSRM process has been

devised as a needed extension of PSA/PRA techniques, to close an existing gap made apparent

by the nature of specific types of actual mission failures which, although few in number, have

been quite catastrophic and costly in their outcomes. As stated earlier in this preface, the

software assurance methodology documented by the Guide has as its primary objective the

closing of that gap and the extension of the standard PSA/PRA concept of systematic logic and

probabilistic analysis to the critical system software design area of application, which has until

recently been left outside of the scope of the majority of PSA/PRA executions.

Homayoon Dezfuli, Ph.D.

NASA System Safety Technical Fellow

NASA Headquarters

Sergio Guarro, Ph.D.

President and Chief Scientist

ASCA Inc.

October 2013

 1

1 Introduction and Guide Outline

This Guide provides self-contained documentation and application guidance for the Context-

based Software Risk Model (CSRM) framework and process of software risk modeling and

assessment (SRMA). The term SRMA is used here to refer to methodology designed to address

the identification and, where possible, quantification of software-related risk scenarios that

may affect the performance of a generic system. CSRM is a specific type of SRMA introduced

and recommended as being applicable to space systems in the “Probabilistic Risk Assessment

Procedures Guide for NASA Managers and Practitioners, Second Edition” [1].

The CSRM framework has been specifically formulated to model and address the risk resulting

from potentially mission-impairing software (SW) faults and failures that may affect the critical

functions of complex engineered systems, and of space systems more specifically. In particular,

the formulation of CSRM takes into account, besides the analytical information gathered in

standard applications of software hazard analyses and qualitative risk assessments, the factual

evidence and lessons-learned from the recorded history of mission-critical software-related

events and failures that have been identified and recognized in past space missions.

This guide is oriented towards providing a blueprint for:

a) the execution of CSRM analyses that permit the inclusion of software-related risk

scenarios and associated quantitative contributions into the framework of a space

mission Probabilistic Risk Assessment (PRA);

b) the prioritization of software test processes on a risk-informed basis, i.e., giving priority

to the testing and validation of software processes and specific functions that have a

higher risk footprint.

In pursuit of the above objectives, the guide expands upon CSRM analyses conducted in NASA

program and projects [2, 3, 4, 5], also capturing and documenting insights concerning software

risk assessment that have been produced by the most recent applications and developments.

The NASA Probabilistic Risk Assessment (PRA) Procedures Guide [1] classifies the manner in

which software failures are initiated as “unconditional” or “conditional,” which is useful both in

terms of risk scenario modeling and in terms of the associated reliability and risk quantification

processes. In this classification, an “unconditional” software failure is one that spontaneously

occurs during the execution of a software function under nominal overall-system conditions,

i.e. conditions that correspond to the planned-for mission profile. A “conditional” software

failure, conversely, is defined as one which: a) follows a balance-of-system off-nominal

initiating condition that requires a specific response and/or corrective control action by a

software-implemented function; and b) occurs within the latter and can thus be thought of as

 2

being triggered by the system off-nominal condition. In an actual mission, the initiating

condition referred to here may be a single special event (such a non-mission-ending anomaly or

failure), or a combination or sequence of such events. What is important is not the number of

events grouped into the initiating condition, but the conceptual distinction between failures

that occur unconditionally, i.e., without a preceding trigger event in a different part of the

system and in a part of the software that is intended to be functionally active during one or

more of the normal phases of a mission, and those that occur conditionally, i.e., in a part of the

software that is usually dormant during normal mission phases and is called to action only

when a trigger-event (or combination of events), external to that functional portion of the

software, occurs. The concept of associating software failures with the external inputs that

determine software responses is not in itself a novel one and has been generally reflected in

most of the software reliability definitions found in the literature. Even the generalization of the

concept into the definition of software contexts, i.e., types of risk scenarios that can be used to

organize how software responses and failures may be viewed and categorized, can be dated

back to research work published at the end of the 1990's [6]. However, the application of this

concept to SRMA has been until recently mostly limited to research and demonstration

projects. The CSRM formulation of safety modeling and risk assessment process for software-

intensive systems is thus one of the first, if not the first, practical development based on these

concepts which has been demonstrated to be scalable and well suited for production-type

space systems and missions,.

The CSRM modeling approach focuses on the representation and assessment of software risk in

relation to the specific functions that software modules carry out within a given space system

and mission. It uses proven PRA techniques for systematic identification and analysis of key

operational mission scenarios, providing the basis for developing software risk models and

associated software test strategies. This in turn permits the estimations of software levels of

assurance in quantitative terms and in relation to the mission-critical and safety-critical

functions of the system of concern.

An overview of the CSRM concept, including a summary discussion of the practical and

analytical rationales upon which the CSRM formulations have been developed, is provided in

Section 2. Similar information is also provided in Chapter 9 of [1], but it is presented here to

make this Guide as self-contained as possible. It is appropriate to point out here that, among

these arguments, two key observations derived from the historical space mission records have

provided the strongest motivation for the development of CSRM and for the applications that

have followed. The first observation is that, although the overall trend seems to have improved

in the last few years, software has been a major contributor to highly visible space mission

failures in the last two decades. More specifically, about half of the losses suffered by NASA in

high visibility missions carried out in that time span have been traced to software faults as a

 3

root-cause or as a critically contributing factor. The second, equally important, observation is

that the majority of such mission-ending software failures were design or specification related.

That is, the software behaved according to its design, but the design rationale was

inappropriate for a particular off-nominal or contingent mission condition that had been

encountered, and which had not been anticipated or had not been sufficiently well understood

by the system and software designers.

Taken together, the above observations suggest the usefulness of risk-analytical process

formulations that are oriented towards the identification of software related failures in the

context of mission critical functions. They also indicate that in order to be truly effective these

processes should include the validation and verification of software behavior under off-nominal

mission conditions that, although unlikely, may occur during a mission. Because the set of the

theoretically possible off-nominal mission conditions is in principle open-ended, this also

suggests that a practical, yet well founded, selection process needs to be applied. An effective

way of implementing such a process is on the basis of risk-informed criteria that enable both

identification and prioritization of off-nominal scenarios for analysis. These objectives and

principles are reflected in the CSRM concept and formulations. The interested reader can find

in [1] a more complete discussion and elaboration of this subject.

From a practical point of view CSRM can be applied at different levels of detail, to match the

system and software design information that is available at a particular stage of program and

system development. In practical terms, it may be convenient to reduce this to the definition

of two basic stages and forms of CSRM application, which in the following are referred to as

Specification-Level CSRM and Design-Level CSRM.

A Specification-Level CSRM analysis is applied in the early system design phase, when actual

software code does not yet exist. Accordingly it may typically make use of top-level system

specification and design information and generic data to provide initial insight and preliminary

definition of the risks that the software functions contribute to the overall system risk. In this

context, generic data, also referred to often as surrogate data, represents software reliability

and risk data gathered from other systems similar to the system of interest, and used in the

early-stage CSRM analyses, as a proxy for system and mission-specific data, when the latter is

not yet available. An application example of a Specification-Level CSRM execution is provided

in Section 3.

As the system definition and development progresses, system and mission-specific information

and data becomes available, and more resolution is desired and sought in an associated PRA.

Accordingly, a Design-Level CSRM analysis can be applied. This type of analysis can produce, in

addition to more detailed qualitative and quantitative risk scenario information, risk-informed

guidance for the execution of software V&V and testing, with the objective of reducing the risk

 4

of software failure or anomalies for a set of user-prioritized scenarios of interest. To this end, it

calls for coordination and cooperation between the PRA team and the software development

and test team. In this mode of execution, CSRM analysis results are provided by the PRA team

to the software development team to “risk inform” the software test and design refinement

activity. The goal is to perform software design validation and verification-testing that targets

specific scenarios identified via the SRMA/CSRM analysis, expanding the level of effort on the

associated V&V and testing in a manner consistent with the level of risk initially identified and

associated with the conditions triggering those scenarios. The V&V and test results are then

used to re-assess and quantify the risk scenarios of initial concern, with the ultimate goal of

keeping the projected software risk contribution within acceptable bounds. An application

example of a CSRM Design-Level process is contained in Section 4.

In both the Specification-Level CSRM analysis and the Design-Level CSRM analysis, a range of

software reliability and risk quantification techniques consistent with the available data can be

applied. For clarity of presentation and explanation, a survey and discussion of the software

reliability and risk quantification techniques generally available as possible options to the

analyst is provided in Section 5.

In concluding this introduction it is appropriate to make clear that the objective of this Guide is
to facilitate the application of CSRM to the class of problems for which it was primarily
formulated, i.e., the software reliability and risk issues associated with the use of autonomous
or semi-autonomous software controls in mission and safety critical space system applications.
NASA-STD-8739.8 [7] establishes an overall framework for the software assurance process to be
applied within the system life cycle processes, regardless of who performs them, and for
enabling and supporting the cooperation of various groups who are conducting different
aspects of the total software assurance process itself. CSRM provides a practical means of
interfacing and coordinating activities that may otherwise be carried out separately within
some of the individual software assurance disciplines identified in [7], such as Software Safety,
Software Reliability, and Software V&V. Application of CSRM to software system contexts
beyond those mentioned above can also be useful, although the derived benefit is likely to be
contingent upon the degree of user critical scrutiny, interpretation and adaptation of the
related concepts and processes. Users seeking criteria for the tailoring of CSRM procedures
and formulations to applications contexts beyond the boundaries of those specifically
addressed by this Guide are referred to the general software assurance tailoring guidance
provided in [7].

5

2 CSRM Overview

2.1 Basic Concepts and Definitions

As a premise to the discussion of the CSRM framework and processes it is useful to provide

some basic definitions and introductions of related concepts and terminology.

2.1.1 Software Risk

“Software risk is the possibility of events by which the software used within a system

may fail to successfully execute its mission-critical or safety-critical system functions, under

the conditions that are to be covered according to the concept of operation of the system

designed to carry out the mission, and under the design envelope that is derived from, and

consistent with, that concept of operation.”

The above definition is intentionally given in purely qualitative terms, to make a distinction

between the definition itself and the parameters by which software risk may be quantified. The

choices for selection of these parameters may vary according to the type of mission considered,

but in general will include the probability of the events referred to in the above definition,

complemented, for those situations where the events involved may have mission impacts of

different kinds and magnitude, by a set of parameters that can provide an appropriate appraisal

of such impacts and their severity if the events of concern do come true.

The definition also excludes from the realm of interest those software related events that do

not affect mission-critical or safety-critical functions, i.e., events that have a peripheral impact

on the mission. These may of course still be of interest from an overall system reliability

viewpoint and accordingly addressed via appropriate analytical and assessment means.

It is finally noted that in the above definition the concept of “covering mission conditions” does

not refer to an exhaustive coverage, in a combinatorial sense, of all the possible values of

software input data and interacting system parameter states, but to the identification and

recognition of all the key dynamic interactions and interfaces between the key mission-critical

system states and conditions, and the desired software functional responses to these.

2.1.2 Software Defects and Software Failures

A schematic representation and classification key for how defects or faults may be introduced

in flight software during its development and production process is shown in Figure 2-1. The

figure identifies the following principal phases of system and software development:

 Requirements Development & Analysis

 Software (SW) Module Design Specification Development

 6

 SW Module Coding, Initial Verification & Validation (V&V) and Testing

 Mission Data Entry, Final V&V and Testing

System &
Operations

Concept

SW Module
Functional

Requirements

Detailed
SW Module

Design
Specifications

Functionally
Validated

SW Module

Operational
SW Module

Requirements
Development

& Analysis

SW Module
Design

Specification
Development

SW Module
Coding,

Initial V&V and
Testing

Mission
Parameter Entry,

Final V&V
and Testing

System Design and Software Specification Defects

Translation & Coding Defects Parameter & Data Entry Defects

Legend: Software development activity

Software related product

Figure 2-1: Software Defects by Development Phase

The above phases of development proceed from the initial definition of a System and Operation

Concept and incrementally generate software products, i.e.:

 Software module requirements, i.e., definition of software functions, as a Phase A

product

 Detailed software module specifications, i.e., definition of specific software features and

interfaces, as a Phase B product

 Functionally validated software modules, i.e., functional but not mission-ready flight

software, as a Phase C product

 Operational software modules, i.e., flight-ready software, as a Phase D and final product

The Fig.2-1 representation is conceptual, as actual software developments may follow a

contextual variation of the process it depicts; however, it serves the purpose of identifying the

typical software development steps during which defects or faults may be introduced into a

software module, and of illustrating that these defect may accordingly take one of three basic

forms, depending on the development phase during which they are produced:

Type 1 – Design and specification defects, i.e., defects introduced during the definition of

functional and/or detailed specifications of a software module (Phase A and Phase B in the

above representation of the software development process).

 7

Type 2 – Requirement translation and software coding defects, i.e., defects introduced during

the translation of software specifications into actual software code (Phase C of software

development process).

Type 3 – Parameter and data entry defects, i.e., defects introduced during the “uploading” of

mission specific parameters into a flight software module.

With respect to the above the following observations are noteworthy:

 All three types of software defects are typically the product of “human errors” in

corresponding software development activities.

 There is a formal distinction between the definitions of software defects and software faults

on one hand, and software anomalies and software failures (jointly also generically referred

to as “software errors”) on the other. The former are deviations from desired form and

characteristics of the software specifications or code. The latter are the manifestation and

effects of such deviations at execution time, that is, when the software containing the

defect is executed in test or during the actual system mission.

 Software defects or faults that are present in a software module may or may not actually

result in a software anomaly or failure during system test or operation. Whether this occurs

or not depends on whether the defective portion of software is called upon and executed.

If not called upon during the test process, a defect will remain dormant and undetected. If

not called upon during system operation, a defect will remain dormant and inconsequential

to the associated mission.

 The reader should be aware of the possible different meanings of the term “error,” as used

in various contexts in the software engineering and software assurance literature. In

general, the action by which a defect is introduced in software is routinely called an “error.”

However, the execution of a software defect during system test or operation is also

routinely called an “error.” In the first case the term refers to the human error committed

in design, specification, coding, data entry, etc., whereas in the latter case the term refers

to the software error occurring at execution time as a delayed effect of the former error.

 In cause-and-effect reasoning terms, the chain of events leading to a software failure

typically develops as follows:

1. The software designer or programmer commits an error (a “human error”)

2. A software defect is introduced as a result of the above

3. The software portion containing the defect is called upon and executed at mission

time, which produces an anomaly or failure (a “software error”).

 8

2.1.3 Software Reliability Terminology

The following definitions are provided to facilitate the interpretation of terminology commonly

encountered in the software reliability and software risk literature, including this Guide. The

definitions are listed in a top-down logical/hierarchical, rather than alphabetical order:

Software Reliability:

The probability of failure-free software operation for a specified period of time in a specified

environment.

Software Defect:

A specific feature or characteristic of a software component, by which such component may

deviate or differ from its design specifications.

Software Fault:

A software defect serious enough that, if executed during actual system operation, it will result

in a system functional anomaly or failure.

Software Error:

The actual operational execution of a software defect.

Software Anomaly:

The actual operational execution of a software fault that causes a system functional anomaly.

Software Failure:

The actual operational execution of a software fault that causes a system functional failure.

Condition Coverage:

The ability of a modeling or test process to address the key mission operational scenarios,

including risk scenarios that are, or should be included in the design basis of a mission.

Fault Tolerance:

The capability built into a system to identify and isolate hardware and/or software faults,

preventing them from producing system-level anomalies or failures.

Software Testing:

An organized and formal process of pre-operational software execution carried out for the

purpose of identifying and correcting software defects and faults.

Software Test Fault Coverage:

The degree by which a given type of test process is capable of exercising software functionality

and identifying any associated potential faults.

 9

Software Test Fault Coverage Percent Metric:

A quantitative expression in percentage terms of the fraction of software faults that a given test

process or procedure is capable of identifying, usually estimated by intentionally injecting faults

in some fashion across the functional range of a given software component 1.

Software Operational Fault Coverage:

The degree by which a given software architecture and design is capable of identifying,

isolating, and recovering from, functional failures occurring, during the operational phases of a

mission, in the software system and/or supporting computer and network hardware.

