New Models in Collaborative R&D

Chris Roberts
Founder and CEO, PixSell Inc.
croberts@pixsell.com

NASA: Turning Goals Into Reality
June 10-12, 2003
Williamsburg, VA
Technology Transfer From Government to Business: Entrepreneurial Perspective

- Innovation = Invention + Exploitation
 - Invention = Creative Process, Laboratory Discovery
 - Exploitation = Develop and Deliver Application of the Invention to One or More Users or Markets

- Innovation is a Slow Process
- Difficult to Innovate Consistently
Business Risk Categories

- Technical Risk
- Market Risk
- Financial Risk
- Political Risk
- Personnel Risk
Patience Is a Necessary Virtue

- Innovation Process Can Be Very Slow
 - Internet invented 1969,
 - Mosaic Browser 1992
 - DotCom Business Boom late 1990s
 - Transistor Invented at Bell Labs 1949
 - First Commercial Product 1959

- Reasons for Slow Pace of Innovation
 - Cultural Conservatism: It’s Not Broke, So Don’t Fix It
 - My “Paradigm” is Just Fine Thank You
 - Cost vs. Benefit Is Not Apparent
 - Not Invented Here Syndrome
Charity Begins in the Lab?

- Inventing Lab May not Benefit Directly From Successful Innovation
 - ATT/Bell Labs (Transistor) ➔ (Fairchild, National Intel, TI)
 - Xerox PARC (Ethernet, Mouse, GUI) ➔ (3Com, Apple)
 - DARPA (Internet, Distributed Interactive Simulations)
 ➔ DotComs, NetScape, Computer Games
 - Sandia Labs (Clean Room Technology)
Failure Is **Always** An Option!

- 90% of All Small Businesses Fail within First 5 Years (Remember the Dot.Bombs)
- MIT Study Found 90% of HighTech Businesses w/Technical Management Teams Failed
- BUT – 80% of HiTech Businesses w/Business Management Teams Succeeded
- Inventor May Not Benefit from Innovation
Winners and Losers in Technology Innovation

- The Superior Technology Does Not Always Prevail in the Marketplace
- Betamax vs. VHS
- MS Office vs. Lotus, WordPerfect, Harvard Graphics
- DOS/Windows vs. Apple OS, CPM, OS2, Linux, Unix,
- Amiga, Macintosh vs. IBM PC
Critical Success Factors for G2B Collaborative Innovation

- Staffing
- Metrics
- Financing
Key Players on a Successful Entrepreneurial Technology Venture

- Idea Generator: Technical Lead, Scientist, Creative Thinker
- Product Champion: Entrepreneur, Idea-Exploiter
- Program Manager: Business Support and Coordination
- Resource Sponsor: Financier, Coach
Program Metrics
Government vs. Business

- **Government Metrics**
 - **Process and Programmatic**
 - No. Agreements Signed
 - No. VC Investments made
 - Total VC dollars invested
 - $ From Tech Licenses
 - No. R&D projects w/Industry
 - **Political and Economic**
 - No. New Jobs Created
 - No. $ Invested Locally
 - No Embarrassments
 - **Technical**
 - Benefit to Agency From New Products
 - Advance in State of the Art

- **Business Metrics**
 - Revenue
 - Profit
 - Market Share
 - Growth Rate
 - Time to Market
 - Return on Investment
 - Liquidity for Investors
Financing Innovation in Stages

- Financial Lifecycle Stages
- Requirements Usually Grow over Time
 - Seed or Startup: Product Development, Market Research
 - First and Second Stage: Begin Product Roll-out, Full Scale Operations,
 - Third Stage – Major expansion, new products
 - Mezzanine, IPO

- Sources of Money
 - Personal Assets
 - Friends and Family
 - Angel Investors
 - Venture Capital Funds
 - Banks
 - Strategic Partners
 - Public Markets (IPO)
 - Contracts, Grants, SBIRs

- Introduction to Money
 - Investment Bankers
 - Accountants and Lawyers
 - Venture Forums
Welcome to Venture Capital

- What is a Venture Capital Fund?
- Where Do they Get their Money?
- How Much/How Little Will VCs Invest
- What do VCs Look For in an Investment?
- How Do VCs Make Money?
 - Rule of Thirds
Recent Trends In Venture Capital Investments

Venture Capital Investments

Number of Deals
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

Year of Investment
Recent Trends In Size of Venture Capital Investment

Size of Venture Capital Investments

Year of Investment

$Millions

0 2 4 6 8 10 12 14
Total Annual Venture Capital Investments

Total Venture Capital Investment by Year

Year of Investment

Investment $Millions

$0

$20,000

$40,000

$60,000

$80,000

$100,000

$120,000
Venture Capital Trends Over the Last 5 Years by Quarter

Venture Capital Transactions by Quarter

Average Venture Capital Investment by Quarter
What Does Venture Capital Cost?

Seed or Startup Stage: 50-60% ROI – 10 times investment in five years
First & Second Stage: 30-50% ROI - 5 to 7 times investment in five years
Third Stage & Mezzanine: 20-30% ROI

<table>
<thead>
<tr>
<th>Co.Value ($M)</th>
<th>$20</th>
<th>$40</th>
<th>$60</th>
<th>$80</th>
<th>$100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment ($M)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>96%</td>
<td>48%</td>
<td>32%</td>
<td>24%</td>
<td>19%</td>
</tr>
<tr>
<td>6</td>
<td>N/A</td>
<td>72%</td>
<td>48%</td>
<td>36%</td>
<td>29%</td>
</tr>
<tr>
<td>8</td>
<td>N/A</td>
<td>96%</td>
<td>64%</td>
<td>48%</td>
<td>38%</td>
</tr>
</tbody>
</table>
VC Equity Ownership Demand

VC Equity Ownership %

Company Value

$20 $40 $60 $80 $100

0% 20% 40% 60% 80% 100%

$4 Million $8 Million
Venture Capital in Aerospace

- Very Few Sources
- Mature Market
- Slow Growth Rates
- Large Investments Required
- Long Time to Market
- Large Number of Failed Ventures
- Absence of Pool of Happy Investors
Different Approaches to Collaborative R&D

- NASA/State of MS Joint Venture: MSCI
- NASA SBIRs
- NAVY – Center for Commercialization of Advanced Technology (CCAT)
- Department of Energy Labs – Outsourcing (Battelle, Lockheed Martin)
- CIA - In-Q-Tel [Quasi Venture Capital]
- Army – Applied Communication and Information Networking (ACIN) [Defense Incubator]
- GPS
Observations on SBIRs

- **Advantages**
 - No equity dilution
 - Retain IP ownership
 - Customer focused
 - Follow-on potential in phase 2, phase 3
 - Leverage of private capital encouraged (DOD Fast Track)

- **Disadvantages**
 - Topics Selected by Govt.
 - Multiple Program Objectives
 - Limited Phase 1, 2 Funding
 - Lengthy decision cycle
 - Low Probability of Award
 - Complex Application Process
 - Fixed Schedule of Procurements
 - Slow Payment
Think Orthogonally!

- Do not confuse the source lab with the end market
- Good technology can be applied anywhere
 - Cryogenic quenching ➞ turbine blades vs. cutlery
 - Microwave amplifier tubes ➞ Radar vs. Kitchen appliance
 - Rocket motor technology ➞ consumer ceramics/BBQ, electronic packages, GNC ➞ automated security tracking systems
Recommendations for Government Programs

- Embrace Risk, Help to Mitigate Technical, Financial, Personnel
- Make Decisions Faster
- Seek Out and Work With Entrepreneurs, Business Schools, Investor Groups, Venture Forums, Business Plan Competitions