During its 6 second firing, the Apollo spacecraft's solid-fuel launch escape rocket generates the horsepower equivalent of 430 automobiles.

When the Apollo spacecraft passes through the Earth's Van Allen belts.

En route to the Moon, its trio of astronaut crewmen will be exposed to radiation equivalent to that of a dental X-ray.

The fully loaded Apollo Saturn V lunar vehicle stands 363 feet tall—60 feet higher than the Statue of Liberty on its pedestal...

And weighs more than six million pounds—13 times more than the famed figure.

The Apollo spacecraft command module which will carry U.S. astronauts to and from the Moon uses only 2000 watts of electricity, about the same as that required by the oven in an electric range.
THE ENGINES OF THE SATURN V LAUNCH VEHICLE THAT WILL PROPEL THE APOLLO SPACECRAFT TO THE MOON HAVE THE COMBINED HORSEPOWER EQUIVALENT TO APPROXIMATELY 500 JET FIGHTERS.

THE APOLLO SPACECRAFT, INCLUDING THE COMMAND AND SERVICE MODULES AND THE ADAPTER WHICH HOUSES THE LUNAR MODULE, IS 82 FEET TALL, ONLY 13 FEET SHORTER THAN THE ENTIRE MERCURY-ATLAS SPACE VEHICLE THAT WAS USED IN JOHN GLENN'S ORBITAL MISSION. THE APOLLO WILL CARRY THE FIRST U.S. ASTRONAUTS TO AND FROM THE MOON.

THE F-1 ENGINES THAT BOOST THE FIRST STAGE OF THE SATURN V LUNAR LAUNCH VEHICLE INTO SPACE GENERATE 160 MILLION HORSEPOWER, ABOUT DOUBLE THE AMOUNT OF POTENTIAL HYDROELECTRIC POWER THAT WOULD BE AVAILABLE AT ANY GIVEN MOMENT IF ALL THE MOVING WATERS OF NORTH AMERICA WERE HANNELED THROUGH TURBINES.
Almost 15 miles of wire, enough to wire 50 two-bedroom homes.

At its peak, more than 20,000 industrial firms, employing more than 350,000 persons, were producing equipment for the U.S. Apollo/Saturn space program under contracts with the National Aeronautics and Space Administration.

The Saturn V launch vehicle, which will boost U.S. astronauts on their lunar journey in the Apollo program, is powerful enough to send on the way to the moon all manned spacecraft previously launched in the Mercury and Gemini programs.

It would take 96 tank cars to hold enough rocket propellant to fill the mighty Saturn V—

The 363 ft launch vehicle destined to transport U.S. astronauts to the surface of the moon.
THE INTERIOR OF THE FUEL TANK OF THE FIRST STAGE OF THE SATURN V LUNAR LAUNCH VEHICLE IS LARGE ENOUGH TO ACCOMMODATE... 

THREE LARGE MOVING VANS SIDE BY SIDE.

THE FIVE 225,000-POUND THRUST J-2 ENGINES THAT POWER THE SECOND STAGE OF THE SATURN V LUNAR LAUNCH VEHICLE GENERATE THRUST EQUAL TO ABOUT 95.4 BILLION WATTS, OR THE POWER OF 72 400-FOOT DAMS.

IF YOUR CAR GETS 15 MILES TO A GALLON, YOU COULD DRIVE 10 MILLION MILES OR AROUND THE WORLD ABOUT 400 TIMES ON THE PROPELLANTS REQUIRED FOR THE APOLLO/SATURN LUNAR LANDING MISSION.
WHILE AN AUTOMOBILE HAS LESS THAN 2000 FUNCTIONAL PARTS, THE APOLLO SPACECRAFT COMMAND MODULE WHICH WILL CARRY U.S. ASTRONAUTS TO AND FROM THE MOON, HAS NEARLY TWO MILLION PARTS, NOT COUNTING WIRE AND SKELETAL COMPONENTS.

THE TANKS THAT HOLD THE SUPER-COLD FUEL IN THE APOLLO SPACECRAFT SERVICE MODULE ARE SO WELL INSULATED THAT ICE CUBES PLACED INSIDE THE TANKS WOULD TAKE EIGHT AND ONE-HALF YEARS TO MELT.

THE APOLLO COMMAND MODULE IN WHICH THREE U.S. ASTRONAUTS WILL RIDE TO AND FROM THE MOON, OFFERS 73 CUBIC FEET OF SPACE. MAN AGAINST THE 68 CUBIC FEET PER PERSON AVAILABLE IN A COMPACT CAR.

WHEN THE APOLLO REENTERS THE ATMOSPHERE, IT WILL DISSIPATE ENERGY EQUIVALENT TO APPROXIMATELY 86,000 KILOWATT HOURS OF ELECTRICITY, ENOUGH TO LIGHT THE CITY OF LOS ANGELES FOR ABOUT 104 SECONDS.