Software Operational Fault Coverage Percent Metric:

A quantitative expression, in probability or “measured” percentage terms, of the fraction of

functional failures, among those which may occur in the software system and supporting

computer and network hardware during the operational phases of a mission, that a given

software architecture and design is capable of identifying, isolating, and recovering from.

2.2 Space System Software Failure Lessons Learned

As mentioned in the introductory section, while the basic concepts and analytical processes of

the CSRM framework can be generalized and adapted to most types of software applications,

its primary purpose has been and remains that of providing a well structured and effective

means of modeling and assessing risk scenarios for space system control software used to

executed mission critical and safety critical system functions.

A strong motivation for the development of CSRM, with the specific application objectives just

stated above, came directly from the occurrence, in a time span from the mid 1990’s to 2007,

of a series of highly visible software related mission failures in space systems fielded by both

Government agencies and the commercial space industry. More specifically in relation to

NASA, Table 2-1 shows a compilation of major mission failures suffered by NASA in the period

between 1998 and 2006. From the table one can see that four out of a total of seven mission

failures, i.e., more than half, were caused by a software fault, or had a software fault as a

critically concurrent cause. The description of the causes of failure reported in the table strictly

reflects the conclusions documented in the official failure investigation reports relative to the

1
 Note: A quantitative measure of test fault coverage may depend to a non-negligible extent on the very way by

which faults are injected and also on the nature of the faults that are injected. For example if a certain type of

software functionality is not explicitly recognized and no associated fault is injected, the “measured” fault

coverage will not reflect the perceptivity of the test process with regard to that specific type of software

functionality. Also, a certain type of injected fault may be more easily detectable by a certain type of test

process than another type of fault, although both may be equally severe in mission impact terms.

 10

listed events. In a slightly broader time period, from 1995 to 2007, the U.S. Department of

Defense, and major launch vehicle developers in Europe and the United States, suffered four

additional mission failures directly or indirectly attributable to software faults, bringing the

total to eight failures caused by software in major space missions. It should be noted that this

overall software failure record is limited to known software failures in high visibility missions

and does not include any software failures or anomalies that may have occurred in the same

time period in lesser missions, or missions by other nations in the international arena (e.g.,

China, Japan, etc.). Thus the role of software as a failure agent is not over-emphasized by this

data, and may actually even be under-represented in a broader context.

Table 2-1: Causes of Major NASA Mission Failures*, 1998-2007.

*Software related failures highlighted in color

1998 Lewis Spacecraft ACS and safe hold design

1999 Mars Climate Orbiter Spacecraft Software / data specification error

1999 Mars Polar Lander Spacecraft Landing control logic / software design error

2003 STS Columbia Wing damage from detaching tank foam

2004 Genesis Spacecraft Improperly installed gravity switches

2005 DART Spacecraft GN&C software design errors / test oversights

2006 Mars Global Surveyor Spacecraft Data uplink operator error / power management software design error

Two noteworthy pieces of evidence emerge from the data reported in Table 2-1 and from the

associated failure analysis reports:

A. Software had a critical role in a large share (~ 60% in quantitative terms) of the failures

suffered by NASA in high-stakes missions during the 1998 – 2007 decade.

B. All these software related failures were rooted in software design faults, i.e., the software

did exactly what it was designed to do, but this was not the correct action to be executed

under the specific mission conditions encountered.

The first piece of evidence dispels that notion that software can be assumed to have a

negligible impact on the reliability of space systems, and that therefore the assessment of

software risk can be considered unnecessary and not worth including within the scope of a

system reliability and mission risk assessment activity.

The second piece of evidence suggests that traditional Software V&V, i.e. the software

assurance practice processes applied to demonstrate software compliance with specifications,

 11

Mars Global Surveyor Failure Investigation Report Summary

NASA’s Mars Global Surveyor operated for ten years, longer than any other spacecraft sent to Mars. It

pioneered the use of aerobraking, provided global mapping of the Martian surface, atmosphere, magnetic

field and interior, and provided key imaging and communications support for subsequent missions. NASA

extended its mission four times before its unfortunate loss. Key events pertaining to the loss of the spacecraft,

whose last contact was on November 2, 2006, include:

• A modification to a spacecraft parameter, intended to update the High Gain Antenna’s (HGA) pointing

direction used for contingency operations, was mistakenly written to the incorrect spacecraft memory

address in June 2006. The incorrect memory load resulted in the following unintended actions:

– Disabled the solar array positioning limits.

– Corrupted the HGA’s pointing direction used during contingency operations.

– A command sent to MGS on November 2, 2006 caused the solar array to attempt to exceed its

hardware constraint, which led the onboard fault protection system to place the spacecraft in a

somewhat unusual contingency orientation.

– The spacecraft contingency orientation with respect to the sun caused one of the batteries to

overheat.

– The spacecraft’s power management software misinterpreted the battery over temperature as a

battery overcharge and terminated its charge current.

– The spacecraft could not sufficiently recharge the remaining battery to support the electrical loads on

a continuing basis.

– Spacecraft signals and all functions were determined to be lost within five to six orbits (ten-twelve

hours) preventing further attempts to correct the situation.

– Due to loss of power, the spacecraft is assumed to be lost and all recovery operations ceased on

January 28, 2007.

while being generally effective in identifying and correcting software coding and data-entry

faults and preventing associated failures, may not always have been as successful with regard

to design and specification errors. This may be due to the fact that V&V is usually directed at

verifying software compliance with specifications, and that in some projects the validation of

the design and specifications themselves, and more specifically the part of this concerning the

overall system design logic determining how the software is to interact with the balance-of-

system, may sometimes fall in between organizationally defined areas of design responsibility

and not always be given as much recognition and attention as arguably should.

The key details of the Mars Global Surveyor (MGS) spacecraft failure, which are provided in the

failure and root-cause summary reproduced in the insert below verbatim from the MGS failure

investigation report2 [8], offer an example of the above.

2
 It is noted that the MGS failure occurred after about seven years of successful operation of the spacecraft in its

orbit around Mars, i.e., well beyond the two year design life nominally intended for the mission

 12

From a software reliability and risk perspective the MGS failure sequence can be summarized in

the following key points:

– A trigger event constituted by an operator error caused some spacecraft control

parameters to be corrupted and the spacecraft to eventually enter a “contingency

orientation” that exposed one of the batteries to sun radiation heating.

– The spacecraft power management software, having been designed to interpret battery

overheating as due to over-charging, shut down the charging of the overheating battery

(action highlighted in blue font in the incident summary box above), which eventually

caused the spacecraft to completely lose power.

In essence, while other faulty conditions contributed to the MGS failure, the power

management system design logic was a crucial factor in the spacecraft loss, by its failure to

account for external heating as a possible cause of increasing battery temperature. This MGS

mission example is actually representative of a pattern that has also been observed in other

software failure events recorded in recent years. The pattern presents itself as a scenario by

which:

A. A mission event occurs, creating a particular operational condition for a system or

mission;

B. A software controlled function, having not been properly designed and or tested for the

mission condition that has developed, responds in an incorrect or inadequate fashion,

which in turn causes an un-recoverable mission failure.

The trigger event referred to in A is sometimes a hardware anomaly or even an operator error

as in the MGS case, but may also be a normal, although unanticipated, element of an

operational mission sequence. Such was the case for the Mars Polar Lander failure, where,

according to the reconstruction of the failure investigation, the vibrations from the deployment

of the landing gear were interpreted by the landing control software as a positive indication

that the gear had touched ground, causing the software to command a premature shutdown of

the retrorockets when the spacecraft was still at altitude over the Martian surface.

In summary, the review of the space mission software failure history provides us with some key

insights for setting up and carrying out software risk assessment activities, as summarized

below:

– Traditional methods of software V&V and testing appear to have been reasonably

effective in preventing “random” coding errors, or data entry errors at coding time.

– The same methods have not always been as effective in uncovering design errors, as

shown by the majority of software related mission failures that have occurred in the 1995

to 2007 time period, whereby critical faults appear to have been introduced in design

 13

factors concerning the functional interfaces between key system functions and their

control software.

– A significant fraction of software design failures have occurred during the operation of a

mission under off-nominal conditions resulting from an anomaly, or under conditions

that, although nominal for the mission, had not been fully anticipated or understood by

the system designers.

2.3 CSRM Concept and Analytical Formulation

In order to satisfactorily cover, in conceptual terms as a minimum, the type of design and

“trigger-event” related risk scenarios that the software failure record shows to have played a

major role in actual software-related mission failures, the CSRM framework seeks to address

the issue of system and software “condition coverage”. “Condition coverage” is an extension of

the concept of “fault coverage” which has been widely used in the formulation of software

assurance and reliability assessment approaches. While a detailed discussion of the concept of

“condition coverage” that clarifies what is intended by the term can be found later in Section

2.4.2 and in the example provided in Section 4, the reader can directly link the concept to the

need, recognized as a result of the software failure lessons learned discussed in Section 2.2, to

explicitly model and represent risk scenarios that may emerge in a mission as the result of

“system conditions” and associated “software conditions”, that may or may not explicitly

recognized and addressed in the system and mission design.

2.3.1 Software Risk Expression in Traditional Reliability Models

Before discussing the CSRM formulations for software risk, it is also useful to briefly discuss

how software reliability formulations have been in the past used to model software risk.

Such kinds of formulations have been typically based on an unconditional reliability model, by

which software is assumed to have a failure rate s in the time dimension, exactly like any

system hardware component. In this paradigm, the software failure rate may be estimated by

use of one of a variety of parametric or test-based techniques (see discussion in Sections 5.2.3

and 5.2.4). However, once this was done, one single overall unconditional probability of failure

would be typically calculated for the entire flight software of a spacecraft, according to the

standard reliability/unreliability formulations:

[2.1]

[2.2]

 14

In the above equations t is the mission time, s is the software failure rate in time, Rs is the

software reliability, and POFs is the software unreliability or probability of failure, which also

represents the “software risk” for a mission time t.

The validity of the above formulation of software risk hinges in practice on two key

assumptions:

A. The failure of software is driven by mission time, and can be represented by means of a

failure rate in time.

B. The failure behavior of a given piece of software is well represented by one average

value of the failure rate, which can be estimated by testing the software across its

normal “operational profile,” i.e., the range of normal inputs to the software during its

nominal operation.

The above assumptions are often reasonably valid in certain types of large scale software

applications where a “software failure” is merely an interruption of service with

undifferentiated consequences. This type of random software failure behavior in time lends

itself to a failure-rate model, and has been reported in the literature as characteristic of certain

specific types of software failures (see for example [9]). However, neither of the above

assumptions applies well to space system flight software executing well differentiated and

identified mission-critical, and/or safety-critical functions, whose failure also often produces

well differentiated immediate effects. Indeed, as discussed in [1] and in Section 2.2, the actual

recorded history and experience relative to space missions shows that, in relation to such

mission-critical and safety-critical functions, space system software risk is not primarily driven

by semi-random types of failures, but by failures deterministically rooted in, and traceable to,

software design and specification faults. Moreover, because of their roots being in an overall

system and mission design error, these failures are by their own nature unanticipated and

therefore usually impossible to recover from.

2.3.2 CSRM Logic-Analytical Framework

To address the insidious kind of software failures that have actually occurred in the relatively

recent past, the CSRM framework suggests and provides a systematic analytical approach that

traverses the entire system design and considers software failures in the context of the widest

possible range of potential system risk scenarios,

The CSRM model of software failure uses a logic and probabilistic formulation that can

represent both “unconditional” and “conditional” software failures, as well as “recoverable”

and “critical” ones. In the CSRM top-level representation of software risk, a generic software

 15

action can be represented as the “logic intersection” of two principal composing events, as

expressed below:

{System Enters Condition “i”} AND {SW Responds Correctly} => {Successful Software Behavior}

[2.3]

so that the corresponding risk scenario is also represented as the logic intersection of two

composing events3:

{System Enters Condition “i”} AND {SW Responds Incorrectly} => {Software Failure}

[2.4]

With the notation:

FSW = software failure event

MCi = i-th type of mission condition entered by the system

RSWi = risk scenario induced by software in relation to i-th type of mission condition (MCi)

RSW = overall mission risk induced by software,

the risk scenario in expression [2.4] can be formulated in logic symbolic terms as:

[2.5]

and the overall software induced risk is accordingly expressed as:

[2.6]

The probabilistic formulations corresponding to expressions [2.5] and [2.6] are, respectively:

[2.7]

3 The term “event” is to be interpreted in a flexible way in the context of this discussion. Either of the two events to which the

discussion refers can actually be a combination of more events or conditions. The distinction that matters between the two

types of events is between the scenario-initiating “system condition” that requires a certain type of “software response,” and

the software response itself.

 16

and

[2.8]

where the terms appearing in the equations are defined as follows:

P(FSW│MCi) = conditional probability of software failure, given mission condition of type i

P(MCi) = probability that the i-th type of mission condition is entered by the system

PSWi = unconditional probability of mission condition type-i occurrence

accompanied by a software failure

PSW = overall probability of software-induced mission failure.

2.4 Principal Objectives and Characteristics of CSRM Application

The CSRM risk model and associated formulations are easily adapted to cover the range of

software risk scenarios of potential interest, including the effect that software test processes

may have in reducing risk. The following general considerations are relevant in this respect.

2.4.1 Software Function and Response Mode Identification Objectives

A key objective of the application of the CSRM conceptual formulation of software risk is to

“partition” in a systematic and organized fashion the functional space of the software being

investigated, so that its specific differentiated functions and “response modes,” i.e., the

intended set of control and/or safety actions that it is designed to carry out in response to a

defined set of system conditions, can be clearly identified at the very onset of the risk

assessment process. The pursuit of this objective is consistent with standard PRA practices, as

the identification of risk for any given system component requires as a first step the

identification and understanding by the analysts of what that component is designed to do

within the overall functionality of the system to which it belongs.

2.4.2 Condition and System Design Coverage

It was mentioned earlier that the CSRM formulation is conceptually based on the idea of

“condition coverage.” This is directly related to the objective of software function and

response mode identification discussed above. In the execution of software modeling and

analysis, the “condition coverage” modeling approach mirrors the orderly software design

process by which the system operational conditions that determine the need for differentiated

software function and response requirements are identified as the first step of the design

process that ultimately leads to detailed software requirements and specifications. Thus the

 17

systematic identification of system conditions and of the corresponding software functionality

may be viewed as a “design verification and validation” (Design V&V) contribution of the

software PRA process as implemented via CSRM.

2.4.3 Explicit Representation of Routine Software Functionality

A possible misinterpretation of the CSRM formulation is that it may force a “conditional

scenario” model for software risk onto situations where what is of interest is the possibility of

software anomalies or failures that occur under normal system conditions, i.e., which may be

viewed as occurring without any preceding trigger condition while the software is performing a

routine function. This is not an issue, however, since the conceptual model expressed by

Equations [2.5] through [2.8] also includes routine software functionality as a subcategory of a

risk scenario, permitting its modeling and inclusion in an overall risk assessment by appropriate

means. Such means may include formulations based on failure rate models, if pseudo-random

models of software failure, as mentioned earlier in Section 2.3, are believed to be well suited to

represent the behavior of certain “routine” portions of the software functionality.

In mathematical terms, the risk contribution of a software “routine function” can be expressed,

in logic and probabilistic versions respectively, via the equations:

[2.9]

and

[2.10]

where the notation retains the same meaning as in Equations [2.5] through [2.8], but the

subscript “r” is now used to indicate that the associated entities refer to a “routine” type of

mission condition.

The implication of referring to routine conditions is that in any given mission the probability of

occurrence of such conditions is 1, i.e.:

[2.11]

so that

 18

[2.12]

Thus, in practical terms, the portion of the software risk contribution that is modeled as being

produced by routine software functionality is no longer conditional, in a probabilistic sense, on

any preceding trigger-events, and is to be assessed accordingly, e.g., via models that consider

the possibility of anomalies or errors during the cyclical execution of routine software

functions.

One type of conditioning that may continue to exist in the execution of routine software

functions is that associated with the different phases of a nominal space mission. As an

example, different subroutines or modules of the Guidance, Navigation and Control (GN&C)

flight software subsystem of a planetary spacecraft might hypothetically be activated in

association with various types of orbital maneuvers in the vicinity of a target planet. This

obviously would translate in the identification of more than one “routine condition” of software

functionality, each with its own risk contribution per Equations [2.9] and [2.12], and an

associated definition of the timeframe to which the risk contribution applies.

