Apollo Expeditions to the Moon



An important Marshall facility was the Dynamic Test Tower, the only place outside the Cape where the entire Saturn V vehicle could be assembled. Electrically powered shakers induced various vibrational modes in the vehicle, so that its elastic deformations and structural damping characteristics could be determined. The Dynamic Test Tower played a vital role in the speedy remedy of a problem that unexpectedly struck in the second flight of a Saturn V. Telemetry indicated that during the powered phases of all three stages a longitudinal vibration occurred, under which the rocket alternately contracted and expanded like a concertina. This "pogo" oscillation (the name derived from the child's toy) would be felt particularly strongly in the command module.

Analysis, supported by data collected in engine tests, confirmed that the oscillation was caused by resonance coupling between the springlike elastic structure of the tankage, and the rocket engines' propellant-feed systems. Susceptibility to pogo (a phenomenon not unknown to missile designers) had been thoroughly investigated by the Saturn stage contractors, who had certified that their respective designs would be pogo-free. It turned out that these mathematical analyses had been conducted on an inadequate data base.

Once the problem was understood, a fix was quickly found. "ln sync" with the pogo oscillations, pressures in the fuel and oxidizer feed lines fluctuated wildly. lf these fluctuations could be damped by gas-filled cavities attached to the propellant lines, which would act as shock absorbers, the unacceptable oscillation excursions should be drastically reduced. Such cavities were readily available in the liquid-oxygen prevalves, whose back sides were now filled with pressurized helium gas tapped off the high-pressure control system. After a few weeks of hectic activity, a pogo-free Saturn flight no. 3 successfully boosted the Apollo 8 crew to their Christmas flight in lunar orbit.

Previous Next Index