NASA Aerospace 2002
Turning Goals into Reality Conference

Executive Issues: Perspectives on the Future of Aerospace
Aerospace Technology and the Government Role

May 22, 2002
Santa Clara, California

Richard Golaszewski, Executive Vice President
GRA, Incorporated

115 West Avenue • Jenkintown, PA 19046 • USA
Telephone: 215-884-7500 • Fax: 215-884-1385
E-mail: richg@gra-inc.com
THE U.S. GOVERNMENT ROLE IN AEROSPACE

Overview

- Long history of funding civil and military aerospace R&D
- Industry has undergone decade of consolidation raising questions
 - Does government still have a role in funding R&D?
 - What is unique about aeronautics?
 - Is there sufficient competition among firms?
 - Why doesn’t the private sector invest enough in R&D?
 - Are aeronautics/aviation mature technologies?
- Current trends in government R&D expenditures and loss of U.S. market share seem to be related
RESEARCH AND DEVELOPMENT UNDERPINS TRANSPORTATION’S IMPACT ON THE ECONOMY

Economic Growth

Transportation

Vehicles, Systems, Infrastructure, and Human Factors

Technology

Research
ECONOMIC IMPACT OF AVIATION INDUSTRY

Estimated Economic Impact by Air Transportation and Related Sectors ($ billions 1999)

<table>
<thead>
<tr>
<th>Sector</th>
<th>Total Output</th>
<th>GDP Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air Transportation</td>
<td>$205</td>
<td>$80</td>
</tr>
<tr>
<td>Aircraft Manufacturing</td>
<td>$134</td>
<td>$94</td>
</tr>
<tr>
<td>Tourism</td>
<td>$94</td>
<td>$85</td>
</tr>
<tr>
<td>Agents/Forwarders</td>
<td>$3</td>
<td>N/C</td>
</tr>
<tr>
<td>Government</td>
<td>$2</td>
<td>N/C</td>
</tr>
<tr>
<td>Total Impact</td>
<td>$438</td>
<td>$259</td>
</tr>
</tbody>
</table>

N/C = not calculated

FUTURE MARKETS FOR AERONAUTICS PRODUCTS ARE LARGE

Total Projected Aircraft Market 1999 to 2008: $810 Billion

THE U.S. HAS REDUCED AEROSPACE R&D EFFORTS

Funds for Industrial Research and Development in the Aerospace Industry*

*Companies classified in SIC codes 372 and 376, having as their principal activity the manufacture of aircraft, guided missiles, space vehicles, and parts.

U.S. SHARE OF AEROSPACE MARKETS HAS FALLEN

World Shares

AIRBUS AND BOEING SHARE THE MARKET FOR LARGE COMMERCIAL TRANSPORTS

Percent Unit Orders: Airbus and Boeing

*Includes McDonnell Douglas
Source: Aviation Specialists Group

GRA, Incorporated
May 22, 2002
AIRBUS AND BOEING SHARE THE MARKET FOR LARGE COMMERCIAL TRANSPORTS

Percent of Dollar Value of Deliveries

- Airbus
- Boeing*

*Includes McDonnell Douglas
Source: Aviation Specialists Group

May 22, 2002
RATIONALE FOR GOVERNMENT INVESTMENT

- Public goods: National defense/aviation security

- Externalities (unpriced transactions)
 - Noise
 - Emissions
 - Safety
 - Capacity/delay reduction

- Appropriability: Ability of private sector to capture full returns

- Growth/high technology industries
 - High research intensity
 - Wide technology base

- International trade
 - Barriers to entry
 - Learning curves
 - Increasing returns
SPHERES OF INDUSTRY AND GOVERNMENT ACTIVITY

Government Industry

Technology Readiness Levels

1 2 3 4 5 6 7 8 9
Basic Research Concept Formulation Proof of Conception Concept in Laboratory Concept in Controlled Environment Prototype Demonstration Prototype Validation Actual System Demonstrated Operational Use