2.4.4 Time Dependency of Software Failure Probability

Some observations are useful with respect to the way time affects the formulation and

quantification of CSRM software risk scenarios. From the discussion in Sections 2.3 and 2.4.3, it

follows that, in the most general cases, the CSRM probabilistic formulation for software risk

may be conceptually re-written as:

[2.13]

The above formulation reflects the separation of the software risk contributions into two

groups, one reflecting the existence of M routine regimes of functionality, and one reflecting

the existence of N trigger conditions requiring non-routine software response and functionality.

For any particular mission, the number of routine vs. non-routine conditions may vary. The

number of routine conditions is typically defined and limited by design, whereas the number of

potential off-nominal conditions that the system may enter is, in theory, open-ended. In

practice, however, the system designer and the system safety engineers will have to make a

deliberate decision with regard to the identification of a closed set of off-nominal conditions

and events to be included in the system design basis, and for which, if they do arise in the

course of a mission, the software will be called upon to functionally respond in some specified

manner.

Once the sets of conditions, routine and off-nominal, which constitute the two groups in

Equation [2.13] have been identified, the risk analysts have to decide what type of probabilistic

 19

model applies to each of them. In general, the routine function portion of the risk model may

be addressed with the more or less traditional approach of pseudo-random software failure

rate modeling, such as, for example, embodied in the group of probabilistic quantification

models known under the label of “Software Reliability Growth Models” (SRGMs).

In a typical SRGM, the time dependence of the probabilistic formulation is usually included in a

“failure rate” parameter estimation, which then translates into probability quantifications for

any specified period of time of interest (see also Section 5.2.4).

The situation is usually different with regard to the off-nominal portion of the risk

contributions. In the terms that appear in the rightmost portion of Equation [2.13] , i.e., in each

of the terms that are best individually expressed in the form represented by Equation [2.7], the

time dependence of the probabilistic scenario is normally contained in the term P(MCi) that

represents the probability of occurrence of the i-th off-nominal trigger-condition during the

span of a given mission. On the other hand the remaining part of the contribution, i.e., the

conditional probability of an incorrect software response to the condition MCi, i.e., the term

P(FSW│MCi), is usually in its dominant part time-independent, because it reflects whether the

software logic and algorithms are by design suited to respond correctly to the time-dependent

chance condition MCi, or not. In this respect, barring any kind of exotic self-modifying software,

and considering individual mission phases during which no software design upgrade is loaded

into executable memory, the probability of the software design correctness does not change as

mission time elapses. Thus the terms P(FSW│MCi) are usually to be addressed as time-invariant

conditional probabilities, i.e., as a conceptual equivalent of a hardware component conditional

probability of successful start of operation “on demand.”

2.4.5 Models for Identification of Individual Risk Contributors

The formulations provided by Equations [2.6], [2.8], and [2.13] are very useful as a conceptual

aid and foundation for effective investigation and analysis of software risk. In practical terms

any such process will need to employ appropriate analytical means for the identification and

quantification of the individual factors that appear in the equations, i.e., the systems conditions

MCi for which software is called upon to respond, and the probability values P(MCi) and

P(FSW│MCi).

In a PRA context, the identification of the software risk terms of interest can be accomplished

by seeking the identification of “cut-sets” that contain the SW related elements of interest. In

general, given a PRA framework that is inclusive of software models, three types of cut-sets can

be identified with regard to the identification of the terms of interest in Equations [2.6], [2.8],

and [2.13], namely:

 20

A. Cut-sets that are not software related and thus do not identify any software risk

contribution.

B. Cut sets that identify a spontaneous software failure event occurring under “routine

system conditions,” i.e., corresponding to the risk contributions P(FSW│MCr) in Equation

[2.13].

C. Cut sets that identify a software failure event triggered by the occurrence of a system

“trigger event,” i.e., a contingency, anomaly, or hardware failure condition MCi that has

occurred, and thus corresponding to the risk contributions P(FSW│MCi) in Equation

[2.13].

Once software-related “events” have been identified and included in the PRA framework of

models, they will need to be quantified probabilistically if a full quantification of the PRA

models is desired, as is the case in a standard PRA process. The CSRM application process

within a typical PRA framework, the choice of techniques for detailed analysis of software-

related events, and important considerations for the probabilistic quantification of such events

are discussed in Section 2.5, with examples in the following Sections 3 and 4.

2.5 CSRM Application Process

The general formulation of the CSRM essentially states that the software contributions to

overall mission risk may be conceptually classified into two basic categories, i.e., those

originated by the unconditional failure of some routine software function, and those triggered

by the occurrence of an off-nominal “trigger condition” to which the software is not able to

respond correctly. As discussed earlier, the distinction between the two basic types of risk is

important because earlier models of software failure did not properly address the conditional

category, whereas the space mission data shows that in general this category accounts for a

majority of recent failure events where software was a key contributor.

In practical terms a CSRM application needs to be carried out as part of an overall PRA/ Safety

Assessment (PSA (probabilistic risk assessment / probabilistic safety assessment) process.

Generally speaking, CSRM can be applied at different levels of detail, to match the system and

software design information that is available at a particular stage of program and system

development. In practical terms it is convenient to reduce this to the definition of two basic

stages and forms of CSRM application, which in the following are referred to as “Specification-

Level CSRM” and “Design-Level CSRM”. In either case of application, the general steps of

execution can be summarized as follows:

1. Identify the mission-critical software functions.

2. Map the critical software functions to corresponding PRA model events.

 21

3. Develop a set of associated logic models.

4. Identify, from the above models, the software-related cut sets for system and mission

failure events.

5. Estimate the probability contribution from the software-related cut-sets to the system

and mission failure events of interest. [This may include, at the top-level, the

contribution to key risk metrics such as Loss of Mission (LOM) or Loss of Crew (LOC).]

The differences between the “Specification-Level CSRM” and the “Design-Level CSRM” are at a

more detailed level of model development and quantification, reflecting the greater amount of

information available once the design of the software functions has reached a stage of firm

definition, and, even more importantly the ability to transfer information from the software risk

assessment into the software testing activities and vice versa.

2.5.1 Specification-Level CSRM

A Specification-Level CSRM analysis is applied in the early system design phase, and may

typically make use of top-level system specification/design information and generic data to

provide initial insight and preliminary definition of the risks that the software functions

contribute to the overall system risk. In this context “generic data” means that software

reliability and risk data gathered from other systems which are similar to the system of concern

may be typically used in the CSRM analyses. The generic data is used as a surrogate for

software test and operational data specific to that system, which are usually not yet available in

the early system design stages.

The development of the Specification-Level CSRM models to be integrated with an existing

PRA/PSA framework and set of system models will normally make use of information developed

and documented for the relevant systems as part of the PRA/PSA activities, supplemented with

information on software related functionality and software design characteristics, as available

in system design documentation. A discussion and illustration of a Specification-Level CSRM

execution is provided in Section 3.

2.5.2 Design-Level CSRM

As the system definition and development progresses, more resolution is desired in a PRA.

Accordingly, a Design-Level CSRM analysis is executed at such a matured development phase,

when more software design information and data are available.

A Design-Level CSRM application builds on the insights gained from a Specification-Level CSRM

analysis. When more detailed system and software design information becomes available, this

information is used in the design-level analysis to validate, augment, and refine the CSRM

 22

models. The updated models decompose software risk into scenarios that include not only

nominal mission operations, but also off-nominal conditions within the system design and

mission planning envelope. This type of analysis can produce, in addition to more detailed

qualitative and quantitative risk scenario information, risk-informed guidance for the execution

of software testing, oriented towards reducing the risk of software failure or anomalies for

specific scenarios of interest. To this end, it calls for coordination and cooperation between the

PRA team and the software development team. In this mode of execution, CSRM analysis

results are provided by the PRA team to the software development team to “risk-inform” the

software testing activity. The goal is to perform testing that targets specific scenarios identified

via the CSRM analysis, expanding the level of effort on testing consistent with the level of risk

initially identified and associated with the conditions triggering those scenarios. The results of

testing are then used to re-assess and quantify the risk scenarios of initial concern, with the

ultimate goal of keeping the projected software risk contribution within acceptable bounds.

Risk-informed testing should be carried out based on the risk-priority of the scenarios identified

in the updated PRA and CSRM analyses, and the risk-informed test results may validate the

software design or even lead to software modifications and corrections if any faults are

identified. When the test process has driven the software to an acceptable level of risk and

reliability, all the information produced can be integrated back into the PRA and used for final

quantification of the specific scenarios of concern.

The illustration of a CSRM Design-Level process is provided in Section 4.

23

3 Specification-Level CSRM Application

A Specification-Level CSRM analysis can be carried out at an early design phase to identify

potential software risk contributors. The inputs required include general system and software

design information, and, for quantification of risk, generic software failure and/or anomaly data

from similar systems or projects. The example used here to illustrate its application pertains to

the “Pad Abort – 1” (PA-1) test mission, which was analyzed as part of the Constellation

Program (CxP) activities [4], following an earlier assessment executed by NASA according to a

conventional PRA process that contained only “placeholder,” undeveloped software-related

events. The ensuing PA-1 CSRM analysis was carried out at the “specification level” because

only minimal information about the actual software design was available to the analysts at the

time of execution.

The CSRM process has been designed for application within the framework of a traditional PRA,

i.e., a set of Boolean event-tree / fault-tree models that are being or have already been

developed for the non-software portions of a space system. In this context, and consistently

with the introduction given in Section 2.5, the CSRM application steps may be carried out as

follows:

3.1 Step 1: Identification of Mission-Critical Software Functions

In this step the analyst identifies and tags the mission-critical software functions in the PRA

framework, using a reference mission event tree as a logic-model aid and, if necessary,

complementary sub-event-tree and fault-tree structures linked to the former. The level of

detail represented in these logic models is to be consistent with the level of available

information that describes the software functions and their modes of execution. The objective

of this analytical step is the identification, along the mission timeline, of all critical software

functions at a consistent first-level of detail and in one documented set of models, without

necessarily proceeding to duplicate the level of modeling detail of any pre-existing set of PRA

models derived to analyze hardware and human operator functions. If no system-specific

software information is available at the time the CSRM development is initiated, the mission

event tree representation should by default include the software functions that are typically

executed in a NASA mission of similar nature. In order to cover the full spectrum of risk

scenarios, it is important that the identification of critical software functions include all

contingency and safe-mode operation that are anticipated within the mission and system

design envelope.

Figure 3-1 shows a pictorial representation of the test mission, which consisted of an un-crewed

test launch of the Launch Abort System (LAS) of the Orion spacecraft. Table 3-1 shows the basic

actions and maneuvers carried out in the mission sequence. This early design information was

24

obtained from the Launch Abort System Engineering Databook [10] and the Flight Software

Design Databook [11].

Figure 3-2 shows a Mission Event Tree that identifies the primary software functions directly

associated with the successful execution of the key sequential mission maneuvers and actions.

This simple analytical step provides the initial reference frame for the more detailed analytical

steps that follow. In Figure 3-2, key software functions, such as control coast execution and

canard deployment, are represented as pivotal events in the event tree.

As discussed in greater detail in Section 3.3, the critical software function pivotal events

identified in a mission event tree such as the one shown in Figure 3-2 can be further analyzed

by using appropriate PRA logic models. The type of logic model used is dependent upon the

complexity as well as the dynamic nature of that particular function. For relatively simple

actuation and deployment functions, such as the deployment of canards, jettison of the LAS

and deployment of the parachutes in the PA-1 mission, the cut-sets can be self-evident or can

be obtained by developing the pivotal event with a fault tree. On the other hand, for more

complex and dynamic functions implemented in control loops, such as the attitude control

function carried out in the control coast, reorientation and oscillation damping phases of the

PA-1 mission, advanced tools such as the Dynamic Flowgraph Methodology (DFM) can be used

(see further discussion in Section 3.3).

Figure 3-1: Mission Timeline Information for PA-1 System [10]

T0

T1

T2

T3 Q

T4

T5

25

Table 3-1: System Actuations and Maneuvers in PA-1 Mission [11]

Figure 3-2: PA-1 Mission Event-Tree for Identification of Key Software Functions

CHUTE

Parachutes
Deployed

JETT

LAS Jettison

OSCILL

Oscillation
Controlled

REORIENT

Reorientation
Successful

CANARDS

Canards Deployed

CTRL-COAST

Controlled Coast
Successful

MOTORS-IGN

ACM & Abort
Motors Ignition

END-STATE-NAMES

1 SUCCESS

2 FAILURE

3 FAILURE

4 FAILURE

5 FAILURE

6 FAILURE

7 FAILURE

PA-1 - PA-1 Event Tree 2009/01/15 Page 1

Discretes
Actuation

SW function

HW / Manual
function per
PA-1 design

GN&C
SW function

26

3.2 Step 2: Mapping of Software Functions to PRA Logic Model Events

This step follows the mission-critical software functions identification step. In this step, it is

assumed that a set of PRA models has been developed prior to the CSRM process application,

i.e., essentially without inclusion of SW models, or with SW events only introduced as top-level

“placeholders.” In this pre-existing PRA framework a systematic mapping is then created

between the software functions identified and categorized in the preceding CSRM application

step and appropriate “CSRM entry-point events” directly related to the execution of such

functions. These events:

1) either already exist and are identifiable in the pre-existing PRA models (e.g., because

they are associated with a system function that also has critical non-software

components, or because they were introduced in the initial PRA models as top-level

“SW-event placeholders”);

2) or they did not originally appear in such models structures, and may now be

appropriately inserted.

Figure 3-3 and Figure 3-4 show examples of entry points identified, respectively, in a detailed

sub-event tree and in a fault-tree model structure of the initially developed PA-1 Mission PRA.

These entry points are also the places in which the CSRM results are integrated back into the

original PRA models.

3.2.1 Case 1: Software Functions Modeled in Existing PRA

In some cases, software function failures are included in the existing PRA as basic events, and

not expanded further. These software function failure basic events are the entry points in

which the failures themselves can be further analyzed with CSRM models.

For example, in the PA-1 application, the range safety event tree and fault tree PRA models [12]

were reviewed and compared with the CSRM event tree shown in Figure 3-2. Two of the entry

points identified in this fashion for CSRM analysis/quantification correspond to the vehicle

departing controlled flight in Phase 2 (branch point highlighted in red in the Figure 3-3 event

tree) as a result of Guidance, Navigation and Control (GN&C) Software failure in Phase 1 and

Phase 2 (basic events highlighted in the Figure 3-4 fault tree). These entry points in the existing

PRA can thus be mapped to the control coast software function and the reorientation software

function carried out by the GN&C software identified in the software function mission event

tree (Figure 3-2).

27

Figure 3-3: CSRM Entry-Point Events Identified in PA-1 PRA Event-Tree Model

Figure 3-4: CSRM Entry-Point Events Identified in PA-1 PRA Fault-Tree Model

Failure of GN&C

SW function

causes the

vehicle to lose

control

Inadvertent

separation of LAS

by SW leads to

errant LAS

Inadvertent

separation of LAS

by SW leads to

errant LAS

Inadvertent

activation of FBC

or chute leads to

errant LAS

Inadvertent

activation of FBC

or chute by SW

leads to errant

LAS

 Substitute these

SW basic events

with detailed

analysis of GN&C

function

Substitute these

SW “placeholder

events” with

detailed analysis

of GN&C function

28

3.2.2 Case 2: Software Functions Not Modeled in Existing PRA

In some cases, software function failures are not included in the existing PRA. The original PRA

hardware-related event needs to be replaced by a “system event” that subsumes the original

hardware event but “logically adds” to it a software-related event for which further software

analyses by CSRM can be carried out.

For example, in the ascent phase analysis of the Constellation Program Level 2 PRA for the

International Space Station (ISS) mission [13], GN&C software failure was not included. A

logical place to add this CSRM entry point is under the First Stage Trajectory Failure pivotal

event in the Ascent LOM event tree (Figure 3-5), within the fault tree shown in Figure 3-6. Due

to the sensitive nature of the information, the Figure 3-5 event tree and the Figure 3-6 fault

tree events are identified only via generic labels. The ISS PRA equivalents of these figures can

be found in Ref. [13].

