Coding Examples and Pitfalls in VHDL
VHDL is both sequential and parallel. 

· Concurrent code, and different processes, run in parallel with everything else 

· Code in a process runs sequentially 

· You CAN NOT assume that the value of a signal has been changed within the same clock cycle 

Example: 
the_signal <= '1';

 if (the_signal = '1') then -- this may or may not be true!

   -- do something
 end if;

To guarantee the value has changed, arrange the code so the conditional will run on the following clock cycle. 
Example:
 process (a_clk)

 begin

   if rising_edge( a_clk ) then

     if (the_signal = '1') then

       -- count on this being true on the next clock

       -- do something based on the_signal

     end if;

     the_signal <= '1';

   end if;

 end process;

Quotes 

· There can be confusion about the use of quotes: 

· (b,x,d)"Value" -- type IS important 

· 'logic' ONLY 1 or 0 

If thens

1. Put THEN at the end of the line with the IF 

2. Put the code that belongs inside the IF….THEN on separate lines 

Example: 

 if (the_signal = '1') then

   -- do something here

 end if;

State machines 

· State machines can be implemented using vectors.
Example: 

 signal  state_machine :  std_logic_vector(3 downto 0);

 begin

 process (a_clk)

 begin

   if rising_edge( a_clk ) then

     case state_machine(3 downto 0) is

     when b"0000" =>

       -- you assume state_machine will be 0s the first time

       -- State 0 goes here

       -- If an event needs to happen in another state, change

       -- the state_machine inside a conditional

     when b"0001" =>

       -- here's state 1
     when b"0002" =>

       -- here's state 2
     when others =>

     end case;

   end if;

 end process;

Use simple state machines! 

The more complicated a state machine is, the harder it is to add, update or remove states.  It is better to have smaller state machines for each specific sub-task.
Latches 
Do not use Latches in the design if possible. A Latch can make the design harder to verify.

Latches are inferred in the design by: 
1. Not completely specifying "if" statements
2. Omitting an "else" statement
3. Not assigning values to a value
4. Missing the "event" statement 

 Avoid a Latch being developed by: 
1. Ensuring all possible input conditions are assigned an output value. 
2. Ensuring an "else" statement is used instead of an "elseif" statement in the final branch of an "if" statement
3. Ensuring default values are assigned at the beginning of a process 

Clock Gating 

A clock should never normally be gated. If you need to inhibit a signal gate the data, not the clock. [image: image1.png][image: image2][image: image3][image: image4][image: image5][image: image6][image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18][image: image19][image: image20][image: image21][image: image22][image: image23][image: image24][image: image25][image: image26][image: image27][image: image28][image: image29][image: image30][image: image31][image: image32][image: image33]
