ARMD Strategic Thrust 4: Transition to Low-Carbon Propulsion

Barb Esker, Rich Wahls, and Roadmap Teams 4A & 4B
Aeronautics R&T Roundtable, Washington DC
May 24, 2016
Thrust 4

Transition to Low-Carbon Propulsion
- Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Thrust 4a – Alternative Fuel Roadmap Team
Kick-off 7/23/15
Scope: Drop-in fuels & associated architectures
Vertical lift/fixed wing, civil missions; dual-use military

Co-leads: **Barb Esker** / Rich Wahls
AFRC: Steve Jensen
GRC / AATT / TTT: Angela Surgenor
LaRC: Bruce Anderson
ARMD: Dell Ricks

GRC, Systems, Propulsion: Chris Snyder
LaRC, Systems, Propulsion: Mark Guynn
AAVP: Peggy Cornell

Thrust 4B – Hybrid Electric Roadmap Team
Kick-off 6/12/15
Scope: Large Transport, Small Thin-haul, passenger vertical lift, unmanned aerial vehicles
[internal community—AATT, CAS (DELIVER, SCEPTOR)]

Co-leads: **Kevin Carmichael** / Rich Wahls
AATT: Amy Jankowsky
AFRC: Hyun Dae Kim
CAS/DELIVER: Lee Kohlman
ARC: Nateri Madavan
CAS/SCEPTOR: Mark Moore
GRC: Jim Felder
LaRC: Dan Williams
ARMD: Dell Ricks
TTT: Jeff Viken
Outline

• Background
• Vision
• Introduction
• Strategy
• Outcomes, Benefits, Capabilities
• Research Themes
• Roadmaps
• Stakeholder roles, partnerships
• Top 5 Risks / Dependencies
• Additional materials
NASA Aeronautics Six Strategic Thrusts

NASA has identified Six Strategic Thrusts to focus research in response to Three Aviation Mega-Drivers. Thrust 4 – technology convergence to impact environmental challenges

T1 Safe, Efficient Growth in Global Operations
- Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

T2 Innovation in Commercial Supersonic Aircraft
- Achieve a low-boom standard

T3A ST Ultra-Efficient Commercial Vehicles
- Pioneer technologies for big leaps in efficiency and environmental performance

T3B VL

T4 Transition to Low-Carbon Propulsion
- Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

T5 Real-Time System-Wide Safety Assurance
- Develop an integrated prototype of a real-time safety monitoring and assurance system

T6 Assured Autonomy for Aviation Transformation
- Develop high impact aviation autonomy applications
Thrust Relationships
Vehicle-centric look & some vehicle-dependent context

The six Thrusts are not independent. Dependencies exist between all thrusts. Low-carbon propulsion exists to be applied to vehicles, has direct implications to infrastructure and leverages/relies on advances in non-aerospace sectors.

Value Proposition of Air Transportation

What I Fly

Vehicles

MISSION CAPABILITY
Combination of: Payload, Range, Speed, Field-Length, Hover, Endurance

Environmentally Friendly, (e.g. Noise, Emissions)
Safety, Cost/Affordability

How I Fly

Operations

365/24/7 OPERATIONS
Rules of the Road: Safe, Efficient, Flexible, Resilient

Supersonic Transports
Speed 2X subsonic with minimal efficiency and environmental compatibility differences

Subsonic Transports
Backbone of air transportation, Environmental Compatibility while reducing cost, increasing range, maintaining safety

Vertical Lift
Accessibility—Field Length/Noise/Hover with more range/speed/payload/safety/comfort

Other Vehicle Types
e.g. small fixed wing
Thrust Relationships
What Distinguishes Thrust 4 from Thrust 3 (and 2) Propulsion?