Effort

May 22, 2002
SAMPLE STATISTICS FOR NASA TECHNOLOGIES MATURING FROM TRL 1 TO TRL 9

<table>
<thead>
<tr>
<th>Years to TRL 9 from TRL:</th>
<th>Average (years)</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Basic Research</td>
<td>16.3</td>
<td>11.4</td>
</tr>
<tr>
<td>2 Concept Formulation</td>
<td>14.5</td>
<td>10.9</td>
</tr>
<tr>
<td>3 Proof of Conception</td>
<td>13.1</td>
<td>10.6</td>
</tr>
<tr>
<td>4 Concept in Laboratory</td>
<td>11.3</td>
<td>10.6</td>
</tr>
<tr>
<td>5 Concept in Controlled Environment</td>
<td>9.7</td>
<td>10.7</td>
</tr>
<tr>
<td>6 Prototype Demonstration</td>
<td>7.0</td>
<td>5.6</td>
</tr>
<tr>
<td>7 Prototype Validation</td>
<td>5.0</td>
<td>3.9</td>
</tr>
<tr>
<td>8 Actual System Demonstrated</td>
<td>2.2</td>
<td>3.1</td>
</tr>
<tr>
<td>9 Operational Use</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

NEW DEVELOPMENTS ON GOVERNMENT ROLE

Increased productivity is key to higher standard of living and economic growth—R&D key to increased productivity

Strategic trade theory
 - Declining costs
 - Entry barriers

Increasing returns industries

Transportation networks and competitiveness
 - Transportation cost reductions
 - Enhanced mobility

Increased focus on the system that vehicles operate in
 - Airports
 - Air traffic management
THE 3 TIER WORLD AIRCRAFT INDUSTRY STRUCTURE

A Multi-Tiered Structure

Tier 1: Primes (Airframes)
- Design and specialized engineering
- Product/process technology
- Coordinate suppliers
- Systems integration

Tier 2: Subsystems (Engines, Landing Gear, etc.)
- Product/process technology
- Specialized engineering
- Advanced materials
- Advanced techniques

Tier 3: Components and Repair
- Airframe structures and parts

May 22, 2002
POTENTIAL FOR TECHNOLOGY TO AFFECT TOTALLY NEW AIRPLANE DESIGNS IS SMALL

Source: Boeing

May 22, 2002

Number of airplanes at year end

25000
20000
15000
10000
5000
0

Out of Production Models (as of 1998)

Retained Fleet

Total Airplanes Produced After 1998

New Designs
SUPPORT OF FUTURE NAS

- Investments in technology that affect the system, or that can be retrofit may have larger near-term payoffs

- Collaborative roles
 - NASA R&T
 - FAA application

- Invest for risk reduction/validation
 - Make R&T implementable
 - No specific FAA R&D funding for incorporating NASA research results

- Need better handle on air transportation demand
 - Impacts of September 11th
 - Changes in security processes
 - Travel time and cost impacts
 - New airline business models

- The potential benefits of improved technology and processes for aviation security are large
RESEARCH LEVEL OF EFFORT

- Both public and private investment in aerospace R&D have fallen in real terms
 - Military and civil

- U.S. losing share to foreign competitors
 - Large transports
 - Regional jets
 - Rotary wing aircraft
 - Engines
 - Systems
 - ATC technology

- Need to fill gap prior to commercialization
 - Validation/risk reduction important for complex high consequence systems
 - Private sector may not have incentives to utilize research outcomes if too risky
 - Also applies to FAA adoption of NASA technology
U.S. VERSUS FOREIGN INDUSTRY-GOVERNMENT COLLABORATION

- Competition is global

- All countries support research
 - Military
 - Civil
 - Research laboratories/test facilities

- Foreign products are both quality and cost competitive

- Europeans also use repayable development grants
 - Per U.S./EU agreement
 - Rationale was state-owned companies/capital market failures
 - Reduces risks of technology application
 - Does infant industry rationale still hold?

- Increasing U.S. R&D as an effective counter strategy
 - Invest in technology validation/risk reduction
 - Avoid “picking winners”
SUMMARY

Strong rationale for government support of civil and military aeronautics R&T exists

Shift has been from traditional vehicle/performance technology to classic public goods
- Airport/ATC congestion/delay
- Engine emissions/noise
- National defense
- Safety

Europeans establishing strong aeronautics program that includes vehicle and performance technology components as well as ATC technology
- Frameworks program
- Vision 2020