Figure 3-5: Entry Point for SW Analysis in the CxP Level 2 PRA for ISS

AI_LAS_JET

LAS Jettison

Failure

AI_SM_SHRO

SM Shroud Release

Fails

AI_2ND_STG

2nd Stage

Thrust Failure

AI_USE_STA

Upper Stage

Engine Start

Failure

AI_1ST_STG

1st Stage

Separation and

Coast Fails

AI_1ST_STA

First Stage

Trajectory Fails

AI_1ST_STA

First Stage

Thrust Fails

AI_IGNITIO

First Stage Ignition

and Liftoff Fails

AI_LAUNCH

Ignition Command

Issued @ T-0

First Stage Case Burst

Loss of TVC and/or GN&C

Nozzle Failure

Structural Failure

Low System Performance

Forward Dome Failure

Upper Stage Start Contained Failure

Upper Stage Start Uncontained Failure

USE Premature Shutdown

US Structural Failure

Sep setpoint, LSC, BDMs

Success

Success

Success

Success

Ignition or Liftoff Failure

First Stage RCS Failure

FDDR false positive

FDDR false positive

Pogo induced Orion failure

 LOM_ASCENT - LOM on Nominal Ascent 2009/07/02 Page 8

IE PE1 PE2 PE3 PE4 PE5 PE6 PE7 PE8

Failure 1

Failure 7

Failure 6

Failure 5

Failure 4

Failure 3

Failure 2

Failure 8

GN&C Failure

Failure 9

Failure 10

Failure 11

Failure 12

Failure 13

Failure 14

29

Figure 3-6: Entry Point for GN&C SW Failure in the CxP Level 2 PRA for ISS

3.3 Step 3: Expansion of CSRM Entry-Point Events via Dedicated Logic Models

Following the identification of critical software functions and their mapping into the pre-

existing PRA, appropriate logic models are developed to analyze the critical software “entry-

point events.” The level of modeling detail and sophistication employed for this objective may

vary greatly, depending on the nature of the event and associated software function(s):

 At one end of the spectrum are events that may be treated as PRA “basic events” and

therefore can be directly assessed and probabilistically quantified. Actuation trigger-

events controlled by software, i.e., conditional events of the type “if measured variable

V exceeds value x, then issue command to actuate hardware device D,” often fall into

this category. In the PA-1 mission tree example (Figure 3-2), the LAS jettison pivotal

event pivotal event can be decomposed into a single-event software cut set, the

software failure to command the LAS to jettison.

 At the other end of the spectrum are events determined by the outcome of complex,

time dependent software functions. The modeling of these events may require the use

of special techniques. For example, use of the Dynamic Flowgraph Methodology (DFM)

technique [14, 15] is recommended for the representation and analysis of the dynamic

interaction between system and control-software variables and parameters at a level of

detail and fidelity appropriate for the identification of the important system failure

modes (i.e., the combinations of basic events and conditions that may result in an

overall system function failure).

 In the middle of the spectrum are events that are driven by more than elementary

software trigger-logic, but which are amenable to satisfactory representation and

5.470E-6

AI-A-V-000-SY ADFR-FFF

1.231E-5

AI-A-V -000-SYP LFR-FFF

10-FS-GN C

1359

AI_A_F_000_LOSSGNC A I_A _U_GNC_FSGNCFLR

1.000E-12

A I-A-U-GN C-CMFGN C-LO O

3.423E-6

AI-A-U-000-SYITFG-FFF

4.102E-6

AI-A -V -000-SYLSFG-FFF

1.231E-5

AI-A-V-000-SY PLFG-FFF

Loss of FS GN&C

US GNC interface

to FS GNC fa ilure

(TBD)

FS GNC fa ilure
VI e stimate s

for prope llant

le aks in interstage

damage FS RoCS

system

VI estima tes

for propellant

leaks in interstage

damage FS GN C

cmds

VI e stimate

for lightning

– FS loss of

GN &C

V I e stimate

for a scent debris

– FS loss of

RoCS

US GNC interface

to FS GNC fa ilure

(TBD zeroed)

US integra tion

est allocation

for FS loss of

GN &C

 08-FS-CONTROL - Loss of control during FS 2009/06/08 Page 596

Add an entry

point for GN&C

SW failure

under this

transfer/OR gate

BE4BE1 BE2

BE3

BE5 BE6GN&C Failure G1

Loss of GN&C

Function

30

analysis by means of standard Boolean PRA techniques, such as binary fault-tree models

and analyses.

3.3.1 Logic Model Development for “Simple” Pivotal Events

Pivotal events corresponding to simple software functions can be analyzed with static logic

models such as fault trees [16]. The fault trees expand these software functions logically until

the basic event level is reached. The combinations of basic events form the cut sets for the

fault trees. For the PA-1 mission event tree example (Figure 3-2), the pivotal events

corresponding to the following software command actions can be analyzed by fault trees:

The canards deployment pivotal event,

The LAS jettison pivotal event, and

The parachutes deployment pivotal event

The software command functions associated with these events are quite straightforward and

correspond to a direct “trigger-logic.” Given also that at the time the PA-1 PRA and CSRM

analyses were executed no further details were available as to SW implementation of the

trigger logic (e.g., with regard to redundancy and possible diverse execution of the logic itself)

each one of these fault trees contains one SW related basic event. In such a situation the fault

tree representing both the software and hardware contributions to the pivotal event of concern

may take the simple form exemplified in Figure 3-7 for the canards deployment pivotal event.

CANARDS

SW-CANARDS-FTD

Canards

Not Deployed

SW fails to
deploy canards

CANARDS - Canards Deployed 2009/06/12 Page 2

Canard HW

fails

HW-CANARDS-FTD

Figure 3-7: Fault Tree Model for the Canard Deployment Software Function

31

3.3.2 Logic Model Development for “Complex” Pivotal Events

When System / Software function interfaces are complex and affected by other than simple

gate-logic the use of more sophisticated modeling tools may become necessary. Factors of

complexity that are often relevant in the modeling of more complex systems include relative

timing and synchronization of tasks and events, feedback control algorithms, and/or multiple

levels of system or function degradation before an outright complete failure occurs.

Among the modeling tools available to address these more complex issues are Markov models

with Cell-to-Cell Mapping Technique (Markov/CCMT) and DFM models. Markov/CCMT is an

approach [14, 17, 18] that combines the conventional discrete state Markov methodology with

CCMT to represent coupling between failure events that can originate from the dynamic (time-

dependent) interactions within the system. A Markov/CCMT analysis is simulation based in

which the transitions are traversed for a set of initial conditions.

Since DFM is an available tool that is more mature in terms of development and application

within the CSRM framework, the rest of this section provides an introduction to the use of DFM

for modeling complex pivotal events. For a detailed discussion of the methodology modeling

and analytical features, including some in-depth applications examples, the reader is referred

to the DFM Application Guide [19], a NASA/CR report that has been prepared specifically as a

complementary and companion document for this CSRM Guide.

DFM is a general-purpose dynamic Multi-Valued Logic (MVL) modeling and analytical tool [14,

15, 19-24]. DFM models use multi-valued discrete logic definitions and algorithms which also

permit the representation of relative function and parameter timing in discrete time-step

format. DFM models provide a comprehensive representation of system functions, not just the

representation of its failure modes, and can therefore be utilized and analyzed in different

fashions. When traversed inductively, they generate scenario representations conceptually

similar to discrete-event simulations and functional system Failure Mode and Effects Analysis

{FMEA} representations, although of course not limited to binary variable and state

representations like the latter. When traversed deductively, they produce the multi-state

variable equivalent of binary Fault Tree (FT) models and generate failure “prime implicants,”

which are the multi-valued logic equivalent of binary logic “cut-sets” (e.g., FT cut-sets).

When used to analyze failure of software functions within the CSRM framework, a DFM system

model is usually constructed to represent the process flow. The system model includes both

the controlling software and the process being controlled. Failure modes of the software are

represented as states of software nodes. For the purpose of DFM modeling, these software

failure modes are primarily to be identified at the functional level, and usually in terms of their

manifestation at the software/hardware interfaces, i.e., following the functional paths from

32

hardware instrumentation to software inputs, and back from software outputs to hardware

controls and actuators. The software failure mode identification process can be assisted by the

information contained in software hazard reports, and also via expert elicitation where deemed

appropriate. In the software hazards reports, the software/hardware interface failure modes

are usually identified as the outcomes of lower level software failures such as stack overflow or

insufficient sampling rates.

For the PA-1 example, the pivotal events in the mission event tree (Figure 3-2) related to the

closed-loop attitude control functions were further analyzed with DFM. DFM was used for its

ability to analyze feedback loops and dynamic behaviors. A DFM model representing the

attitude control functions was first constructed. This model, shown in Figure 3-8, includes both

the hardware (the sensors and the actuators) and the software utilized in the attitude control

process. In the DFM model, the circle symbols are “process variable nodes” that represent key

process parameters. An example of this is the current (present time) attitude of the PA-1 Flight

Test Article (FTA) (node att). The square symbols are “process condition nodes” that represent

the health of key components and software functions. An example of this is the state of the

Redundancy Management function (node Redund).

The process variable nodes are discretized into a finite number of states, representing different

range of values. The condition nodes are discretized into states corresponding to the normal

and failure states of the corresponding components and software functions. For example, in

Figure 3-8, the node “Ctrl” represents the state of the SW control algorithm and is discretized

into three states, Ok (the SW algorithm is functioning correctly), OC (the algorithm is over-

correcting) and UC (the algorithm is under-correcting). That is, in this case the SW function

represented by the node Ctrl is modeled has having two software failure modes ("error over-

correcting" and "error under-correcting"), besides the correct-execution mode.

Altogether, the software failure modes represented in the Fig. 3-8 DFM model by the "fault

states" of the condition nodes SetPt, Ctrl and Redund include:

 Redundancy management software error,

 Over-correction in attitude control,

 Under-correction in attitude control,

 Attitude control set-point set too high, and

 Attitude control set-point set too low.

The node state definitions of these software failure modes in the corresponding DFM model

condition nodes are shown in Table 3-2.

33

Figure 3-8: DFM Model for the PA-1 Attitude Control Function

Table 3-2: Software Failure Modes Represented in the DFM Model

SW Failure Mode DFM Node DFM Node State

Redundancy management

software error

Redund Err

Over-correction in attitude

control

Ctrl OC

Under-correction in

attitude control

Ctrl UC

Attitude control set-point

set too high

SetPt High

Attitude control set-point

set too low

SetPt Low

att

TT1TT1

SW States

Redundancy Management

Norm (0.9976)

Err (2.40E-03)

ACM_Th

Continuous Variable

FTA attitude:

5 states

(--, -, nom, +, ++)

Discrete Component States

Pintle System

Ok (0.9968)

Failed (3.23E-03)

SW States

Control Algorithm

Ok (0.9968)

Over-correcting (1.60E-03)

Under-correcting (1.60E-03)

SW States

Set-point Determination

High (1.60E-03)

Ok (0.9968)

Low (1.60E-03)

34

Static relationships are represented by linking nodes through “transfer boxes.” For example,

transfer box Tf2 links the input nodes att_SW and SetPt to the output node att_Err. The

relationship represented is the determination of the attitude error in the software (att_Err)

from the attitude angle (att_SW), given the state of the set-point determination algorithm

(SetPt). The detailed relationship between the states of the inputs and the output is

represented in the form of a decision table.

Dynamic relationships are represented by linking process variable nodes and condition nodes

through “transition boxes.” For example, transition box TT1 links the states of the input nodes

att and ACM_Th at a given time to the states of the output node att at an immediately

following time, i.e., it captures the dynamic variation of the attitude angle (att) as a result of the

Attitude Control Motor (ACM) thrust (ACM-Th). This relationship is highlighted in red in Figure

3-8. Similarly to transfer boxes, the detailed relationships between the states of the inputs and

the output for a transition box are represented in the form of decision tables.

3.4 Step 4: Identification of Basic Event Cut-sets for CSRM Entry-Point Events

In this step, the CSRM entry-point events are analyzed via the models developed for them in

the preceding Step 3, in order to identify the corresponding basic-event cut-sets. No special

analytical process is needed in the particular cases, mentioned in the brief discussion of Step 3

given above, where an entry-point event can itself be treated as a basic-event. For situations

where the entry-point events are expanded into conventional binary-logic PRA models,

standard cut-set identification techniques and software aids may be employed. In the cases

where the more complex multi-valued, dynamic DFM logic models are utilized, specific

deductive analysis techniques are available to the analyst via DFM implementation software

such as DYMONDATM [24]. Table 3-3 shows the principal cut-sets identified by the DFM analysis

of the PA-1 system GN&C function (the full list, including conditions determined by more than

two simultaneous component failures, is not shown here).

Table 3-3: DFM-Produced Cut-Sets for Failure of PA-1 GN&C Function

 # Prime Implicant Probability

1 Pintle system failure xxx

2 GN&C set-point high

AND

Control algorithm normal

xxx

3 GN&C set-point low

AND

Control algorithm normal

xxx

4 SIGI1 biased high xxx

5 SIGI1 biased low xxx

6 GN&C set-point high

AND

Control algorithm over-correcting

xxx

7 GN&C set-point low

AND

Control algorithm over-correcting

xxx

HW cut-sets

SW function cut-sets

35

It is noted that, because the DFM model shown in Figure 3-8 includes both the software and

hardware components of the GN&C subsystem, the cut-sets obtained from it include not only

software-related failure scenarios, but also conditions caused exclusively by hardware

component failure(s). In fact, generally speaking, a DFM analysis based on a model that

represents both software and non-software elements, will yield results that, from a CSRM point

of view, can be classified as belonging to the three distinct categories of risk contributions

defined and discussed earlier in Section 2.4.5, i.e.:

A. “non-software” cut-sets, i.e., cut-sets that imply only hardware, human operator, or

other non-software failure events;

B. “software only” cut-sets, i.e., cut-sets that correspond to software failures

spontaneously occurring under “system routine conditions”;

C. “non-software-triggered, software-related” cut-sets, i.e., cut sets that represent

“conditional” software failures triggered by a non-software event.

The examples of PA-1 system cut-sets shown in Table 3-3 are of type A or B. The absence of

type C cut-sets is not surprising, because these are typically associated with software

contingency modes of operation, and the PA-1 system and mission did not contemplate, at the

specification-level of the information that was made available for the CSRM analysis, any such

modes of software functionality triggered by potential “balance of system” anomalies or

failures. The cut-sets of strict CSRM relevance generated by the DFM analysis were, therefore,

all of type B. With regard to DFM-generated type A cut-sets, although outside the primary

focus of a CSRM application, they do provide a check and validation of the hardware-oriented

analyses that may have previously been performed via traditional PRA techniques.

It is finally noted that, besides DFM, another process capable of logically expanding a given

entry point event and providing its logically equivalent representation in PRA cut-set

compatible format could, if available, be used to carry out the CSRM Steps 3 and 4 described

here.

3.5 Step 5: Probabilistic Quantification of SW Contribution to Mission Risk

In this final step of the CSRM application process, CSRM entry-point event probability estimates

are obtained via quantification of the corresponding cut-sets, providing, in turn, overall

estimates of the software contribution to system and mission risk. The quantification may

proceed differently, depending on the nature of the software cut-sets, i.e., whether they are of

“type B” or “type C” and on the type of applicable data which are available. Generally speaking,

the quantification of potential software failure events in a Specification-Level CSRM application

cannot count on the availability of system-specific test data, since at the early developments

36

stages when such an application is typically carried out, software modules rarely exist in an

executable and testable form. Thus, any risk quantification will usually utilize “surrogate data,”

i.e., failure and anomaly records from software systems similar in nature to the one(s) of

interest, which have been developed and used in earlier projects and missions, and for which

data have been collected and compiled in usable form.

A survey and discussion of the software reliability and risk quantification techniques generally

available as possible options to the analyst is provided in Section 5.2. For clarity of presentation

and explanation, the software probability quantification topic is better handled as one subject,

and it is therefore preferable not to disperse it in non-contiguous sections of this guide. For this

reason, the discussion in Section 5.2 actually covers both the quantification processes and

models that may be available for use at the Specification-Level of an application, i.e., when

usually only “surrogate data” are accessible for a given type of software, and those that can be

used in the Design-Level stage, when system-specific software test data normally become

available.

