Environmental Viability of Alternative Jet Fuels

Jim Hileman
Massachusetts Institute of Technology

NASA Green Aviation Summit
September 9, 2010

This work is funded by the FAA and the U.S. Air Force Research Lab, under FAA Award No.: 06-C-NE-MIT, Amendment Nos. 012 and 021 as PARTNER Project 28. Managers: Warren Gillette (FAA), Bill Harrison and Tim Edwards (AFRL)

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the FAA, NASA, AFRL, or Transport Canada
Background and Acknowledgments

• Full Research Team: Russell Stratton, Matthew Pearlson, Nicholas Carter, Kristy Bishop, Hsin Min Wong, Pearl Donohoo, Christoph Wollersheim, Malcolm Weiss, Ian Waitz, and James Hileman, mostly of MIT Aero Astro

• Finishing fourth year of research on alternative jet fuels with funding from FAA, U.S. Air Force (PARTNER Project 28) and National Academies (ACRP Project 02-07)

• In next two-year phase of PARTNER research, will collaborate with:
  – MIT Joint Program on Global Change
  – Woods Hole Marine Biological Lab
  – Argonne National Labs (GREET)
  – U.S. Department of Transportation Volpe Transportation Center
  – Environmental Law Institute

• PARTNER cost share partners:
  – DLR, U. of Cambridge, Boeing, Pratt & Whitney, and Shell
Motivation

Examining Potential of Alternative Fuels to:

- Reduce emissions that impact global climate change and air quality thus improving the environment.
- Expand and diversify energy supplies beyond conventional petroleum.
- Be produced in large quantities without adverse impacts on our land and water resources.

Study Uniqueness:

- Focus on SPK fuels - compatible with existing aviation infrastructure
- Compare wide range of alternative fuel options using consistent set of metrics and assumptions.
- Considering multiple uses for alternative jet fuel feedstocks.
Alternative Fuel Viability

• Viability of Fuel Composition
  – Is the fuel compatible with the current fleet of transportation vehicles?

• Viability of Fuel Pathway
  – Fuel pathway comprised of feedstock, processing technique and fuel composition
  – Are fuel feedstock and processing techniques amenable to large-scale production?
  – Determined (in no particular order) by life cycle GHG emissions, land usage, impact on local environment, fresh water withdrawal and consumption, air quality impacts, economics…
Environmental Impacts of Aviation

CO\(_2\): 71%
Water: 28%
CO, HC, NO\(_x\), SO\(_x\), Primary PM\(_{2.5}\): < 1%

Aircraft Noise
Population Exposure and Health Impacts

Global Climate Change
Cooling Effects
Warming Effects

Atmospheric Chemistry and Physics
Primary PM\(_{2.5}\)
Secondary PM\(_{2.5}\)
Ozone

Combustion Emissions

Emissions from Fuel Production

Land and Water Usage

CO\(_2\), CH\(_4\), N\(_2\)O, CO\(_2\)
Approach
Include alternative fuels within Aviation Environmental Tool Suite.

http://www.apmt.aero
Some Alternative Transportation Fuels

- Fuels “better suited to ground transportation”
  - Alcohols (ethanol, butanol, etc.) and FAME (biodiesel / biokerosene)
  - Reduced energy content
  - Incompatibility concerns exist for all of these fuels
  - Thermal stability concerns for biodiesel and biokerosene

- Jet fuel from unconventional crude
  - Created from oil sands and oil shale
  - Heavier and higher sulfur content than conventional crude
  - Requires additional pre-processing (higher GHG)

- Drop-in, synthetic jet fuels
  - Functionally similar to Jet A, but created from non-petroleum sources
  - Can be renewable, with a potential for sustainability

- Cryogenic fuels derived from natural gas
  - Requires new aircraft design and infrastructure changes
  - Need to examine infrastructure, engine, aircraft, and fuel cycle
  - Conducted work during NASA N+3 study – publications forthcoming

Considerable additional information on these in Hileman et al. PARTNER Report 2009-001.
Fleet-wide Alternative Jet Fuel Use

Alcohols, biodiesel, and biokerosene better suited for ground transport.

Focus on synthetic fuels.

