Sub-sonic Airplanes
Noise Technical Issues

Belur N. Shivashankara
Community Noise Technology Strategy Focal
The Boeing Company
Seattle, Washington

March 1998
Noise improvement due to Stage 3 phase-in is gradual

How to reduce noise impact:
- Engine and airframe noise reduction
- Operating procedures
- Land use planning

<table>
<thead>
<tr>
<th>Year</th>
<th>Impacted Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 3 Phase-in (Stage 2 Phase-out)</td>
<td></td>
</tr>
<tr>
<td>Stage 3 Fleet</td>
<td></td>
</tr>
</tbody>
</table>

Technology Implementation takes a long time and is costly

Stages:
- Identify needs
- Promotion/Funding
- Concept development
- Basic research
- Proof-of-concept
- Implementation
- Production
- In-service
- Noise benefit to community

Developmental Cost vs Year graph:
- Cost increases as the year progresses.
Breakthrough Technologies needed for Cost Effective Noise Solutions

Cost

Noise Reduction

Modest Technical Improvements

Major Technical Improvements

Technical Breakthroughs
Concepts for Achieving Lower Noise

Quiet Engine Design
- **Current Plans**
 - Optimum BPR
 - Advanced fan blade design
 - Low noise FEGV design
 - Jet noise suppressors (Chevrons, tabs)
- **Future Plans**
 - Stator bypass and inlet boundary layer control
 - Quieter turbines and combustors
 - Jet noise suppressors
 - Active flow control
 - Compressor noise reduction

Low Airframe Noise
- **Current Plans**
 - Flap/slats for low noise
 - Low noise landing gear design
- **Future Plans**
 - Active flow control
 - Low noise slat designs

Improved Low Speed Performance
- **Current Plans**
 - Single slotted flaps
 - Improved low speed L/D
- **Future Plans**
 - Drooped ailerons for T/O & landing
 - Active flow control

Nacelle and Acoustic Treatment
- **Current Plans**
 - Scarf inlet
 - Maximum acoustic area
 - Lining designs optimized at each location for maximum impact
 - Acoustic treatment for buzz-saw noise
- **Future Plans**
 - Active noise control
 - Treated inlet lip
 - Mode scattering linings in fan duct

Flight Operating Procedures for Low Community Noise (Future Plans)
- **Current Plans**
 - Advanced ATC and Avionics for procedures such as steep and curved descent
 - Advanced ATC for optimum noise abatement procedures and flight tracks
 - Modern ATC, FMC etc. to minimize vertical and horizontal dispersion
 - FMC capability to automate cutback based on airport
- **Future Plans**
 - Advanced ATC for optimum noise abatement procedures and flight tracks
Noise Exposure to Service Personnel and Crew are Emerging Issues

- Lower ramp noise standards?
- Flight crew communication/fatigue
- Crew rest environment
- Cabin crew exposure limits
Conclusion

• A balanced approach is needed
 - Engine and airframe noise reduction
 - Optimum operating procedures
 - Land use planning

• Technical areas that need work have been identified - further discussions are needed

• Technology Implementation takes a long time and is costly

• Community realization of the benefit of new technology airplanes is gradual and takes several years to materialize

• The subject of noise impacting ramp crew and airplane crew should also be addressed as an environmental concern