In this section the discussion deals with aspects of a typical Specification-Level analysis that are

significant for the choice of an appropriate quantification model out of the possible options. In

this regard, the categorization of risk contributors and system-failure cut-sets first discussed in

Section 2.4.5, and also addressed immediately above in step 4, produces the following

important observation: for type B cut-sets, a pseudo-random failure rate model probability may

be applicable for probabilistic quantification of the software event(s) in those relatively

common situations when the failure event of concern lends itself to a “failure in time,” rather

than a “failure on demand” representation; however, this is normally not the case for type C

cut-sets. In the latter, in fact, the time dependence of the risk contribution is normally in the

“trigger event” probability, whereas the software response is quantifiable in terms of a

conditional probability that is usually not time-dependent. Thus, it can generally be asserted

that the software event(s) in type C cut-sets are quantifiable via “failure on demand” conditional

probability models, not by unconditional time-based failure rate models.

An additional observation, which is also valid with regard to a Design-Level application, applies

to the situations where the analysis and quantification of a CSRM entry-point event is carried

out via an expansion of the event itself by means of a dedicated model (i.e., a DFM, or other

type of model and associated analytical process). Under such circumstances, the following

options are available, at the analyst’s discretion, for the final representation of the expanded

event within the PRA framework:

A. the entry-point event can be treated in the existing PRA as a “basic event,” with the

associated probability transferred as the results of a DFM analysis (or other

equivalent analysis) are separately carried out and documented;

37

B. the entry-point event is linked in the existing PRA to an underlying fault-tree model

constructed and making use of the cut-sets and associated cut-set probabilities

obtained from the DFM or other equivalent analysis.

The above two options are equivalent in risk quantification terms, but Option B transfers more

detailed analytical information directly into the structure of the existing PRA models, in the

traditional binary logic-model format.

38

This page intentionally left blank.

39

4 Design-Level CSRM Application

A Design-Level CSRM analysis is carried out at a stage of the system development when

relatively detailed system and software design information are available, and software test data

may also have been collected and compiled in a form suitable for use in the estimation of

software reliability and risk metrics. This type of analysis may be an iteration and a refinement

over a specification-level analysis carried out at an earlier stage; or be executed without a

preceding interim analysis. The first mode of execution is the preferred one when a mission or

project is being assessed from its inception, to maximize any opportunity for positively

influencing the system design with the insights gained from the PRA and CSRM activities.

In terms of process flow, a CSRM Design-Level analysis follows the same steps illustrated for the

Specification-Level analysis in Section 3. As will be apparent from the discussion in this section,

the principal differences between the two types of application are primarily in Steps 3 and 5,

i.e., in the modeling and quantification steps. The more complete and detailed information

that becomes available after the initial stages of system development may in fact have a

significant impact on how these steps are carried out.

The examples in this section are based on the reference mission of a mini-spacecraft called

Miniature Autonomous Extravehicular Robotic Camera (Mini AER Cam). This system consists of

a video-camera and associated recording and video transmission devices, hosted in a spherical

body equipped with thrusters and a GN&C function. The GN&C function utilizes input from a

Global Positioning System (GPS) receiver and onboard gyros. This input information is then

elaborated by autonomous control software algorithms to actuate the thrusters in such a way

as to execute translational/rotational motion and station-keeping necessary to execute video

display and recording requests by Space Shuttle or International Space Station astronauts. An

illustration depicting the spacecraft and the thruster set-up arrangement is provided by Figure

4-1.

Figure 4-1: Mini AER Cam Spacecraft and Thruster Arrangement

40

For completeness we discuss below all the Design-Level CSRM execution steps, indicating which

ones are essentially identical to the corresponding Specification-Level steps, and which ones

differ in some substantial way. A detailed discussion and illustration with the Mini AER Cam

example system is provided for the latter.

4.1 Step 1: Identification of Mission-Critical Software Functions

This step is carried out in a fashion essentially identical to a Specification-Level application. If at

the current stage of system development new information has emerged by which key software

functionality has been added or modified for the mission of concern, any previously developed

top-level CSRM mission event-tree will have to be updated accordingly.

For the Mini AER Cam, a typical mission consists of the following phases:

1. Release from the docking bay.

2. Autonomous control of the Mini AER Cam to reach the vicinity of the target position.

3. Autonomous station keeping to maintain relative position with the target, so as to carry

out the video capture and transmission functions.

4. Autonomous control of the Mini AER Cam to return to the docking bay.

5. Retrieval of the Mini AER Cam into the docking bay.

A top-level mission event tree may be drawn for such a mission as shown in Figure 4-2.

Figure 4-2: Mini AER Cam Mission Event Tree Showing Critical Software Functions

4.2 Step 2: Mapping of Software Functions to PRA Logic Model Events

This step also closely resembles the corresponding step of a Specification-Level application.

The only difference may be that, because of the greater level of detail and maturity of the

conventional (i.e., non-software oriented) PRA models already developed for the system of

interest, the number of potential CSRM entry-point events identifiable in those models may be

higher than in an earlier Specification-Level application. In the Mini AER Cam application, given

the extent of the software control functions implemented in the system, a number of entry-

points would exist in any associated, conventionally developed set of PRA models. However,

this particular application was intended from the start to be a “deep-dive,” but limited breadth,

41

demonstration project. Thus, the analysis was directed to concentrate on entry-point events

associated with the GN&C system function.

4.3 Step 3: Expansion of CSRM Entry-Point Events via Dedicated Logic Models

As mentioned, the Mini AER Cam GN&C function relies on a complex time-dependent

interaction of hardware and software components. Therefore it was appropriate to utilize the

Dynamic Flowgraph Methodology (DFM) for its modeling and failure analysis. Given its

complexity, a full Mini AER Cam model including both the GN&C software and hardware

components (electronic and mechanical), as well as interfacing subsystem components, was

developed in modular fashion, as illustrated by Figure 4-3, Figure 4-4 and Figure 4-5.

A DFM model of the scope illustrated by the above figures can be used to analyze a wide range

of possible system operational conditions, including success, anomaly, and failure events and

scenarios. However, for the purpose of the present example, the discussion will focus on a

specific GN&C function entry-point event of interest, defined as the “Failure to Maintain

Position” event.

Figure 4-3: Top Level DFM Model of the Mini AER Cam System

This is the

sub-model for

the GN&C

Software. It is

expanded in

the next slide.

This node represents the actual

attitude of the Mini-AERCam.

It is discretized into 3 states:

1. Correct

(Error < 3?)

2. Slightly Inaccurate

(Error of 3? to 10?)

3. Inaccurate

(Error > 10?)

1 clk = 1 sec.

42

Figure 4-4: Lower-Level DFM Model of the GN&C Sub-System

Figure 4-5: Lower-Level DFM Model of the Propulsion Sub-System

43

4.4 Step 4: Identification of Basic Event Cut-sets for CSRM Entry-Point Events

The identification of cut-sets for the CSRM entry-point events is carried out in this step in a

fashion similar to the corresponding step of a Specification-Level application. For the specific

“Failure to Maintain Position” event on which the focus of the example discussion is pointed,

the DFM analysis process yielded, as one might expect based on the earlier discussion in

Sections 2.4.5 and 3 (step 4), the same three types of cut-sets introduced there, i.e.:

A. “non-software” cut-sets, e.g. :

“Isolation Valve = Stuck Closed at time -1”

B. “software only” cut-sets, e.g. :

“Calculated Target Position = Inaccurate at time -1”

C. “non-software-triggered, software related” cut-sets, e.g. :

“Propellant Line Status = Small Leak at time -1 . AND .

Calculated Thruster Command = Slightly Inaccurate at time -1”

The type B software related cut-set “Calculated Target Position = Inaccurate at time -1”

identifies a possible “spontaneous” software failure occurring during the execution of a routine

software calculation, and may be accordingly quantified. Usually more than one option is

available for doing this, but in the best of circumstances for a Design-Level application, a

combination of surrogate data from similar missions and system-specific test data fed into one

of the better-validated “SRGMs” (Software Reliability Growth Models) would usually provide

the best quantification avenue, as is further discussed in Section 5.2.8.

The type C cut-set “Propellant Line Status = Small Leak at time -1 . AND . Calculated Thruster

Command = Slightly Inaccurate at time -1” identifies, on the other hand, a combination of

hardware anomaly condition and software inadequate response to such a condition. The

hardware condition is a small leak in one of the propellant lines. The Mini AER Cam GN&C

software design includes such a condition as one that the software can compensate for by

making appropriate algorithmic adjustments to issue commands to the non-faulty portions of

the thruster subsystem. Thus a software response failure would be caused in this situation by

an algorithmic fault that causes a drift of the attitude control, given the non-nominal thrust

condition caused by the propellant line leak trigger event.

Although it is directly implied by the “and” logic, it is worth underscoring that, if only one of the

two fault events appearing in the definition of the above type C cut-set were to be true at any

given time, the Mini AER Cam station-keeping function would not fail. In particular, even if the

44

GN&C software contingency-algorithm had a fault present in it, such a fault would remain in a

dormant status indefinitely during mission executions, and would have no mission impact as

long as no small propellant-line leak were to occur in any of those missions. Conversely, if a

small leak of the type included in the GN&C subsystem design envelope were to occur, but no

algorithmic fault were present in the GN&C contingency function, the latter would successfully

compensate for the leak by a modified use of the thrusters and the station-keeping function

would be successfully accomplished.

4.5 Step 5: Probabilistic Quantification of SW Contribution to Mission Risk

As mentioned earlier, the full range of options that are available to the analyst for the

quantification of entry-point event probability is discussed in Section 5.2. In an application that

proceeds in stages, i.e., from an earlier “Specification-Level” to a later “Design Level,” a

combination of quantification techniques would normally be applied, typically using “surrogate

data” in the earlier stage, and in the latter superimposing, e.g., via Bayesian “updating”

techniques, system-specific software test data to the preliminary results thus obtained.

While Section 5.2 presents the general features of the various quantification techniques that

can be applied, individually or in combination, in a software risk process like CSRM, this section

addresses an aspect of the Design-Level quantification that is directly related to the nature of

the specific information provided by the logic model analysis and cut-set identification steps

discussed above, i.e., an example of quantification driven by “risk-informed testing” applied to

“type C” cut sets. A general discussion of the concept of risk-informed testing is the main

subject of Section 5.2.6. Risk-informed means in this context that software functions can be

tested on the basis of a priority scheme that considers the scenarios identified in the PRA/CSRM

process and takes into account their risk contribution potential. The testing process may lead

to software upgrades if any faults or shortcomings are unveiled during its execution. The

ultimate test results are then integrated back into the PRA/CSRM framework and used to

quantify the scenarios of concern and establish confidence in the system and software ability to

meet any pre-established risk goals. To achieve a successful execution of this integrated

process of software function analysis and test, a Design-Level CSRM application calls for close

co-operation and communication between the PRA effort and the SW development/testing

effort.

In the Mini AER Cam analysis carried out per step 4, the type C cut-set “Propellant Line Status =

Small Leak at time -1 . AND . Calculated Thruster Command = Slightly Inaccurate at time -1”

was found to be one of the possible software-related causes of GN&C function failure, triggered

by a small propellant line leak hardware fault condition. “Risk-informed testing” was, as a

result, applied to quantify the cut-set and verify whether this theoretical risk contributor was

sufficiently bounded in probabilistic risk terms or not.

45

The key observation here is that the conditional nature of type C cut-sets dispels the

conventional wisdom perception that a prohibitive amount of software testing is necessary to

bound risk contributions at some reasonable level. In fact, if for example it is ruled that an

individual risk contributor like this should be demonstrated to be at a probabilistic risk level

lower than a given value Ri , from Equation [2.7] it follows that this condition is satisfied if:

[4.1]

i.e., if:

[4.2]

In terms of the Mini AER Cam risk contribution of interest, the term P(MCi) in inequality [4.2] is

the probability of a small propellant leak during a mission and P(FSW│MCi) is the time-

independent conditional probability of faulty software response to that hardware anomaly

condition, which may be used as a risk-informed bounding value to be demonstrated for the

software when it operates under such condition. The term Ri / P(MCi) represents the maximum

value of P(FSW│MCi) that allows the risk contribution limit Ri to be satisfied, and will in the

following be referred to with the symbol RBSWi, short for “risk bound for software under

condition-i.”

As discussed earlier in Section 2.4.4, the hardware condition is mission-time dependent and

thus can be quantified with data from a HW failure rate database such as NPRD or equivalent

data. NPRD-95 [25] suggests a failure rate value of 6.0E-06/hr for a small fluid line leak. Given

a single Mini AER Cam mission duration of 5 hours, but also assuming the more stringent

condition that the mini spacecraft is required to function without propellant leaks for a number

missions M, we get for the risk-informed conditional software probability bounding value:

 RBSWi = Ri / P(MCi)

 = Ri / (M x 5 x 6.0E-06)

 = Ri / (M x 3.0E-05)

[4.3]

Thus, for example, if Ri is set at the quite conservative value of 1-in-100,000 (i.e., 1.0E-05) for a

sequence of 20 Mini AER Cam missions, the conditional software probability bounding value is:

46

 RBSWi = 1.0E-05 / (20 x 3.0E-05) = 0.017

[4.4]

As a second example, assuming a much more prolonged use of the mini-spacecraft, e.g., in a

one-year time-span where no astronaut inspection and maintenance would be possible, an Ri

value of 1.0E-05 would translate into the following conditional software probability bounding

value:

 RBSWi = 1.0E-05 / (5 x 365 x 24 x 6.0E-06) = 3.8E-05

[4.5]

Type C cut-sets and associated bounding values for software conditional failure probability

provide “risk-informed” criteria for software testing, which is illustrated here by example. It is

recalled that the cut-set of interest is for the particular scenario in which the Mini AER Cam fails

to maintain its station-keeping position in the presence of a small propellant line leak affecting

one of its thrusters.

The key consideration for testing the system in realistic conditions is that the leak:

a) may be of varying magnitude, up to the rate specified as the maximum value that the

GN&C software logic and algorithms must be able to compensate for, and

b) may occur while the mini-spacecraft is in any of its possible station-keeping positions,

i.e., it may be in any rotational orientation with respect to a reference coordinate

system.

Therefore, the testing should “sample” the combination of leak-rate and spacecraft initial

rotational-orientation dimensions in an orderly fashion such as to give reasonable assurance of

coverage of the variability of conditions within the given scenario. Ideally, one would want to

conduct space-system software tests in a TAYF (“test-as-you-fly”) hardware-in-the-loop

configuration, but this was beyond the budget and scope of the Mini AER Cam PRA

demonstration project. A second-best option was followed instead, by testing the attitude

control function under the simulated presence of the entry condition using a Virtual System

Integration Laboratory (VSIL) simulation of the hardware (made available to the project by the

Triakis Corporation). The VSIL simulation used hardware documentation to produce a realistic

software model of the hardware that was interfaced with the actual GN&C software. The use

of the VSIL tool allows the software test engineers to easily generate any failure modes of

interest in the simulated hardware and observe how the actual software responds under these

conditions. In this particular case, a function was then defined to simulate the presence of the

gas leak and a series of test runs were performed to determine how the GN&C behaved under

47

the faulted conditions. The function allowed the gas leak to occur at any time during the

simulation, in any direction, and with any combination of force and torque. The simulation

maintains a record of the state of the hardware and the software at any point during the

simulation, so the GN&C software variables can be observed and compared to hardware

parameters and algorithmically correct representations thereof, to determine the correctness

of the GN&C software response.

Repetition of the test, with the spacecraft at different initial rotational orientations, and with

the simulated leak at different flow rates, producing different force and torque exerted on the

spacecraft itself, provides the statistical basis for an estimate of the probability P(FSW│MCi) that

is of interest for the risk scenario investigated in this example.

A combination of logic partitioning and randomization was used to ensure that the test cases

covered the mission space as completely as possible. Testing showed that each attitude

maneuver consisted of 3 phases: 1) initial movement, 2) oscillation, and 3) stabilization, as

illustrated in Figure 4-6. To cover the three phases adequately, an equal number of tests were

performed for each phase, with the leak starting at a random time during that phase.