Ultra-Efficient Commercial Vehicles

- Efficiency (use less energy)
- Emissions (use less energy)
- Noise (less perceived noise)

Airframe

Propulsion – Advanced Gas Turbines and Propulsors
Vehicle System Integration

Transition to Low-Carbon Propulsion

Aviation Alternative Fuels (Drop-In)
- Reduce specific carbon (use cleaner energy)
- Clean, compact combustion
- Gas turbines needed for foreseeable future

Alternative Energy/Power Architectures
- Energy sector convergent technology*
- Promise of cleaner energy
- Potential for vehicle system efficiency gains (use less energy)
- Leverage advances in other transportation sectors
- Address aviation-unique challenges (e.g. weight, altitude)
- Recognize potential for early learning and impact on small aircraft

*energy sector includes other government agencies, industry, and academia
Thrust 4 Roadmap Development
Two focused teams will result in one roadmap

Introduction & Overview

Thrust 4A—Low Carbon Emissions achieved through use of alternative jet fuels with lower life-cycle carbon footprints

– enable use in air vehicles with advanced, highly efficient propulsion systems
– inform/support the regulatory communities on the impact of the use of these fuels

• **Vision**: To reduce the carbon footprint of air transportation through effective use of lower life-cycle carbon alternative jet fuels with known impact on the environment.

Thrust 4B—Low Carbon Emissions achieved through use of alternative propulsion systems such as electric/hybrid electric propulsion

• **Vision**: To explore, advance and transform aviation via electric/hybrid electric propulsion integrated with airframes to increase aircraft functionality, reducing carbon emissions while improving operational efficiency and reducing noise
A Vision for the Future of Civil Aviation

• There will be a radical increase in new and cost-effective uses of aviation
• The skies will accommodate thousands of times the number of vehicles flying today
• Travelers will have the flexibility to fly when and where they want in a fraction of the time that it takes today
• All forms of air travel will be as safe as commercial air transport is today
• Subsonic transports will remain the backbone of long-haul global and domestic travel
• Significantly reduced carbon and noise footprints from aviation

• Low-carbon propulsion will be designed into vehicles of all sizes and missions
• Low-carbon propulsion will have its largest impact on aviation’s carbon footprint via subsonic transports
• Low-carbon propulsion will enable new vehicles that create economic benefit for unique missions/services
• Alternative jet fuels will be the norm
Introduction—Major Aviation Community “Driver”

Reduce carbon footprint by 50% by 2050...

Near to mid opportunity “Industry pull”

Mid to far opportunity “NASA push”

Thrust 4
- Near-to-Mid term Drop-in Alt Fuels up to 50% blend
- Mid-to-Far term Beyond 50% blend Convergence between 4A and 4B

.... in the face of increasing demand, and while reducing development, manufacturing and operational costs of aircraft & meeting noise and LTO NOx regulations
Outcomes
Transition to Low-Carbon Propulsion

The Roadmap Team reviewed the current SIP Outcomes and are not recommending changes.

Low-Carbon Propulsion will impact vehicle classes/missions, and will be realized in different forms for different vehicles over different timespans:
- Aviation’s carbon footprint is driven by subsonic transports (our prime motivation)
- Alternative/hybrid systems enable new/enhanced opportunities for aviation (smaller vehicles, early adopters, on the road to large vehicles)
- Lower life-cycle carbon content per unit energy, and lower energy use possible

Community Outcomes (no change proposed for the updated SIP):

<table>
<thead>
<tr>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
</table>
Thrust 4: Transition to Low-Carbon Propulsion

Thrust 4A: Enable Use of Alternative Jet Fuel

<table>
<thead>
<tr>
<th>Community Outcomes</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction of Low-carbon Fuels for Conventional Engines and Exploration of Alternative Propulsion Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial Introduction of Alternative Propulsion Systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction of Alternative Propulsion Systems to Aircraft of All Sizes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits

- Optimized/accelerated use of lower life-cycle carbon drop-in fuels at certified, & potentially higher, blend levels
- Scientific datasets to inform decisions on standards for emissions
- Optimized use of lower life-cycle carbon fuels in advanced propulsion systems with new-generation technologies.
- Advanced propulsion system concepts available for optimized use of alternative fuels in alternative propulsion systems
- Alternative fuel use is the norm