Hileman, Stratton and Donohoo, accepted to JPP (April 2010)
These pathways all result in a hydrocarbon fuel (no oxygen) that would have similar properties to conventional jet fuel.
Alt Jet Fuel Life Cycle GHG Emissions
Referred to as Stratton et al. (2010) herein

- LCA of 16 different feedstocks
  - Screening level study of next generation alternative jet fuels
  - Examined low, baseline, and high emissions scenarios
  - Emphasized influential aspects of fuel production on GHG emissions
- Other issues considered: land, water, invasiveness
- Review by Shell, Chevron, NETL, UOP, and Michigan Tech
- Will update Version 1.2 with new feedstock-to-jet pathways
LCA Resolution Levels

Level 3
Screening

Conducted in support of a preliminary assessment of a technology alternative, to inform policy makers about research funding.

Level 2
Standard

All major operations examined, but with a lower degree of completeness and data quality than comprehensive LCA.

Level 1
Comprehensive

Conducted to meet regulation.

AFLCAWG. AFRL-RZ-WP-TR-2009-2206
### Fuel Pathways Considered for GHG within Stratton et al. (2010)

<table>
<thead>
<tr>
<th>Source</th>
<th>Feedstock</th>
<th>Recovery</th>
<th>Processing</th>
<th>Final Product</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Petroleum</strong></td>
<td>Conventional crude</td>
<td>Crude extraction</td>
<td>Crude refining</td>
<td>Jet A / ULS Jet A</td>
</tr>
<tr>
<td></td>
<td>Canadian oil sands</td>
<td>Bitumen mining/creation &amp; upgrading</td>
<td>Syn-crude refining</td>
<td>Jet A</td>
</tr>
<tr>
<td></td>
<td>Oil shale</td>
<td>In-situ conversion</td>
<td>Shale oil refining</td>
<td>Jet A</td>
</tr>
<tr>
<td><strong>Natural gas</strong></td>
<td>Natural gas</td>
<td>Natural gas extraction &amp; processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Coal</strong></td>
<td>Coal</td>
<td>Coal mining</td>
<td>Gasification, F-T reaction and upgrading (with and without carbon capture)</td>
<td>SPK Jet Fuel (F-T)</td>
</tr>
<tr>
<td><strong>Coal and Biomass</strong></td>
<td>Coal and Biomass</td>
<td>Coal mining &amp; biomass cultivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Biomass</strong></td>
<td>Biomass switchgrass, corn stover, forest waste</td>
<td>Biomass cultivation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Renewable oil, soybeans, palm algae, jatropha, rapeseed, salicornia</td>
<td>Biomass cultivation &amp; extraction of plant oils</td>
<td>Hydroprocessing</td>
<td>SPK Jet Fuel (HRJ)</td>
</tr>
</tbody>
</table>
Key Issues in creating a life cycle GHG emissions inventory:

• System Boundary Definition
• Allocating Emissions among Co-products
• Data Quality and Uncertainty
Developed inventories using GREET database and computing framework
- GREET designed for ground transportation fuels – modified to reflect jet fuel
- Created many new feedstock-to-fuel pathways (e.g., oil shale, palm, jatropha, salicornia, algae) that are not in GREET

GREET Website: http://www.transportation.anl.gov/modeling_simulation/GREET/
Land Use Change (LUC) Emissions

- Can be positive or negative depending on land involved
- Magnitude depends primarily on land type being converted and crop type
- LUC can be direct (due to land conversion) or indirect (consequence of a price signal in agricultural products)
Impact of LUC on Palm HRJ Emissions

LUC P0: No land use change
LUC P1: Conversion of logged over forest
LUC P2: Conversion of tropical rainforest
LUC P3: Conversion of peat land rainforest

- Extremes vary by factor of 30
- International measures are needed to prevent large Land Use Change

Data from Stratton et al. (2010)
Petroleum Usage

Fully loaded 747-400 consumes ~1200 barrels of jet fuel to fly Boston to Dubai

Boston Logan uses ~25,000 barrels per day (bpd)

Petroleum Usage (2007):

- U.S. Jet consumption of 1.6 million bpd
- U.S. oil consumption of 20.5 million bpd
- Total worldwide oil consumption of 86.0 million bpd

* http://www.eia.doe.gov/neic/infosheets/petroleumproductsconsumption.html
Need feedstocks with high yield and low life cycle emissions that require minimal arable land and water usage.