Figure 4-6: The 3 Phases of a Yaw Correction

A random sampling of the above “test space” with a total of 350 simulated tests resulted in no

GN&C software failure to control the spacecraft. This result can be used in a straightforward

Bayesian estimation to obtain P(FSW│MCi). For example, an estimation starting from an

Yaw

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 31 6 1 91 12 1 1 51 18 1 2 11 24 1 2 71 301 33 1 3 61 39 1 4 21 45 1 4 81 511 54 1 5 71 60 1 6 31 66 1 6 91 721 75 1 781 81 1 8 41 87 1

T ime (s e conds)

A
tt

iu
d

e
 (

d
e

g
re

e
s

)

Yaw

Start of

oscillation

phase

Start of

stabilization

phase

Yaw

Yaw

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 31 6 1 91 12 1 1 51 18 1 2 11 24 1 2 71 301 33 1 3 61 39 1 4 21 45 1 4 81 511 54 1 5 71 60 1 6 31 66 1 6 91 721 75 1 781 81 1 8 41 87 1

T ime (s e conds)

A
tt

iu
d

e
 (

d
e

g
re

e
s

)

Yaw

Start of

oscillation

phase

Start of

stabilization

phase

Yaw

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 31 6 1 91 12 1 1 51 18 1 2 11 24 1 2 71 301 33 1 3 61 39 1 4 21 45 1 4 81 511 54 1 5 71 60 1 6 31 66 1 6 91 721 75 1 781 81 1 8 41 87 1

T ime (s e conds)

A
tt

iu
d

e
 (

d
e

g
re

e
s

)

Yaw

Yaw

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

1 31 6 1 91 12 1 1 51 18 1 2 11 24 1 2 71 301 33 1 3 61 39 1 4 21 45 1 4 81 511 54 1 5 71 60 1 6 31 66 1 6 91 721 75 1 781 81 1 8 41 87 1

T ime (s e conds)

A
tt

iu
d

e
 (

d
e

g
re

e
s

)

Yaw

Start of

oscillation

phase

Start of

stabilization

phase

YawYaw

48

uninformative Jeffreys prior (i.e., a beta distribution with parameters =0.5 and =0.5) gives

the following estimates for P(FSW│MCi):

5th percentile 5.61E‐06

Median 6.49E‐04

Mean 1.42E‐03

75th percentile 1.89E‐03

95th percentile 5.47E‐03

The above table thus shows that, with the stated test results, the 1.9E-03 RBSWi risk-bound

established for P(FSW│MCi), in order to limit the unconditional risk cut-set contribution to less

than 1.0E-05, is satisfied not only at mean and median levels of confidence, but up to about a

75% level. Working the Bayesian estimate math in reverse, one can also easily calculate the

number of input space sampling tests needed to satisfy a given RBSWi limit for P(FSW│MCi) at a

desired level of confidence. For example, assuming the same required RBSWi value of 1.9E-03, a

target 95% level of confidence requires 1010 sampling tests if no software response failures

occur. That number more than doubles to 2054 if one failure does occur.

The last very important observation to make before concluding this example is that the above

considerations on probability and associated confidence level estimation are valid only if the

tests are well set up to sample the key dimensions of variability associated with the “trigger

event” conditions. Optimistic estimations and false confidence would in fact be generated if

any number of successful tests were in practice just the repetition of a previously executed

successful test. The means for avoiding falling into such logic trap are not purely statistical, but

require good engineering judgment of the factors that may truly introduce variability into the

“system-trigger, software-response” process.

49

5 Modeling and Quantification of Software Failure Modes

In both the Specification-Level CSRM analysis and the Design-Level CSRM analysis, a range of

software reliability and risk quantification techniques consistent with the available data can be

applied to estimate the software failure modes. This section discusses in detail how software

failure modes can be defined and represented within the CSRM framework, and how these

software failure modes can be quantified using various kinds of data and techniques.

5.1 CSRM Modeling Detail and Representation of Software Failure Modes

The level of detail to be sought in the development of a PRA logic model is in general a simple

question, to which unfortunately there exists no simple answer. This is because there is more

than one factor to be considered, depending on the ultimate purpose of the PRA itself.

If the sole purpose of a PRA were to provide a risk metric at the system and subsystem level,

then the answer to the modeling detail question would be driven by the availability of

quantification data. That is, there would be no point in developing the PRA logic models

beyond the level of detail at which the corresponding “basic events” can be directly quantified

with the available data. However, such is in general not the case when the PRA is used, as it

should be, as a system design and validation aid and a means to anticipate and understand

system risk scenarios that could otherwise be overlooked. Under these conditions, a model can

be developed in greater detail than suggested by the availability of direct quantification data,

and if data are desired at a lower level of detail, they may be derived by sub-allocation

techniques, often combined with and facilitated by the use of expert elicitation.

In the case of software, the lack of data argument has been a sort of “catch-22,” i.e., the lack of

data to quantify risk has been one of the primary arguments used to explain the high-level

nature of software PRA model developments, if any were even attempted; conversely, given

the place-holder format of such models, no need has been perceived to exist for better

organized test and operational data collection. As a result, software data collection efforts

have for the most part also been kept at the high-level, without developing classifications of

failures or anomalies by function, or by lower-level categorizations when a software unit is

programmed to carry out more than one function and contains identifiable sub-functions.

In general, software data collection has not progressed to the level of organized categorization

that is currently standard for hardware data. That is, at the present time software operational

data are generally not systematically recorded according to a classification of basic functional

characteristics, by which the likelihood of a software fault can be correlated with the type of

basic functions that are been executed within a given software module or unit, such as, for

50

example, logic operations, algorithmic implementations of a mathematical calculation, control

of data flow, etc.

At the current state of the art, very little exists in the way of a software failure mode

classification of the type just mentioned. From a CSRM modeling point of view, however; some

steps may be taken that go in the right direction, while at the same time being practically

executable without an excessive level of effort.

The basic purpose of a CSRM model development is to permit the integration of both

qualitative and quantitative software risk information into the standard framework of a system

PRA, as typically carried out in NASA programs and projects. In practical terms the software risk

contribution is of interest because the consequences are felt at the material level, i.e. in what

happens to the hardware and human components of a mission. Thus, while the “mode” of a

fault inside the software may be of analytical interest, the mode of manifestation of the fault at

the interface between the software and the “balance of system” is what ultimately determines

the eventual effect of a software fault on the system as a whole. This suggests that a

recommended minimum level of CSRM modeling detail, and a corresponding definition and

identification of “software failure modes,” should be at least be at the level of the software /

balance-of-system interface(s). Thus, for CSRM purposes, it is appropriate to focus the

modeling and analytical activities on the “software interface failure modes,” and from the

identification of these, possibly proceed, if this is judged useful, to identify potential failure

modes that may occur within the software.

An example of the above is provided with the aid of the DFM model in Figure 5-1. The model

represents a software control-module that receives as input the value of a tank pressure (TP

node), and provides as outputs commands to a valve actuator (VAA node) and to a pump motor

(PM node). The non-software portion of the model is shown in blue, whereas the software and

interface portions of the model are shown in green. The actual pressure reading goes through a

sensor-to-software interface (e.g., an analog-to-digital converter) represented by the box

labeled T7 to become an internal software variable (TPSP node). The TPSP value is then

elaborated by the software logic and algorithm (box TT2) to determine a pressure “control

action” (SPCA node). This is turn determines the specific software commands (VCSP and PCSP

nodes) which are addressed to the valve actuator (VAA node) and to the gas pump motor (PM

node) via software-to-hardware interfaces represented by the boxes TT3 and TT4.

51

Figure 5-1: DFM Model for Illustration of SW Failure-Mode Representations

In the above model, relevant software failure modes are identified:

 first by tracking the interfaces between the balance-of-system and the software and

accordingly represented in the interface-status nodes TPSIS (on the sensor side at the

interface between the “true pressure” TP and its “software image” TPSP), VSIS (on the

actuation side between the software valve command VCSP and the valve actuator VAA)

and PSIS (on the actuation side between the software pump-motor command PCSP and

the pump-motor PM);

 then by proceeding one layer-further, into the basic algorithmic function and logic of the

software control, which governs the interaction between the internal software-image

TPSP of the controlled pressure variable and the control action selected SPCA by the

software itself; the software function failure modes are accordingly represented by the

software-status node SCLS.

In the particular example represented in Figure 5-1, the following software-interface and

software-function failure modes were identified following the process illustrated above:

Sensor / software interface failure modes:

a. reading stuck at high end of pressure scale

b. reading stuck at low end of pressure scale

c. reading drifted higher than true pressure value

d. reading drifted lower than true pressure value

52

Software / valve-actuator interface failure modes:

a. command stuck at “close-valve” value

b. command stuck at “open-valve” value

c. command frozen at last active value

Software / pump-motor-actuator interface failure modes:

a. command stuck at “start-motor” value

b. command stuck at “stop-motor” value

c. command frozen at last active value

Software internal function failure modes:

a. function execution frozen at last active execution

b. function execution logic “reversed” (i.e., response to low pressure selected when

pressure is high and vice versa)

c. spurious activation of low pressure response

d. spurious activation of high pressure response

The above definition of software-related failure modes is of course presented as an illustration

of the reasoning process that can be applied, and should not be interpreted as a “recipe” to be

universally applied in any modeling context. As underscored earlier, the method and format of

definition of failure modes of a given system is a decision that the PRA analyst has to make case

by case, as it is intimately intertwined with decisions concerning the desirable level of modeling

detail that is sought. This is always true, regardless of whether the modeling of concern regards

hardware, software, or human aspects of a system.

5.2 Software Risk Quantification

The topic of software risk quantification is undoubtedly a complex one. In earlier sections it has

been addressed from the point of view of the nature of the data that may be available at

certain stages of application of the CSRM process, and of how a certain type of data, e.g., data

that may provide an estimate of software failure rate in time, vs. data that fit a conditional

“failure on demand” model, may fit the two basic types of CSRM model cut-sets. The

discussion in this section, although certainly not exhaustive, provides a broad review of the

main types of software reliability data that are typically available for use in a space system risk

53

application, as well as of the types of estimation models that may be associated with these

data.

In general terms, before entering any more detailed discussions, it is appropriate to make the

reader aware of a general classification of software quantification models that may be

encountered in the literature, i.e., the distinction between “black box” and “white box” models:

 A black box model of a given software unit or module is a model that assumes no

structural or functional information about the software itself.

 A white box model of a given software unit or module is a model that relies on, and

reflects, structural or functional information about the software itself.

With respect to the above, it is noted that, strictly speaking, in the mathematical world a white

box model is defined as a model that reflects complete information about the object being

modeled. In reality, in real-world circumstances the information at hand is never “complete,”

thus even in the best of cases the modeling effort results, in practice, in a “gray model.” For

this reason, in referring to these subjects, the term “functional model” is used in place of

“white box model,” to make a distinction from “black box model” types of modeling

approaches.

It is also noted that the distinction between black box and functional modeling approaches is

entirely relative to the level of indenture/detail at which a modeling effort is carried out. That

is, a functional modeling approach at the system level may become a black box approach at the

subsystem or lower level of modeling. In this respect, from the discussion throughout this

guide, it should be clear to the reader that CSRM calls for a functional modeling approach, as a

minimum, at the system level and subsystem level.

The discussion that follows addresses the basic types of models that may be used and includes

observations and suggestions on how the models and the data on which they rely may be

utilized in the CSRM context.

5.2.1 Basic Types of Software Reliability Data

The software reliability and failure data that are applicable, or proposed as being applicable, for

use in space system software risk quantification generally can be classified as corresponding to

one of the following categories:

A. Surrogate Raw (SR) Data, i.e., data collected from systems and mission operations

judged to be sufficiently similar to the ones being assessed to permit probabilistic

estimates extracted from the SR data to be used for the systems and missions of

present concern;

54

B. Surrogate Parametric (SP) Data, i.e., surrogate data from other systems and

operations that are no longer accessible in their original raw state, but have been

processed and collapsed into some type of parametric correlation model;

C. System-specific Debugging (SD) Data, i.e., data collected during a process of

software test and fault-correction for the same system and software modules that

are of interest;

D. System-specific Operational (SO) Data, i.e., data collected during software test or

operation, but in any case after the end of any planned and systematic fault-

correction process, for the same system and software modules that are of interest;

Each of the above four basic types of data may be used in the estimation of reliability and risk

parameters of interest during the execution of a software PRA process like CSRM. A common

characteristic of these four types of data is that they usually exist externally and independently

of the PRA and/or CSRM activities that may be underway.

An additional type of data which, conversely, may be produced in concurrence with a PRA /

CSRM application is:

E. Risk-informed Test (RT) Data, i.e., data generated via tests specifically formulated

and prioritized in accordance with risk information produced in the course of a

software PRA / CSRM application.

A survey of the estimation techniques used or proposed in various contexts and applicable in

association with each of the above categories of data follows below in Sections 5.2.2 through

5.2.6. These sections and the following Sections 5.2.7 and 5.2.8 discuss the relevant aspects of

the possible use of the surveyed techniques in the context of a CSRM application.

5.2.2 Parameter Estimation with SR Data

Surrogate Raw (SR) Data can be used according to their nature and the nature of the risk

parameter that is to be estimated.

In the CSRM context, we have discussed in Sections 3 and 4 how software cut-sets that

represent the failure of a routine software function at some point during a time-cyclical

execution may be quantified via a pseudo-random failure rate model, whereas software cut-

sets that represent the conditional failure of a specific software contingency function upon the

occurrence of a system trigger-condition should be quantified using a probability-of-failure-on-

demand estimation. The techniques to be applied in the estimation are not different from

those that are applied in a corresponding hardware reliability or risk parameter estimation.

An estimation of CSRM probabilities based on SR data is usually satisfactory at the stage of a

“Specification-Level” application, when no system-specific software test or operational data are

55

usually available. Of course the predictive value of SR data is dependent on the degree of

similarity between the software and system of present concern and the systems and software

from which the data were collected. The following sub-sections 5.2.2.1 and 5.2.2.2 discuss two

SR databases that have been assembled and used in recent CSRM applications executed within

the now discontinued Constellation Program.

5.2.2.1 Use of Surrogate Data in SW Failure Quantification for PA-1 Analysis

In the PA-1 application example (Section 3), no software test results were accessible. Surrogate

data in the form of launch vehicle flight-software failure/anomaly records was used in place of

PA-1 software test data to estimate the probability of failure of different software functions.

An overall software function failure probability was estimated using the software function

failure incidents within this database. This probability was then sub-allocated to a top level set

of software functional failure modes, according to the relative proportions of software

incidents recorded in the database, which for this sub-allocation purpose included not only the

software incidents the had resulted in a mission failure, but also those that had produced a

significant mission anomaly.

The launch vehicle database used for the estimation encompassed failures and anomalies

encountered in medium to heavy lift launch vehicles used by the U.S. and the European Space

Agency (ESA) in the 20-year period from 1989 to 2008. In particular, the launch vehicle families

include Ariane 5, Atlas II/IIA/IIAS, Atlas III, Atlas V, Delta II 7000 series, Delta III, Delta IV, Titan II

SLV, Commercial Titan III and Titan IV. Three software function failure incidents were reported

out of the 313 flights within the database, as summarized in Table 5-1. Applying the

corresponding failure and success information in a Bayesian estimation, starting from a non-

informative Jeffreys prior, yields for the software function failure rate (i.e., failure probability

per mission) a posterior distribution with mean value 1.11E-02, and a 5th to 95th percentile

statistical uncertainty range between 3.47E-03 and 2.23E-02.

It is important to note that the above reported estimates are representative of a generic LV

mission, including the mission of a newly designed vehicle, as the database cited above includes

the first launches of some of the LV systems. If first launches are excluded from the failure and

success count, the record shows one failure in 300 missions, and the corresponding estimation

process, carried out in similar fashion to what was summarily described above, yields for the

software failure probability per mission a mean value of 4.98E-03, and a 5th to 95th percentile

statistical uncertainty range between 5.87E-04 and 1.30E-02. Besides this, some conservatism

may remain in both sets of estimates, since in order not to restrict the estimation to too limited

a statistical sample they were extracted from data pertaining to some relatively older LV system

design. This data therefore may not be fully representative of improved software design and

assurance practices presently applied in the space industry.