NASA Outputs/Capabilities

- Lab-scale experimental & analytical data of combustion, combustion products & combustor operability to validate physics-based tools & concepts
- Combustion & combustor concepts leveraging attributes of alternative jet fuels
- Quantified ground & in-flight engine emissions & contrail data including techniques & measurement methods necessary for informed decisions on standards for emissions & for contrail formation models including alternative jet fuel effects
- Advanced measurement techniques for engine & combustion rig emissions
- Physics-based combustion & combustor models with verified effects of alternative jet fuels in 50-100% blends
- Combustion & combustor concepts optimized for drop-in fuels in 50-100% blends
- Contrail microphysics model for predicting effects of increased combustion efficiency & fuel hydrogen content

* Research horizons used in Federal Alternative Jet Fuel Strategy: <5 years (Near-term), 5-10 years (Mid-term), >10 years (Far-term)
Alternative Jet Fuels
Optimize and accelerate the effective use

Explore and demonstrate combustor concepts that exploit future alternative fuels

Fully integrate with advanced engines

Certify, Operate

Characterize the performance and emissions of an increasing spectrum of alternative jet fuels in advanced combustors

Federal Alternative Jet Fuel Strategy horizon

Science to guide policy

Modeling & Simulation
Experimental Validation Data
Combustor/Fuel System Improvements
Explore Architecture

Knowledge through Basic Sciences

Advance scientific understanding relating fuels to combustion to emissions to atmospheric impact

2015
2020
2030
2040

www.nasa.gov
Thrust 4B: Outcomes, Products, Benefits, Capabilities

Thrust 4: Transition to Low-Carbon Propulsion

Thrust 4B: Alternative Energy/Power Architectures

<table>
<thead>
<tr>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Community Outcomes</td>
<td>Initial Introduction of Alternative Propulsion Systems</td>
<td>Introduction of Alternative Propulsion Systems to Aircraft of All Sizes</td>
</tr>
<tr>
<td>Benefits</td>
<td>• Established experience and knowledge base allowing for industry investment and market growth</td>
<td>• Certified operational aircraft in limited applications/markets • Improved fuel economy and lower carbon emissions in limited applications • Improved acoustics</td>
</tr>
</tbody>
</table>

NASA Outputs/Capabilities

| • Thin haul commuter flight demo • Small vertical lift flight demos • HEP PAI and DEP aircraft studies • High Efficiency, light weight power systems (motors, generators, energy storage, cables, etc.) • Turbofan designs with a significant part of power converted to electricity • Demonstrations of propulsion airframe integration benefit through ground and flight test • Integrated flight, electric, and turbine controls • Power and propulsion system integrated test beds • Modeling, sizing, design and analysis tools | • Regional transport flight demo • Medium size Vertical lift flight demos • Electrified propulsion air vehicle certification • Experience designing, building and operating a variety of small electric and HEP aircraft and vertical lift vehicles • An array of Government and Industry development and test facilities • Optimized architectures and supporting technology • Optimized flight operations • Advanced materials applied to HEP • High fidelity models | • Single aisle transport flight demo • Large vehicle lift flight demo • Extensive experience designing building and operating electric and HEP aircraft and vertical lift vehicles • Industry has full design and test capability • Increased & more flexible control |

www.nasa.gov v2.05-24-16
Hybrid Electric Propulsion
Prove Out Transformational Potential

Explore and demonstrate vehicle integration synergies enabled by hybrid electric propulsion

Work toward full PAI and HEP

Certify, Operate

Build, learn, demonstrate

Increasingly electric aircraft propulsion with minimal change to aircraft outer mold lines

Modeling
Explore Architectures
Test Beds
Component Improvements

Gain experience through integration and demonstration on progressively larger platforms

Knowledge through Integration & Demonstration

2020
2030
2040
Strategy – NASA Response to Community Drivers

Community Outcomes

<table>
<thead>
<tr>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
</table>

