Overview of NASA Aeronautics

Jaiwon Shin
Associate Administrator
Aeronautics Research Mission Directorate
Green Aviation Summit
September 8-9, 2010
Aviation’s Economic Impact

- $436 billion in direct economic activity
- Provides $60.6B positive trade balance
- 25% of all companies’ sales depend on air transportation
- 655,500 jobs
- 650 million travelers a year
- 51,000 flights a day
Increased capacity, efficiency and throughput with NextGen
Greener Air Transportation – Our Challenge

Better Fuel Efficiency

Fewer Emissions

Lower Noise
Significant Reduction in Environmental Impact of Aviation is Possible

Operations Estimated Fuel Savings
- Continuous climbs and descents
- Direct routing, improved re-routing, and collaborative traffic flow management
- “No-stop” taxi operations
Significant Reduction in Environmental Impact of Aviation is Possible

Vehicle Estimated Fuel Savings

Achieving Significantly Reduced Fuel Burn Will Require Integration of Multiple Technologies

1 = Hybrid wing configuration
2 = + advanced engine and airframe technologies
3 = + embedded engines with BLI inlets
4 = + laminar flow
Significant Reduction in Environmental Impact of Aviation is Possible

Enabling technology
- Novel architectures for increased lift over drag
- Lightweight structures
- Laminar flow to reduce drag
- Low NOx combustors
- Open rotors
- Ultra-high bypass turbofans
- Novel architectures for shielding airframe noise
- Alternative fuels

Public Benefit
- Fuel burn savings: 50% fuel burn reduction
- Emissions reduction: 50% less NOx
- Noise reduction: 1/6 the nuisance noise around airports
The Airplane of the Future?

- Uniquely enabling concepts
- Broadly applicable technology advances needed
- Flexible fuel
Alternative Synthetic Fuels

NASA leads efforts to develop measurement methods and document local air quality characteristics

First test of 100% Fischer-Tropsch fuel in February 2009

- Particulate matter reduced 90% at engine idle, 30%-40% at higher power
- No sulfur dioxide emissions
Efficient Green Operations

Needs/Why Care?
Fuel efficient descents that meet efficient, time-based constraints set up for demand/capacity imbalance

Focus
Technology transfer of En Route Descent Advisor

Progress/Results
Field test at Denver Center for descent trajectory prediction accuracy (15 days, 360 flights)
Participants: United and Continental B757, B737, and A319/320, and FAATC’s Bombardier
Results: (median: Top of Descent accuracy = 5.5nm, meter fix accuracy = 12 sec) – As compared with current state-of-the art = 1 min
Lesson Learned: Meter fix accuracy is greatly improved Need better top of descent predictions,

Next Steps
Complete hardware integration testing and overall readiness for HITL
Continue scenario development and testing
Technology transition package

Partners
FAA, Sensis, Boeing, United, Continental Airlines, MITRE

EDA gives speed clearances and path stretching advisories to meet the times

En Route Descent Advisor will increase fuel efficiency and meet-time accuracy
Chevrons - The Road From Idea to Deployment

Systems Assessment 2001–2005
- Ground-test evaluation in engine test stands
- Flight evaluation in relevant environments

Fundamental Research 1996–2000
- Computational and experimental research to develop a fundamental understanding of the fluid mechanics governing the effectiveness of the concept
- Development of practical implementations (chevrons)
- Team effort involving industry, universities, and NASA

Seedling Idea 1994–1996
Basic studies on jet mixing suggest that tabs can enhance jet mixing, with the potential to reduce noise
Boeing 747-8 with NASA Chevron Technology
National Alignment

National Aeronautics Research and Development Policy
- Outlines 7 basic principles to follow in order for the U.S. to “maintain its technological leadership across the aeronautics enterprise”
- Mobility, national security, aviation safety, security, workforce, energy & efficiency, and environment

National Plan for Aeronautics Research and Development and Related Infrastructure
- Goals and Objectives for all basic principles (except Workforce, being worked under a separate doc)
- Summary of system-level challenges in each area and the facilities needed to support related R&D
- Specific quantitative targets where appropriate

Vision 100 Century of Aviation Reauthorization Act and the NextGen Integrated Work Plan
- Established the Joint Planning and Development Office to enlarge multiple agencies that would collaborate to plan, develop and implement the Next Generation Air Transportation System (NextGen)
- Functional outline of agency activities required to achieve the NextGen Vision
Enabling “Game Changing” concepts and technologies from advancing fundamental research ultimately to understand the feasibility of advanced systems.
NASA Aeronautics Programs

- Vehicles
- Safety
- Integrated Systems Research
- Air Traffic Management
- Facilities
NASA Aeronautics Budget for FY2007-FY2015

Note: The budget request columns for FY07 and FY08 have been adjusted from the initial request to reflect full cost simplification. The FY09 budget request column is from the FY09 President's Budget. The FY10 budget column is the enacted budget for this year.
Plans for Aeronautics Budget Increase

The FY 2011 President’s Budget for NASA Aeronautics strongly endorses NASA’s contributions to NextGen and green aviation research, and includes a $70M per year increase which will be used to:

1. Begin research into key technologies necessary to allow routine access of UAS to National Airspace System (NAS) such as communication, collision avoidance, human factors, and verification and validation

2. Begin research on Validation and Verification (V&V) of flight critical systems to enable NASA to provide technical leadership for advancing V&V capabilities.

3. Stimulate innovative concepts to strengthen NASA’s research into green aviation.
Green Aviation Summit Agenda

<table>
<thead>
<tr>
<th>Day 1</th>
<th>September 8, 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:45 AM</td>
<td>Dr. Mark J. Lewis, AIAA President, 2010-2011</td>
</tr>
<tr>
<td>11:00 AM</td>
<td>Mr. Tim Pohle, Managing Director of U.S. Environmental Affairs, Air Transport Association of America, Inc.</td>
</tr>
<tr>
<td>1:00 PM</td>
<td>The Honorable Charles F. Bolden, Jr., NASA Administrator</td>
</tr>
<tr>
<td>2:00 PM</td>
<td>Panel ARMD Programs</td>
</tr>
<tr>
<td>3:45 PM</td>
<td>Panel Discussion: How NASA Works with Other Government Agencies</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>Wrap Up for the Day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Day 2</th>
<th>September 9, 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00 AM</td>
<td>Integrated Solutions for Fuel Noise and Emission Reduction</td>
</tr>
<tr>
<td>8:30 AM</td>
<td>Fuel Burn Reduction</td>
</tr>
<tr>
<td>9:45 AM</td>
<td>Noise/Emission Reduction</td>
</tr>
<tr>
<td>11:15 AM</td>
<td>Alternative Fuels</td>
</tr>
<tr>
<td>1:30 PM</td>
<td>Environmentally Friendly Airspace Operations</td>
</tr>
<tr>
<td>3:00 PM</td>
<td>Strategic Partnerships - An Industry Perspective</td>
</tr>
<tr>
<td>4:00 PM</td>
<td>Plenary Address</td>
</tr>
<tr>
<td>4:45 PM</td>
<td>Closing Remarks and Wrap Up</td>
</tr>
</tbody>
</table>