Appendix D General Software Safety Requirements with Must-Work and Must-not-work.
[bookmark: _GoBack]General Software Safety Requirements
The provider should include the following general software safety requirements in the project software requirements:
a. The software initializes the system to a known safe state.
b. The software performs an orderly, controlled system shut-down to a known safe state upon receipt of a termination command or condition.
c. The software operates safely in off-nominal power conditions, including loss of power and spurious power transients.
d. The software requires two independent actions for overrides for human-rated missions.
e. The software identifies and rejects commands received out-of-sequence when the out-of-sequence commands can cause a hazard or degrade the control of a hazard.
f. The software detects and recovers from memory errors or transitions to a known safe state.
g. The software recovers to a known safe state when an anomaly is detected.
h. The software accepts hazardous commands only when prerequisite checks are satisfied.
i. The software safely transitions between all predefined, known states.
j. The software discriminates between valid and invalid input from external sources, and rejects invalid input.
k. The software properly handles spurious input and missing data.
l. Adequate margins exist on system resources such as memory and CPU.
m. Criteria for mode and state transition have been documented.
n. Failure tolerance exists on sensors used by software to make safety-critical decisions.
o. Processes exist to evaluate the quality of configuration data (such as day of launch guidance parameters) used by the software.
p. Security measures are in place to prevent viruses and other unwanted attacks that could contribute to a hazard.
Must-work Software Safety Requirements
The provider should include the following “must-work” software safety requirements in the project software requirements when shutdown/failure of a software function causes a critical or catastrophic hazard:
a. The software provides two independent and unique command messages to deactivate a fault tolerant capability for a critical or catastrophic hazard.
b. The software provides at least one independent command for each operator initiated action used to shutdown a function leading to or reducing the control of a hazard.
c. The software provides non-identical methods, or functionally independent methods, for commanding a must-work function when the software is the sole control of that function.
d. The software provides independent safety critical threads such that any one credible event will not corrupt another safety critical thread.
e. The commands are require to be "complex" and/or diverse from other commands so that a single bit flip could not transform a benign command into an inhibit.

Must-not-work Software Safety Requirements
The provider should include the following “must-not-work” software safety requirements (or inhibits) in the project software requirements when the inadvertent operation causes a critical or catastrophic hazard (either the fault containment or the control path separation approach can be used):
Fault Containment Approach
a. The software performs prerequisite checks for the execution of hazardous commands.
b. The software provides a unique command message to remove an inhibit.
c. The software provides unique command messages to change the state of an inhibit that controls a hazard.
d. The software provides status of the inhibits controlling hazards to the operator.
e. The software provides and checks a functionally independent parameter prior to the issuance of any sequence that could remove an inhibit, or perform a hazardous action.
f. The software thread controls only one inhibit to a specific hazard.
g. The software uses at least one independent operator action for each operator initiated command used to remove an inhibit.
Control Path Separation Approach
a. The software provides status of inhibits used to control hazards to the operator.
b. The software has a separate control path for each inhibit to control a hazard.
c. The software provides unique command messages to change the state of an inhibit.
d. The software checks at least one parameter functionally independent of the parameters checked by other control paths initiating the same sequence for each separate control path initiated by a hard-coded automated failure recovery sequence.
e. The software allows the operator to control one of the above checked parameters.
f. The software provides unique command messages for each operator initiated command to remove an inhibit that controls or degrades control of a hazard.
g. The software uses separate control paths with different functionality for each inhibit to control a hazard.