NASA Strategies

Aviation Alternative Fuels (drop-in)

- Explore and demonstrate combustor concepts that exploit future alternative fuels
- Characterize the performance and emissions of an increasing spectrum of alternative jet fuels in advanced combustors
- Advance scientific understanding relating fuels to combustion to emissions to atmospheric impact

Alternative Energy/Power Architectures

- Explore and demonstrate vehicle integration synergies enabled by hybrid electric propulsion
- Increasingly electric aircraft propulsion with minimal change to aircraft outer mold lines
- Gain experience through integration and demonstration on progressively larger platforms
Thrust 4: Transition to Low-Carbon Propulsion
Aviation Alternative Fuels (drop-in)

<table>
<thead>
<tr>
<th>Community Outcomes</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
</table>

Key Dates
- **2016**: Near (<5 years)
- **2019**: Mid (5-10 years)
- **2022**: Far (>10 years)

Federal Action Framework (AJF) Strategy Horizons
- **Emissions Characterization & Environmental Impact**
 - Emissions characterization of fuel blends ≤50% & ≥50% with SA assessments
 - High altitude (SUP) impacts (contrail correlation)
 - Alt fuel blending unknowns-fungus, shelf life, chemical interaction
- **Mod. Sim & Testing**
 - PM, contrail & emissions modeling
 - Chemical kinetics for ≤50% Conv/Alt fuels
 - “Smart combustor” & combustion modeling (N+3)
 - Combustor/turbine interaction modeling (N+3)
 - Advanced diagnostics for CFD/combustor validation
 - High P/T flame-tube
 - Rig dev: Auto ignition rig for fuel blends
 - Mobile particulate: Gloose combustion rig
 - Less expensive flight test of adv combustion concepts/fuels

Engine/Fuel System Integration, Optimization & Performance
- PM & emission measurements
- High temp sensors for acoustics/dynamics
- Fuel modulation TRL 3 ➔ TRL 4/5 ➔ TRL 6
- Long term system component reliability w/LE 50% blends
- Combustor/cycle for LTO Certification/High Altitude Dilution
- Second generation SS combustor: low emissions, particulates and water vapor
- SA for alternative cycles

SA for alternative cycles
- Fundamental test for basic cycle & emissions characterization

External Handoffs—CAEP cycles
- Tied to ST #2 Roadmap
- Tied to ST #3 Roadmap
- Non-NASA responsibility
Thrust 4: Transition to Low-Carbon Propulsion

Hybrid/Electric Propulsion

<table>
<thead>
<tr>
<th>Community Outcomes</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exploration of Alternative Propulsion Systems</td>
<td>Initial Introduction of Alternative Propulsion Systems</td>
<td>Intro of Alternative Propulsion Systems to Aircraft of All Sizes</td>
<td></td>
</tr>
<tr>
<td>SCEPTOR</td>
<td>Thin Haul Commuter Enters Service</td>
<td>More Electric Turbofan Enters Service</td>
<td>Regional Transport Fit Demo</td>
</tr>
<tr>
<td>Small FW Demo</td>
<td>8 PAX VL Vehicle Demo</td>
<td>Medium Commuter Demo</td>
<td>Single Aisle Fit Demo</td>
</tr>
</tbody>
</table>

Key Dates

- 2015: 4 PAX VL Vehicle Demo
- 2025: More Electric Turbofan Enters Service
- 2035: 9-12 PAX Vertical Lift enters service

Technology Integration Concepts

Vehicle / Synergy
- Explore PAI and DEP configuration
- Wing/Fuselage BLI and DEP
- Controls associated with DEP
- Acoustics and DEP
- DEP w/conventional or high aspect ratio wings

Power & Propulsion Architecture
- Explore electric/hybrid/turboelectric configurations 200KW – 10MW
- Explore electric/hybrid/turboelectric configurations 10 MW – 20 MW
- Explore electric/hybrid/turboelectric configurations 20MW – 50 MW