56

Further investigation of the data indicated that practically all software failures and anomalies

observed fell into the three following top-level categories of functional failure modes:

1. SW closed-loop control function failures; in this case all relative to the Guidance

Navigation & Control (GN&C) function.

2. SW open loop event -management failures.

3. SW redundancy management failures.

The first category corresponds to errors in performing closed-loop feedback control

calculations, resulting in the launch vehicle going out of control or breaking up. The second

category corresponds to failures in issuing specific discrete-commands for actions to be carried

out at the appropriate junctures in the mission sequence. The third category corresponds to

errors in managing functional redundancy, such as a failure to detect an anomaly in executing a

function, or to switch to the backup channel in response to a primary channel failure, or an

inadvertent switching to the backup channel that leads to a compromise of the overall function.

Table 5-2 summarizes the software failures and anomalies within the dataset. As the number

of reported failure events was not sufficient to estimate the mode sub-allocation rates with

some confidence, the number of reported SW anomaly events (including failures) was used

instead for this purpose. This sub-allocation scheme assumes that the relative ratios of the SW

anomaly-mode classes can be extrapolated to SW failure-mode classes. Thus, the overall

software function failure probability distribution with mean value of 1.11E-02 per mission, and

the corresponding one more representative on mature-LV flights, with mean value of 4.98E-03

per mission, were sub-allocated into the above three classes of software functional failure

modes. This was executed according to the relative rates of the anomaly modes observed in the

database, and following the distribution sub-allocation procedure discussed in [26], which

ensures logical and numerical consistency between the overall failure probability uncertainty

distribution and the aggregate sub-function failure probability uncertainty distributions. The

overall probability estimates previously cited and the results of the sub-allocation process,

including mean, median, 5th and 95th percentile values, are shown in Table 5-3 and Table 5-4,

respectively for missions including or excluding "first flights" of newly designed LVs.

It can be noted that the estimates in Table 5-3 and Table 5-4 confirm the common-sense

hypothesis of a positive correlation between the complexity of a SW function and its failure

probability. The GN&C SW function, with its more complex closed loop algorithms and logic,

exhibits the highest rate of anomalies (as well as all three of the actual failures) and is

accordingly attributed the highest probability of failure by the allocation process. The simpler

“gate-logic” event management function displays the lowest number of anomalies and was

thus allocated the lowest probability of failure. The redundancy management function is of

57

intermediate complexity with respect to the other two because of “majority voting” and bad-

sensor exclusion algorithms that may include time-tracking of inputs in addition to basic gate-

logic, and in fact displays an in-between number of recorded anomalies, accordingly leading to

an in-between estimated value of failure probability on a per-mission basis.

Table 5-1: Software Failures in Launch Vehicles in the Past 20 Years

Date Vehicle Failure Description

June 4, 1996 Ariane 5 A programming flaw caused a stack overflow error in both of
the redundant inertial reference systems simultaneously. The
flight computer erroneously commanded the engines to gimbal
hard over and the vehicle broke up ~2 sec later because of high
aerodynamic loads. The software was reused from Ariane 4
but was not adequately tested.

August 27, 1998 Delta III A 4-Hz roll mode, induced by the three air-lit Solid Rocket
Motors (SRMs), was not designed into the control system. The
control actions executed by the SRM Thrust Vector Control
system to compensate for this roll mode and the wind gust
used up all the hydraulic fluid. Attitude control was lost and
the vehicle pitched over. Vehicle broke up and was destructed.

April 30, 1999 Titan IVB An incorrect manually entered roll-rate filter constant was not
detected in the software testing and quality assurance
processes. This error caused ‘zero-out’ of the measured roll
rate in the control software, resulting in loss of control of the
Centaur upper stage. The payload was stranded in the wrong
orbit.

Table 5-2: Software Failures and Anomalies in Launch Vehicle Database

GN&C

Redundancy

Management

Event/Activation

Management

Ariane 5 5G 16 1 1

5G+ 3

5GS 5

5ECA 17

Atlas Atlas II 10 3

Atlas IIA 22

Atlas IIAS 31

Atlas III 6

Atlas V 14

Delta Delta II 732x 10

Delta II 742x 17

Delta II 792x 95 1 1 1

Delta III 3 1 1

Delta IV M 6 2

Delta IV H 2

Titan Titan II SLV 13 1

Titan III CT 4

Titan IVA 10

Titan IVA/IUS 3

Titan IVA/Centaur 9

Titan IVB 5

Titan IVB/IUS 5

Titan IVB/Centaur 7 1 1

313 3 8 3 1

SW Related Anomalies

Total

LV

SW related

FailuresFlightsSub-version

58

Table 5-3: LV Flight-Software Failure Probability by Functional Mode

Software Failure Mode

Probability Per Mission

5th-ile Median Mean 95th-ile

Closed loop control function

failure

1.60E-03 6.43E-03 7.43E-03 1.68E-02

Redundancy management failure 1.02E-04 1.84E-03 2.80E-03 8.77E-03

Open loop event management

failure

8.08E-08 2.20E-04 9.34E-04 4.30E-03

Total 3.47E-03 1.01E-02 1.11E-02 2.23E-02

Table 5-4: LV Flight-Software Failure Probability by Functional Mode Excluding 1
st
 Flights

Software Failure Mode

Probability Per Mission

5th-ile Median Mean 95th-ile

Closed loop control function

failure

1.71E-04 2.31E-03 3.32E-03 9.94E-03

Redundancy management failure 8.38E-07 4.21E-04 1.24E-03 5.30E-03

Open loop event management

failure

8.50E-14 8.17E-06 4.16E-04 2.36E-03

Total 5.87E-04 3.94E-03 4.98E-03 1.30E-02

5.2.2.2 Use of Surrogate Data in SW Failure State Quantification for Constellation Level 2 PRA

Another example of using surrogate data for software failure quantification can be found in the

Constellation Program International Space Station Level-2 PRA application for the Abort

Decision Logic (ADL) software. The ADL monitors for abort trigger conditions and takes action

to issue auto abort or abort recommendation if the crew safety is threatened. At the time of

the analysis, the ADL was still under development, therefore, no software test results were

accessible. Surrogate data in the form of launch vehicle software failure/anomaly records, JPL

spacecraft software Incident Surprise Anomalies (ISAs) and NASA spacecraft software failure

59

records were thus used in place of the unavailable ADL software test data to estimate the

probability of failure of different software functional failure modes.

Similarly to what done in the PA-1 application discussed earlier, an overall software function

failure probability was estimated in this application and sub-allocated to different software

functional failure modes, but the process followed was somewhat more complex, given that

data from three separate databases was being used. More specifically, a two-stage Bayesian

approach was applied, using a Jeffreys Prior as the first stage prior for the overall software

failure probability. In this process the first stage posterior, and second stage prior, distribution

of the overall software function failure probability was estimated using, as in the PA-1

application, the software failure incidents within the launch vehicle database summarized in

Table 5-2. This overall software function failure probability distribution was in this case sub-

allocated to the different software functional failure modes using the Jet Propulsion Laboratory

(JPL) "Incident Surprise Anomaly" (ISA) database, again according to the relative proportions of

anomalies observed for the corresponding software functions. Finally, these sub-allocated

prior distributions were updated using the software failure records of recent NASA spacecraft

missions.

The early termination of the Constellation Program did not permit the completion of the data

validation that is in this type of analysis necessary before any obtained numerical results can be

accepted with sufficient degree of confidence. Thus no numerical results are reported here.

However, it may be useful to note for possible future uses of the processes outlined in this and

in the preceding section that the ISA database contains records of software and software-

related errors and anomalies relative to 18 JPL space missions, and that for these missions the

observed types of flight software sub-function failures appear to fall into five basic categories,

which are listed below.

1. SW closed-loop continuous control failures,

2. SW failure to activate a function on demand,

3. SW inadvertently activate a function without a demand,

4. SW redundancy management failures,

5. Other SW failures.

Some of the above are the same as those discussed in Section 5.2.2.1 with regard to the LV

database. The first category corresponds to errors in performing closed-loop feedback control

calculations, usually in the GN&C software, resulting in the LV or spacecraft going out of

control. It also includes any failures in related software that caused the GN&C to behave

incorrectly (e.g. a failure of the star tracker causing the GN&C to orient incorrectly). The second

category corresponds to failures in issuing specific discrete-commands for actions to be carried

out at the appropriate junctures in the mission sequence. The third category corresponds to

60

the software commanding an action or executing a function that should not have occurred at

that time (excluding the corresponding types of failures that are categorized in the fourth

category). The fourth category corresponds to errors in managing functional redundancy, such

as a failure to detect an anomaly in executing a function, or to switch to the backup channel in

response to a primary channel failure, or an inadvertent switching to the backup channel that

leads to a compromise of the overall function. The fifth category corresponds to errors that

cause any software function, other than those book-kept in the first four categories, to produce

an incorrect output, stall, fail, or reset.

The relative ratios of ISAs that falls in each of these 5 categories are summarized in Table 5-5 in

percent format.

Table 5-5: Ratios of ISAs in Five Software Sub-function Failure Categories

Software Sub-function Failure Mode Relative Ratio

Continuous Control Failure 27%

Failure To Activate 15%

Inadvertent Activation 3%

Redundancy Management Failure 1%

Other 54%

It is noted that more data analysis would be necessary to re-normalize the above information in

order to provide estimations of software failure mode probability in the canonical forms that

may be applicable depending on the type of failure being considered, i.e.:

 Failure probability per mission

 Failure rate (probability per unit time)

 Failure probability per demand

5.2.3 Parameter Estimation with SP Data and Parametric Models

As implied in the short description given above, Surrogate Parametric (SP) Data are not actually

data available to the PRA analyst. The actual data are substituted by a parametric correlation

model. This type of model is not strictly speaking a “black box” model, in that it attempts to

incorporate certain information about the software system being modeled, but it is not a

“functional model” either, since it does not attempt to identify, nor rely on, structural

61

differentiation of functionality within the system being assessed. In this respect, parametric

models are closer to a “black box” than to a “functional” approach to parameter quantification.

To use such a model, the analyst has to identify certain characteristics or “factors” pertaining to

the software for which he/she is interested to carry out the reliability/risk estimation, typically

by answering a questionnaire built into the specific parametric model package being used.

These are factors which have been identified in the model built into the parametric tool of

choice as factors whose strength or weakness drives software reliability according to a

multivariate correlation formula. The correlation model usually provides a “software defect

density” prediction, which can be translated into a failure rate or failure probability estimate by

the analyst, on the basis of additional information about the specific nature of the software and

system of interest. More details on two parametric models of the kind described here can be

found in references [27] and [28].

In theory, SP data and the associated parametric model may be used in lieu of SR data, saving

the analyst the time and effort that is usually required to organize and categorize SR data into

formats amenable to an estimation of the parameters of interest. Unfortunately, however, the

original data used to derive the parametric correlation models that generate the desired

estimations are generally not available to the PRA analyst. Unlike in the case of SR data usage,

the analyst has therefore no insight to judge whether such data have reasonable applicability

for the type of estimation of current concern, nor to judge whether the correlation formula

contained in the model is being extrapolated beyond its limits of validity in the current

application.

A comparison of quantifications for the software risk contribution in the Constellation Program

PA-1 mission, using SR versus SP data, found the latter to produce predictions more

“optimistic” by a factor of 100 to 1000 [4], whereas the former was in apparent alignment with

the historically observed rate of software-related mission failures in the decade up to the year

2007.

5.2.4 Parameter Estimation with SD Data and SW Reliability Growth Models (SRGMs)

System-specific Debugging (SD) data are normally associated with a process of repeated

software test, fault discovery, and fault removal. This process and the associated SD data that

it generates provide the basis for reliability parameter estimation via the use of a Software

Reliability Growth Model (SRGM).

SRGMs are “black box” models that provide an idealized description of the way in which the

reliability of a software system grows as defects are identified and removed during test. Taking

as input a software system’s failure history observed during test, they return the parameters of

a Probability Density Function (PDF) for the time to the next failure (or the number of failures in

62

the next test interval), which can be used to estimate and forecast reliability and reliability-

related quantities (e.g., failure rate, number of failures to be observed in a future time interval

t, etc.).

All SRGMs make the following assumptions about the defect discovery and removal process

during testing [29, 30]:

A. The software is operated in a similar manner as that in which reliability predictions

are to be made.

B. Every fault within a severity class has the same chance of being encountered as any

other fault in that class.

C. The failures, when faults are detected, are independent.

Assumption A is made to ensure that model results are produced from failure history data that

are applicable to the environment in which the reliability estimates and forecasts are to be

made.

Assumption B requires the failures or anomalies within a “severity class” to have the same

distributional properties. However, each severity class may have a different failure rate than

the others, requiring a separate analysis be conducted. This particular assumption has a

relevant CSRM-specific implication which is discussed below.

Assumption C makes the models mathematically tractable – by assuming independence of the

failures, the joint pdf from which the model parameters are estimated can often be solved

analytically, thereby dispensing with computationally-intensive numerical techniques.

It is important to note that although the above assumptions are usually not a strictly accurate

representation of the testing process, they are frequently satisfied in sufficient measure to

allow satisfactory estimates of software reliability to be produced.

In addition to assumptions A through C, all SRGMs make the more basic implicit assumption

that the reliability of the software is increasing during test through the process of observing

failures, identifying defects responsible for the failures, and removing these defects. If a

software system is not exhibiting reliability growth during test, SRGMs may still yield reliability

estimates, but those estimates are likely to be largely inaccurate.

With respect to their use in a CSRM context, two observations can be made with respect to

SRGMs. The first observation is that the SD data on which they rely usually become available

only in the “Design-Level” CSRM application stage. The second is that the assumptions on

which SRGMs rely, and especially Assumption B, make them primarily suitable for the

estimation of “routine” software function cut-sets, i.e., those labeled as “type B” in Section

63

2.4.5. This is because SRGMs can make distinctions between failures of different “severity,” as

assigned by the personnel running the software tests and detecting defects, but the test

themselves are not usually set up to sort “conditional-defect” by the trigger-events that may be

causing them.

In summary, the considerations discussed above suggest that SRGMs may be primarily utilized

in a CSRM “Design-Level” application context for the assessment of “type B” software routine-

function cut-sets.

More detailed information and specific mathematical formulations of SRGMs are easily found in

the open literature. In the NASA environment, an SRGM data gathering and parameter

estimation environment that incorporates more than one SRGM model, from which an analyst

can choose a preferred type of estimation, is available in the JPL CASRE tool [31].

5.2.5 Parameter Estimation with SO Data

System-specific Operational (SO) Data usually become available after “debugging test” cycles

have been completed, thus estimation of reliability parameters via the use of SO data is

generally only possible at the Design-Level CSRM stage.

In practical terms, these data consist of the recorded observations of anomalies or failures, or

absence thereof, during the operation of the deployed system of interest, i.e., in their basic

nature these are the same type of data that are usually represented in a SR (surrogate raw)

database. The estimation techniques that can be applied are therefore generally the same

standard estimation techniques that may be applied in the utilization of SR data.

It is noted that, if the operational data collection is preceded by the collection and utilization of

SD (system-specific debugging) data via the application of an SRGM, then the SO-based

estimation may be combined with the SD- based estimation, for example via a Bayesian

updating technique (see also Section 5.2.7 on this subject).

5.2.6 Parameter Estimation with RT Data

Risk-informed Test (RT) data are data collected as a result of a software and system test effort

organized and prioritized on the basis of an initial software risk assessment process. In general

this may be driven by the result of an initial Specification-Level CSRM effort, and the results of

the RT data estimation processes may become a key part of the basis for a final Design-Level

analysis and quantification.

RT data may take a form equivalent to SD or SO data, depending on the nature of the risk-

informed test procedure applied, i.e., whether it involves a process of defect removal and

64

software retest, which in turn clearly may depend on the initial level of defects detected at the

start of the risk-informed test process.

