Turning Goals Into Reality

Propulsion Systems
Contribution to the Future

Ronald E. York, Ph.D.
Rolls-Royce
Allison Advanced Development Company

12 June 2003
Williamsburg
Rolls-Royce is…Building the Future Now

<table>
<thead>
<tr>
<th>New Defense Programs</th>
<th>Technology Programs</th>
<th>Emerging Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• STOVL JSF</td>
<td>• IHPTET</td>
<td>• UCAR</td>
</tr>
<tr>
<td>• F136 for JSF</td>
<td>• VAATE</td>
<td>• CRW</td>
</tr>
<tr>
<td>• Eurofighter</td>
<td>• SHFE</td>
<td></td>
</tr>
<tr>
<td>• AH-66 Comanche</td>
<td>• SATE</td>
<td></td>
</tr>
<tr>
<td>• V-22 Osprey</td>
<td>• Joint US/UK HCF</td>
<td></td>
</tr>
<tr>
<td>• RQ-4A Global Hawk</td>
<td>• LRSA</td>
<td></td>
</tr>
<tr>
<td>• Fire Scout</td>
<td>• NAI</td>
<td></td>
</tr>
<tr>
<td>• C-130J</td>
<td>• UEET</td>
<td></td>
</tr>
<tr>
<td>• A400M</td>
<td>• NAAR</td>
<td></td>
</tr>
<tr>
<td>• Super Lynx 300</td>
<td>• UEET</td>
<td></td>
</tr>
</tbody>
</table>
Preparing for the Future: Near-term

Platforms: Requirements: Challenges

V-22: convertible rotorcraft: SFC, systems integration

ERJ-145: low cost: supply chain, environment

Global Hawk: HALE: SFC, Re, HPX

JSF: stealth, STOVL, supercruise: SFC, lift system integration

Propulsion Enablers

- Innovative architectures
- Efficient engines
- Power transmissions
- US Government funded advanced technology programs:
 - DOD: IHPTET
 - NASA: AST & QAT
 - US/UK ASTOVL
- Commonality with commercial systems
JSF Lift System

- Variable Guide Vanes
- Fan Blisk
- Clutch
- 2 Stage Counter Rotating Fan
- 3 Bearing Swivel Module
- Roll Post

- ~19,000 lb
- ~18,000 lb
- ~3,700 lb
- ~39,000 HP

Rolls-Royce
Laying the Foundation for the Future: Medium-term (2010-2020)

Platforms: Requirements: Challenges

UCAV: range, stealth, endurance: SFC, cost

Mobility: high thrust, range: SFC, cost

Supersonic: speed, economics, environment: cycle, cost

Strike: speed, stealth, endurance: cycle, cost

Propulsion Enablers

- High OPR, temperature
- Variable cycles
 - Performance
 - Emissions
 - Noise
- More electric engines
 - High power extraction
 - Lubrication free
 - Magnetically suspended & controlled rotors
 - Prognostics & diagnostics
- Government funded advanced technology programs:
 - IHPTET, VAATE, QAT, UEET, NAI

Rolls-Royce
VAATE Focus Areas

Versatile Core
Military/Civil Multi-Use, Maintenance Friendly
- Wide Flow / High Efficiency Components
- Long Life for Safety & Design Margin
- High Excess Horsepower Technology

Intelligent Engine
High Performing, Adaptive
- Adaptive Component Performance
- Integrated Propulsion & Power
- Real Time Life Tracking
- Proactive Health Management

Durability
Turbine Engine Readiness
- Physics-Based Predictive Systems
- Integrated Inspection/Repair/Mfg & Materials Systems
- Robust, Damage Tolerance for Multi-Use Application
- Holistic Test Protocol & Accelerated Severity Testing

10X Improvement in Capability / Cost
Electric Engine Concepts

- **Air for pressurization/cabin conditioning supplied by dedicated electrical system**
- **All engine accessories electrically driven**
- **Active magnetic bearings**
- **Internal starter motor/generator replaces conventional gearboxes**
- **Generator on fan shaft provides power to airframe under both normal and emergency conditions**
- **Aircraft/engine interface simplified to fuel, electricity and thrust**
- **Intelligent sensors Advanced engine health monitoring**
- **Distributed controls**

Rolls-Royce
Anticipating the Future: Far-term

Platforms: Requirements: Challenges

Extended Endurance UAVs: continuous surveillance & communications: closed cycles, systems integration

Global Transport (trans-atmospheric): speed, cost: cycle, cost

Access to Space: speed, cost: cycle, materials

Propulsion Enablers

- Novel cycles
 - TBCC
 - Pulse detonation
 - Fuel cells

- New fuels
 - Endothermic, hydrogen, nuclear, solar

- High temperatures and thermal integration

- Government funded advanced technology programs:
 - VAATE, NAI
High Mach Turbine Engine Technology

- High Mach turbine enables SSCM and LRSA
- Turbine Based Combined Cycle (TBCC) systems enable hypersonic cruise and/or dash
- TBCC enables Two Stage to Orbit (TSTO)

Access to Space

Rolls-Royce
Constant Volume Combustor

Exploded View

CVC

Conventional

Rolls-Royce
Propulsion is Enabling the Future!

- Propulsion innovation and platform advances are inextricably linked.
- Technology enablers have typically been developed by government programs and are pulled by advanced military requirements.
- The time scale of propulsion technology is typically more than 20 years from early component demonstrations to first flight.
- New requirements drive certain technologies, but most step changes come from synergistic combination of several enabling technologies.
- Many propulsion technologies, novel cycles and new architectures are being developed today that will enable major steps in future systems.
Rolls-Royce Innovation: Delivering the Future