HEP Components / Enablers
- Non-Superconducting Powertrain Components
- Superconducting Powertrain Components, including Thermal Ctr.
- Advanced Turbines, Controls, Range Extenders
- Energy Storage, Power Distribution and Management

HEP Models / Sims & Test Capabilities
- kW, MW, 10s MW Powertrain Models, Testing & Validation
- Single String, Full Powertrain, Full Vehicle Modeling & Sim
- High Fidelity CFD, Integrated Turbine and Electric Controls, Power & Energy Storage Management

Depend / Oppor
- SA for alternative cycles
- Leverage Industry battery, fuel cell developments, wide band gap semi-conductors
- Alternative Fuels from 4A
- Leverage DoD architecture parametric studies, industry studies and developments (DARPA, Google, Facebook, Boeing)
Integrating Thrust 4 Research Themes

Alternative Power, Propulsion, & Vehicle Architectures
Exploration of clean, quiet, & efficient transformative hybrid or alternative integrated energy, power, and propulsive systems and synergistic vehicle-level integration

Alternative Fuel Combustors & Environmental Impact
• Engine/Fuel System Integration, Optimization & Performance
• Emissions Characterization & Environmental Impact

Hybrid Electric Components & Technology
• HEP Components (e.g. motors, generators)
• HEP Technology (e.g. materials, controls)

Modeling, Simulation, Testing
R&D of innovative tools and methods (computational, experimental, & analytical) to transform power and propulsion system capability in less time with reduced uncertainty and cost

Black = Common Research Themes
Red = Alternative Fuels Research Themes
Blue = Hybrid Electric Research Themes
• **Alternative Power, Propulsion, & Vehicle Architectures**
 – Exploration, research, and development of clean, quiet, and efficient transformative hybrid or alternative energy, power, and propulsive systems with synergistic vehicle-level integration
 – Systems Analysis to identify and quantify the high-potential, low life-cycle carbon opportunities focusing on low carbon propulsion and alternative fuels, and underlying technologies including cycles for hybrid-electric systems.

• **Alternative Fuel Combustors & Environmental Impact**
 – Emission Characterization & Environmental Impact
 – Engine/Fuel System Integration, Optimization & Performance

• **Hybrid Electric Components & Technology**
 – Research and development of integrated, flight-weight components and technologies such as increased power density electric machines, superconducting machines, advanced fuel cells, power electronics, fault protection devices and other enablers such as flight controls

• **Modeling, Simulation, and Test Capability**
Roadmap Thrust 4: Transition to Low Carbon Propulsion

<table>
<thead>
<tr>
<th>Community Outcomes</th>
<th>2015</th>
<th>2025</th>
<th>2035</th>
</tr>
</thead>
</table>

Key Dates

Assume

~10-20 year time from TRL 4 to EIS

PLACEHOLDER—Work in Progress

Up level 4A & 4B to overarching challenges

Connect to simplified set of combined key dates
Thrust 4A—Top 4 Risks

1. Supply and demand of alternative jet fuels as affected by the cost and the cost volatility of petroleum-based jet fuel. Currently low petroleum prices would imply that there may be less of a financial incentive to produce and to purchase alternative jet fuels however, public and policy pressure may continue to emphasize the life-cycle environmental benefits. Long-term fuel cost volatility may be reduced with availability and use of alternative jet fuels.

2. Alternative jet fuel compatible propulsion systems has been addressed by the FAA under their CLEEN initiative but long-term fuel effects may be more uncertain.

3. Alternative jet fuel storage and shelf life is a new area of unknown that is associated with long-term use of these fuels.