5.2.6.1 Conditional Scenarios and Risk-informed Software Testing Strategies

From a software design and validation point of view, the most important insight possibly

obtainable from a CSRM assessment is the validation of software logic for contingency

operations, i.e., the systematic identification and analysis of risk scenarios in which the

software is by design supposed to respond with a contingency, or “fault-management,” action

to a system hardware anomaly, or to some specific and potentially critical environmental

condition encountered during mission execution. As has been illustrated with the discussion of

the examples provided in Section 4, this type of insight can be achieved in comprehensive

fashion via the combined use of traditional and more advanced models, depending on the

nature of the subsystems and functions being addressed in the analysis.

The analysis results can preliminarily be used to focus analytical attention on areas that are

identified as potentially critical on the basis of both qualitative and quantitative risk

information, i.e., either because the software functions involved are recognized as being

characterized by high complexity, or because initial quantification with “Specification-Level”

surrogate data indicates that similar functions have experienced anomalies or failures with

relatively higher probability in preceding missions.

A risk-informed prioritization or focus on specific software-related contingency scenarios can

then lead to the process of “risk-informed testing,” i.e. to a strategy of software tests that are

directed at the higher risk “partitions” of the overall theoretical software test space. This can

be done with the specific purpose of sampling the specific test partition of concern in such a

way as to be able to achieve reasonable confidence of maintaining the probability of software

failure for the related scenario(s) below a given risk limit value. This type of risk-informed

approach to software testing has been illustrated with the Mini AER Cam GN&C test example

given in Section 4.5. As discussed there, this type of risk-informed software testing ideally calls

for a “hardware-in the-loop” approach, which can be realized via simulation if a true

hardware/software test set-up is impractical and/or too costly.

5.2.7 Parameter Uncertainty Estimation

Standard PRA practice recommends the assessment of uncertainty in risk model parameters

and its ultimate effect on top-level risk metrics. To follow this practice, any estimation of

parameters from software reliability data should also incorporate an uncertainty analysis. This

presents no special problems when a parameter estimation is carried out by the means typically

employed in a conventional-PRA context, e.g., a Bayesian estimation that provides the

estimated parameter statistics in the form of a full distribution function.

65

The assessment of uncertainty is a little more difficult when an estimation is carried out by

means of an SRGM, since such models usually do not have built-in mechanisms to provide

estimated values at varying confidence levels in a statistical sense. However, an analysis of the

underlying SD data from an uncertainty estimation point of view can still be carried out by a

PRA analyst with sufficient experience and expertise.

The most problematic case for proper inclusion of uncertainty in software reliability parameter

estimation would be if a parametric model with pre-collapsed SP data is used. These models do

not include an uncertainty estimate with the output they provide. In addition, in the third-

party models that are currently commercially available, the PRA analyst has no access to the

underlying proprietary data in order to execute an uncertainty estimation based on the actual

data content that is directly or indirectly reflected in the parameter estimation.

5.2.8 Use of Multiple Data Sources in Parameter Estimation

Generally speaking, the golden rule of data utilization in PRA is: “use all that are available and

applicable, if they carry real information content.” This remains true in the use of software

reliability data, thus it would generally be expected that a parameter estimation will be based

on a combination of data sources.

The data will usually become available in a sequential and progressive augmentation,

paralleling the progression of a project and associated system design, which in turn will be

reflected in the Specification-Level or Design-Level stage of development of the CSRM analysis.

In a typical sequence of this kind, one can, for example, envision an estimation that is initiated

with SR data at a CSRM Specification-level of application, and then is continued at the Design-

Level first with inclusion of SD data fed into an SRGM, then with inclusion of RT scenario-related

data, and possibly in the end with inclusion of SO mission data.

There are no mandatory prescriptions for how multiple data sources of varying nature can be

selected and combined in a probabilistic parameter estimation, but the usual, and most

naturally convenient technical route for such an aggregation is the use of a Bayesian

assessment framework, which permits successive “updates” of the estimation of a given

parameter. In a Bayesian framework the updating process can incorporate new batches of data

as these data become available, also automatically producing a new uncertainty assessment as

an output of each “update.” The degree of estimation uncertainty, as for example indicated by

the range of parameter values comprised between the 5th and 95th percentile of the updated

parameter distribution function, will normally decrease as new data are added into the

estimation process.

66

5.2.9 Quantification of Specific Software Failure Modes

The last sub-topic of the software risk quantification subject that requires some discussion is

the quantification of lower-level, specific software failure modes, such as those provided as

examples in Section 5.1.

The pre-existing surrogate data which are available for quantification of software reliability or

probability of failure, are usually categorized at a higher level of detail than that reflected in the

definitions of the example failure modes of Section 5.1. For example, the SR database utilized

in the Constellation Program assessments described in [3] and [4] permitted the direct

estimation of more generic and higher level failure modes, such as:

 Failure of continuous control function

 Failure to issue discrete command

 Inadvertent issue of discrete command.

On the other hand, the system-specific test processes that may be applied at a later stage of

CSRM application can be more specifically directed at an assessment of lower-level failure

modes that are of concern for one reason or another. In such cases, to permit the utilization of

both types of data at the lower level which is eventually of interest, the initial estimation with

SR data can be brought down to the desired lower level by a process of sub-allocation.

Sub-allocation refers to the process of apportioning the value of the estimated probability of a

certain type of failure among the different “sub-modes” identified for such a failure, according

to pre-defined ratios that are either assumed, analytically derived via a specific model, or

obtained via expert elicitation.

For example, in the case of the software control function represented in Section 5.1, Figure 5-1,

the PRA analysts, in preparation for an eventual updating with specific test data, may want to

sub-allocate the corresponding probability of failure. This may have initially been derived from

an SR database like the one mentioned above, i.e. using data corresponding to a software

failure category described as “Failure of continuous control function.” The sub-allocation will

thus consist of deciding how the corresponding estimated probability may be apportioned

among the failure-modes identified in the Figure 5-1 example as sub-cases of the continuous

control function failure category, i.e.:

a. function execution frozen at last active execution

b. function execution logic “reversed” (i.e., response to low pressure selected when

pressure is high and vice versa)

c. spurious activation of low pressure response

67

d. spurious activation of high pressure response.

Although it may appear at first that an objective sub-allocation rationale or basis may not be

easy to identify, once specific situations are examined, it is usually possible to find sufficient

justification to execute it, given also that the usual objective is that of obtaining a satisfactory

starting point for more directed testing and detailed estimation.

68

This page intentionally left blank.

69

6 Summary

This guide presents the key steps and possible alternatives for applying the Context-based

Software Risk Model (CSRM) within the framework of an existing PRA.

In practical terms, a CSRM application is defined in this guide at two possible levels of effort and

detail, depending on the software development/testing stage and the availability of system and

software design information. These two levels have been referred to in the guide as

“Specification-Level CSRM” and “Design-Level CSRM” applications.

A Specification-Level CSRM analysis may be executed in the early stages of system design, and

makes use of general system specification/design information and generic data to estimate the

preliminary risk that the software functions contribute to the overall system risk. A Design-

Level CSRM analysis may be applied at a more matured system development stage and can

provide risk-informed guidance for execution of SW testing. To provide the greatest return in

terms of SW quality and safety assurance, it calls for close co-operation and interactions

between the PRA team and the software development team. More specifically, Design-Level

CSRM analysis results can be provided by the PRA team to the software development team to

influence the software testing activity. The goal is to perform risk-informed testing that targets

specific scenarios identified via the CSRM analysis, and to expand the test effort to a level

consistent with the risk identified in relation to such scenarios. The results of testing can in turn

be used to better quantify the risk scenarios and estimate the associated software risk

contribution.

For either the Specification-Level CSRM application or the Design-Level CSRM application, the

general steps of execution can be summarized as follows:

1. Identify and represent the critical software functions in the PRA framework, using a

reference mission event tree as a logic-model aid,

2. Develop a mapping between the reference mission event tree software function related

events and corresponding “entry-point events” that are identified in the existing PRA

logic model structures,

3. Develop appropriate CSRM models to analyze the critical software “entry-point events,”

4. Analyze the CSRM models, to identify the cut-sets for the entry-point events, and

5. Estimate the probabilities of the critical software entry-point events via quantification of

the cut-sets.

70

The above steps have been discussed and illustrated for the Specification-Level application in

Section 3, with the Constellation Program PA-1 test flight software example.

A Design-Level CSRM application builds on the insights gained from a Specification-Level CSRM

analysis. When more detailed system and software design information becomes available, this

information is used in the design-level analysis to validate, augment, and refine the CSRM

models. The updated models decompose software risk into scenarios that include not only

nominal mission operations, but also off-nominal conditions within the system design and

mission planning envelope. This type of analysis can produce, in addition to more detailed

qualitative and quantitative risk scenario information, risk-informed guidance for the execution

of software testing, oriented towards reducing the risk of software failure or anomalies for

specific scenarios of interest. To this end, it calls for coordination and cooperation between the

PRA team and the software development team. In this mode of execution, CSRM analysis

results are provided by the PRA team to the software development team to “risk-inform” the

software testing activity. The goal is to perform testing that targets specific scenarios identified

via the CSRM analysis, expanding the level of effort on testing consistent with the level of risk

initially identified and associated with the conditions triggering those scenarios. The results of

testing are then used to re-assess and quantify the risk scenarios of initial concern, with the

ultimate goal of keeping the projected software risk contribution within acceptable bounds.

Risk-informed testing should be carried out based on the risk-priority of the scenarios identified

in the updated PRA and CSRM analyses, and the risk-informed test results may validate the

software design or even lead to software modifications and corrections if any faults are

identified. When the test process has driven the software to an acceptable level of risk and

reliability, all the information produced can be integrated back into the PRA and used for final

quantification of the specific scenarios of concern. The steps for a Design-Level CSRM

application have been illustrated in Section 4 using the SW risk assessment of the Mini AER Cam

system.

For both the Specification-Level CSRM application and the Design-Level CSRM application, a

range of software reliability and risk quantification techniques consistent with the available

data can be applied. A survey and discussion of the software reliability and risk quantification

techniques in support of the CSRM framework has been provided in Section 5.

71

7 References

1. "Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners,

Second Edition," NASA/SP-2011-3421, NASA Headquarters, Washington, DC, December

2011.

2. S. Guarro, M. Yau and S. Dixon, “Context-based Software Risk Modeling: A

Recommended Approach for Assessment of Software Related Risk in NASA Missions,”

Proceedings of the 11th International Conference on Probabilistic Safety Assessment and

Management (PSAM 11), Helsinki, Finland, 25-29 June, 2012.

3. "Instruction Guide for Integration of the Context-based Software Risk Model (CSRM)

with a Cx Probabilistic Risk Assessment (PRA)," AR 09-03, Report prepared for NASA

Johnson Space Center, ASCA Inc., Redondo Beach, September 15, 2009.

4. "Application of Context-based Software Risk Model (CSRM) to Project Orion Pad Abort-1

Flight Software," AR 09-01, Report prepared for NASA Johnson Space Center, ASCA Inc.,

Redondo Beach, April 30, 2009.

5. "Risk-Informed Safety Assurance and Probabilistic Risk Assessment of Mission-Critical

Software-Intensive Systems," AR 07-01, Report prepared for NASA Headquarters/OSMA

and Johnson Space Center, ASCA Inc., Redondo Beach, June 15, 2007.

6. C. Garrett and G. Apostolakis, “Context in the Risk Assessment of Digital Systems," Risk

Analysis, 19, pp.23-32, 1999.

7. "Software Assurance Standard," NASA-STD-8739.8 w/Change 1, NASA Headquarters,

Washington, DC, July 28, 2004

8. “Mars Global Surveyor (MGS) Spacecraft Loss of Contact,” Preliminary Report, Mars

Global Surveyor Operation Review Board, 13 April 2007

9. M.C. Hsueh and R. Lyer, “Performability modeling based on real data: A case study,”

IEEE Transactions on Computers, vol. 37, no. 4, pp. 478-484, April 1988.

10. "Project Orion, Flight Test Article (FTA) Engineering Design Data Book, FTA Launch Abort

System (LAS), Engineering Design Data Book, PA-1," Document Number: CEV-D-004102,

Lockheed Martin Space Systems Company, August 25, 2007.

11. "Project Orion, Flight Test Article (FTA) Engineering Design Data Book, Flight Software,

Design Data Book, PA-1," Document Number: CEV-D-004104, Lockheed Martin Space

Systems Company, August 25, 2007.

72

12. "Pad Abort 1 (PA-1) Range Safety Probabilistic Risk Assessment (PRA) Report," CSMA-08-

004, NASA Johnson Space Center, Safety and Mission Assurance Directorate (NA),

Shuttle and Exploration Division (NC), December 5, 2008.

13. Constellation Program Level 2 PRA for ISS in SAPHIRE project named “IDAC-

5_L2_ISS_DRM.SRA,” NASA Johnson Space Center, Safety and Mission Assurance

Directorate (NA), 2009

14. "A Benchmark Implementation of Two Dynamic Methodologies for the Reliability

Modeling of Digital Instrumentation and Control Systems," NUREG/CR-6985, U.S.

Nuclear Regulatory Commission, Washington, D.C., February 2009.

15. M. Yau, M. Motamed and S. Guarro, “Assessment and Integration of Software Risk

within PRA,” International Journal of Performability Engineering, Vol. 3, No. 3, July 2007.

16. "Fault Tree Handbook," NUREG-0492, U.S. Nuclear Regulatory Commission, Washington,

D.C., 1981.

17. T. Aldemir, “Computer-Assisted Markov Failure Modeling of Process Control Systems,”

IEEE Transactions on Reliability, R-36, pp. 133-144, 1987.

18. T. Aldemir, “Utilization of the Cell-To-Cell Mapping Technique to Construct Markov

Failure Models for Process Control Systems,” Proceedings of Probabilistic Safety

Assessment and Management Conference: PSAM I, 1431-1436, Elsevier, New York,

1991.

19. "Dynamic Flowgraph Methodology (DFM) Application Guide," Draft version - NASA/CR-

(no. to be assigned), NASA Headquarters, Washington, DC, November 2013.

20. S. Guarro, M. Yau and S. Oliva, “Conditional Risk Model Concept for Critical Space

Systems Software,” Proceedings of the 7th International Conference on Probabilistic

Safety Assessment and Management (PSAM 7), Berlin, Germany, June 14-18, 2004.

21. M. Yau, M. Wetherholt and S. Guarro, “Safety Analysis and Testing of Critical Space

Systems Software”, Proceedings of the 4th International Conference on Probabilistic

Safety Assessment and Management (PSAM-4), Springer-Verlag, London, 1998.

22. "Development of Tools for Safety Analysis of Control Software in Advanced Reactors,"

NUREG/CR-6465, U.S. Nuclear Regulatory Commission, Washington, D.C., 1996.

23. M. Yau, G. Apostolakis and S. Guarro, “The Use of Prime Implicants in Dependability

Analysis of Software Controlled Systems”, Reliability Engineering and System Safety, 62,

pp. 23-32, 1998.

24. www.ascainc.com/dymonda/dymonda.html

http://www.ascainc.com/dymonda/dymonda.html

73

25. "Non-electronic Parts Reliability Data," NPRD-95, Reliability Analysis Center, Rome, NY,

1995.

26. M. Yau and S. Guarro, “Probabilistic Modeling Techniques Applied to the Estimation of

Risk for Space Launch Vehicle Systems,” Proceedings of the 9th International

Conference on Probabilistic Safety Assessment and Management (PSAM 9), Hong Kong

SAR, China, May 18-23, 2008.

27. "Methodology for Software Reliability Prediction and Assessment," RADC-TR-87-171,

volumes 1 and 2, Rome Air Development Center (RADC), 1987.

28. http://softrel.com/

29. P.A. Keiller and D.R. Miller, “On the Use and the Performance of Software Reliability

Growth Models,” Software Reliability and Safety, 32 No.1-2, pp. 95-117, 1991.

30. M.R. Lyu, "Handbook of Software Reliability Engineering," McGraw-Hill Publishing, ISBN

0-07-039400-8, 1995.

31. http://www.openchannelsoftware.com/projects/CASRE_3.0

http://softrel.com/
http://www.openchannelsoftware.com/projects/CASRE_3.0

74

This page intentionally left blank.

National Aeronautics and Space Administration

NASA Headquarters

Office of Safety and Mission Assurance

300 E Street SW

Washington, DC 20546-0001

