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Dynamic Fault Tree Analysis

O Fault tree analysis (FTA) is a widely accepted
methodology for reliability analysis.

[0 Recent advances in FTA have allowed the analysis
of FTC systems which are characterized by:

. high levels of redundancy; large numbers of
components

. complex redundancy management

. spares (cold, warm, pooled)

. functional and sequence dependencies
. hardware and software

. imperfect coverage




Static Fault Trees

0 Combinatorial model (models combinations of
events)
AND gates
. OR gates
K-of-M gates
O New approach for solution: BDD (Binary Decision
Diagrams)
0 Advantages:
Exact analysis without cutsets
. Can include repeated events
. can include coverage modeling
. Fast solution for very large models
O Disadvantage:
. Static model: cannot include sequence dependencies

Dynamic Fault Trees

O Include special constructs for modeling sequence
dependencies
. functional dependencies
. hot, warm and cold spares
. priority-AND
. sequence enforcing
0 Solution: convert to Markov chain

O Advantages:

. easier to use fault tree than Markov model directly

. can model dynamic redundancy, shared pools of spares, etc
0 .Disadvantage:

. state space explosion -- worst case exponential in number of
basic events




Coverage Modeling

O Adaptive (computer-based) systems can exhibit
multiple failure modes

O Covered (benign) failure can be handled

automatically
. error is detected and located
. switch in spare or bypass faulty component

. system can continue operation without manual
intervention

O Uncovered failure is globally malicious
. undetected error escapes from embedded system
. faulted component cannot be disabled
. malicious behavior confuses recovery procedures

O System dependability measures are very sensitive
to coverage

0 Good techniques exist for incorporating coverage
into static and dynamic fault trees.

Modular approach to fault tree analysis
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The best of both worlds

00 Modularization combines the best of Boolean
(BDD) and Markov approaches
Use fast and efficient BDD approach for static modules

. Build Markov chain automatically when needed for
dynamic behavior

. divide-and-conquer helps avoid models which are too
large to solve
O Different solution methods can aid in testing and
validation

O Modularization allows alternative solution
approaches
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Full dynamic fault tree model

HECS
Failure

A
processors Memory
and spare Units

C?L
EDEP EDEP EDEP

Spor @@ 0
Mi Mi
U1l u2

T

operator

Independent subtrees

Static fault trees
solved as BDD

Dynamic Fault trees
solved as Markov chains




SAGE III Stratospheric Aerosol & Gas Experiment)

-

DSU FAILS

CNTR STNG
HOST INPUT FAILS
OUTPUT MEM BOARD 1] MEM BOARD 2 1
WSP FALLS FALLS
MEMBD 1 MEM BD 2
FDEP FDEP

ACTIVE STANDBY
STRING STRING l /I V7 /

MEM BANK 1 MEMBANK2 | [ MEMBANK4 | [ MEM BaNK3
FAILS FALLS FALLS FAILS
Mechanical
HARDWARE FA
PROCESSOR: LVPS-THERM ELEVATOR-SE ODDS-AND-EN SPECTROMET] | [ azimuth CONTAMINATI
SPACECRAFT. £ ASSEMBLY SYSTEM DOOR

CPU-1750A TELEMETRY- DSUSENSOR-| [ Lvps-csA AZIMUTH-SER MOTHER SENSOR AZIMUTH SCAN HEAD | [ ATTENUATOR

M ASSEMBLY SENSOR MISC MECHANISM

MISC EMBL

Mission Avionics System Example

0 The example mission avionics system provides
several key software-based functions on a fault
tolerant hardware architecture.

O Each processing element is really a pair of
processors whose results are compared;
disagreements result in reconfiguration to a spare.

[0 There is a hot-spare for each processing element,

as well as a pool of cold spares which are shared
by several processors.
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System Requirements

O The success/failure of the system is driven by the
need to provide certain software functionality

. crew station management

. scene & obstacle processing

. local path generation

. system management functions
. vehicle management
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Redundant software architecture

O Next consider the path generation (PathGen) and
scene&obstacle (S&0) functions

0 Each function needs a single processing element to
provide full functionality

[0 There is also a reduced version of each function
that can provide minimum functionality (PathGenMin
& S&0min).

O In the event of a detected software fault in
PathGen, the system can switch to PathGenMin
(similarly for S&O).

O Further, if there are no longer 2 full processing
elements available, the system will switch to
PathGenMin and S&Omin running on a single
processing element.
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Sensitivity analysis

O Reliability analysis tells only part of the story
0 "What are the weak points in the system?”

0 "How do results change with changing input
parameters?"”

O "What is most cost effective way to improve
reliability?"
00 How much uncertainty in result?

0 These questions require sensitivity analysis of
reliability analysis results

Modular approach to sensitivity

O Sensitivity analysis (also called importance
analysis) can use partial derivative

O Sensitivity results from different submodels can
be easily combined using “chain-rule”

O Sensitivity analysis for BDD is almost free while
calculating reliability

O Sensitivity analysis for Markov chain is more
troublesome but we've developed an interesting,
efficient approximation
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Modularization & sensitivity analysis

Phased Mission Systems

0 System is subject to several consecutive (hon-
overlapping in time) phases of operation

O Reliability requirements can be different in each
phase

O Failure parameters may be different in each phase

0 Some components may hot be used in every phase,
but may nonetheless fail

0 System must succeed in each phase
O Components are dependent across phases




Dynamic Phased Mission System

Solve as Markov model
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Static Phased Mission System
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Benchmarks for Evaluation

[0 We are developing a set of benchmarks for
evaluation of Galileo

0 Includes "scrubbed"” versions of real
systems from industry

0 Determination of "correct” result by
alternative means

O Paper accepted for publication &
presentation at RAMS (Reliability and
Maintainability Symposium) January 2001

Unique Features in our Methodology

O Modularization allows solution of large systems

00 Combines Markov analysis with BDD analysis
automatically

O Automatic generation of Markov model or BDD

O Coverage modeling for computer-based systems
O Sensitivity analysis for static and dynamic models
O Phased mission analysis

0 Exact results (no hidden approximations)

00 Benchmarks to show applicability and correctness
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