4. Unknown particulate matter (PM) regulations—It is expected that ICAO will formally address the topic of PM regulation following their initial decisions associated with a CO$_2$ standard. Industry and market response to impending regulations may affected R&D direction.
Thrust 4B—Top 4 Risks

1. If industry does not agree significant benefits can be achieved then they will not invest in vehicles
2. If HEP component technologies are not realized, then the benefits of HEP vehicles will not be fully realized
3. If electrification poses significant safety or certification hurdles, then integration into fleet will become too costly
4. If energy sources used to power electric/hybrid electric systems are not from clean energy from a life cycle perspective, the climate benefits will not be realized nor systems developed and fielded.
Alternative Jet Fuel Development Path

Federal Partner Agency Contributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>DoD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOE</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>DOT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>EPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USDA</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Diverse industry contributions along full development path

Academia contributions in low TRL and FRL

Fuel Readiness Level
Hybrid Electric Aircraft

Interagency and Industry Contributions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| DOE |
|-----|------------------------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| ✓ | ✓ | ✓ | ✓ | ✓ | | | |

| FAA |
|-----|------------------------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| | ✓ | | | | | | |

| NASA |
|------|------------------------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| ✓ | ✓ | | | | | | |

| Engine Companies |
|------------------|-----------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| ✓ | ✓ | ✓ | | | | | |

| Airframers |
|------------|-----------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| ✓ | | | | | | | |

| Operators |
|-----------|-----------------|-----------------------|---------------|-------------------|-----------------------------|---------------|----------------|
| | | | | | | | ✓ |

| Energy and Transport Industry |
|-------------------------------|-----------------|-------------------|-------------------|-----------------------------|---------------|----------------|
| ✓ | ✓ | ✓ | ✓ | | | |
Thrust 4A Glossary

1. **Jet A** = petroleum-based kerosene jet fuel currently used in large quantities (aka *conventional jet fuel*)

2. **Alternative (or synthetic) jet fuel** = non-petroleum-based jet fuel produced from bio-feedstocks (plants, animal tallow, algae, etc.) or other non-petroleum feedstocks (e.g. municipal waste); these also include coal-to-liquid or mined” natural gas-to-liquid produced kerosene fuels as well.

3. **Renewable jet fuels** (or bio-jet fuel) = the subset of alternative jet fuels specifically produced from bi-feedstocks (renewable sources); these exclude fossil fuel-based fuels (coal-to-liquid or mined” natural gas-to-liquid produced kerosene fuels)

4. **Drop-in jet fuels** = the specific formulations of 2 and 3 above that have characteristics similar enough to petroleum-based jet fuels (kerosene) that the current fuels infrastructure and engine systems can be used. Presently, the FAA and ASTM standards (conservative) only allow for use up to a 50% blend of these alternative jet fuels with petroleum-based Jet A.

5. **Non-drop-in fuels** = fuels that are significantly different from current petroleum-based kerosene fuels that the currently available infrastructure and engine systems would not likely be sufficient. Such fuels might be considered in association with either Brayton- or non-Brayton cycles. These fuels could include natural gas (either compressed or liquid) or hydrogen. May also be called “non-conventional fuels.”

6. **Brayton cycle** = the specific operational cycle associated with gas turbine (jet) engines

“mined” reflects that alternative fuels produced from natural gas derived from biological oxidation processes (e.g., waste products or sewage) would be renewable.
Timeline of Machine Power with Application to Aircraft Class

<table>
<thead>
<tr>
<th>Year</th>
<th>Non-cryogenic</th>
<th>Largest Electrical Machine on</th>
<th>Aircraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>100 kW</td>
<td>1 MW</td>
<td>10 MW</td>
</tr>
<tr>
<td>2020</td>
<td>50-250 kW Electric Machines</td>
<td>3 MW</td>
<td>30 MW</td>
</tr>
<tr>
<td>2025</td>
<td>1-1 MW Electric Machines</td>
<td>10 MW</td>
<td>Superconducting</td>
</tr>
<tr>
<td>2030</td>
<td>.3-6 MW Electric Machines</td>
<td>60 MW Total Propulsive Power</td>
<td></td>
</tr>
<tr>
<td>2035</td>
<td>.3-6 MW Electric Machines</td>
<td>150 Seat Total Propulsive Power</td>
<td></td>
</tr>
</tbody>
</table>