Data from Stratton et al. (2010)

<table>
<thead>
<tr>
<th>Synthetic Fuel</th>
<th>Yield (L/ha/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soy HRJ</td>
<td>400</td>
</tr>
<tr>
<td>Palm HRJ</td>
<td>3300</td>
</tr>
<tr>
<td>Algae HRJ</td>
<td>17000</td>
</tr>
</tbody>
</table>
Some Promising Pathways

1) Fossil Fuel & Biomass to F-T Fuel
2) Algae to HRJ Fuel
3) Salicornia to HRJ / F-T Fuel

Salicornia Land Use Change Scenarios

- LUC-H0: No land use change
- LUC-H1: Desert converted to salicornia cultivation

Switchgrass Land Use Change Scenarios

- LUC-B0: No land use change
- LUC-B1: Carbon depleted land converted to switchgrass cultivation

Data from Stratton et al. (2010)
Assessing Pathway Variability

Variability considered using scenarios with consistent assumption sets

Sources of variability:
• Feedstock type
• Conversion technology
• Process efficiency
• Cultivation and harvesting
• Carbon capture efficiency

Sample land use change scenarios:
• Use marginal land or waste product
• Conversion of Brazilian cerrado
• Destruction of rain forest
• Salicornia soil carbon sequestration
• Switchgrass soil carbon sequestration

Data from Stratton et al. (2010)
**Full Life Cycle GHG Inventory Results**

**Key Points:**
- Screening level study
- Not all fuel options covered
- Large variability
- Few biofuels have zero GHG
- Conventional petroleum has lowest emissions among fossil fuels
- Land use change emissions have large impact on results

**Next on the list:**
1) Sugars to Jet Fuel
2) Pyrolysis oils to Jet Fuel Blend Stock
3) Camelina oil to Jet Fuel
4) Other F-T Pathways

Data from Stratton et al. (2010)
Summary

• Life cycle assessment is critical to determine whether a potential alternative jet fuel will reduce GHG emissions

• Alternative fuels exist that could both reduce life cycle GHG emissions and improve air quality (e.g., HRJ and CBTL fuels w/CCS), but at present the ability to produce these fuels is limited

• If land use changes are incurred, biofuels can have life-cycle GHG emissions that are many times worse than conventional jet fuel – *international measures needed to mitigate iLUC*

• Feedstocks are needed that have low life-cycle emissions and high yield with minimal arable land usage and water consumption – *avoid biofuel feedstock irrigation*

• Work continues on the evaluation of alternative jet fuel sustainability and feasibility

Questions? *Jim Hileman: hileman@mit.edu*
Backup Charts
Upstream emissions need to be assigned to co-products

- Simple example is soy oil and meal that come from soybeans
- Expand system to displace equivalent product
- Allocate based on property - mass, energy, economic value
Allocating GHG among Co-products
Jatropha to HRJ (1 of 2)

- Need both co-product usage and allocation methodology
- Example: Jatropha Hydroprocessed Renewable Jet (HRJ) fuel

Trade studies were conducted to examine the impacts of different co-product usage assumptions and allocation methodologies.
Allocating GHG among Co-products
Jatropha to HRJ (2 of 2)

Co-product usage should be linked to the allocation method:

<table>
<thead>
<tr>
<th>Mass</th>
<th>Economic value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>Displacement (system expansion)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Co-product use:</th>
<th>Allocation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Electricity</td>
<td>Energy</td>
</tr>
<tr>
<td>2</td>
<td>Fertilizer</td>
<td>Displacement</td>
</tr>
<tr>
<td>3</td>
<td>Animal feed, Electricity</td>
<td>Economic value, Displacement</td>
</tr>
<tr>
<td>4</td>
<td>Electricity</td>
<td>Displacement</td>
</tr>
</tbody>
</table>

Subjective allocation and co-product usage choices can be more significant than numerical inputs

Data from Stratton, Wong, & Hileman (2010)
Allocating GHG among Co-products
Coal & Biomass To Liquids (CBTL via F-T)

- CBTL product slate:
  - 25% F-T jet fuel,
  - 55% F-T diesel
  - 20% F-T naphtha
  - No export electricity

- If jet fuel given “biomass credit” for all CBTL fuels, then max GHG reduction for jet fuel corresponds to min jet fuel production

- Allocating by energy content overcomes this issue

Data from Stratton, Wong, & Hileman (2010)
Impact of Non-CO$_2$ Combustion Effects
Impact of Non-CO$_2$ Combustion Effects

Assumed unchanged with SPK use

Data from Stratton & Hileman (submitted to ES&T, 2010)