NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond

A periodically updated document demonstrating our progress toward safe return to flight and implementation of the Columbia Accident Investigation Board recommendations

April 26, 2004
Volume 1, Revision 2
NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond

A periodically updated document demonstrating our progress toward safe return to flight and implementation of the Columbia Accident Investigation Board recommendations

April 26, 2004
Volume 1, Revision 2

An electronic version of this implementation plan is available at www.nasa.gov
In January 2004, the President announced a new exploration initiative for NASA. This initiative is refocusing the Agency’s priorities on the ambitious goal of sending humans back to the Moon, to Mars, and eventually beyond. It has also refocused our existing human space flight program. Returning the Shuttle safely to flight is the first step in implementing the Vision for Space Exploration, and it remains our priority. After return to flight, the Space Shuttle’s sole mission will be the completion of the International Space Station. Following this task, planned for the end of this decade, the Space Shuttle will be retired. We are continuing to revisit and modify our long-term plans for the Shuttle as necessary to meet these new and exciting exploration goals.

NASA has made considerable progress in the past months in our return to flight efforts to make the Shuttle safer. We have taken the lessons of the Columbia Accident Investigation Board (CAIB) Report to heart as we reexamine and improve our vehicles and our processes. As a result, the rigor that we have applied to this process has required that we delay our planned return to flight date. Currently, our return to flight is scheduled for no earlier than March 2005.

Some of our key accomplishments include the decision to certify External Tank (ET) to proper debris allowables. Refinement of our understanding of the appropriate debris allowables led us to make additional modifications to the ET. Similarly, the Orbiter Boom Sensor System used to inspect the Shuttle’s Thermal Protection System will require additional time to perfect its design and operation. Finally, inspection of the Shuttle’s Rudder Speed Brake (RSB) actuators revealed some corrosion and two instances of improper assembly that will need to be resolved before return to flight.

The RSBs are representative of a family of issues that the Shuttle Program continues to pursue above and beyond the CAIB findings, observations, and recommendations, whose successful resolution have become the milestones pacing the schedule. These reflect our attempt to find and understand what the CAIB referred to as “unknown unknowns,” those issues that are difficult to anticipate, and for which we must remain vigilant.

When we return to flight, the Space Shuttle will be the safest it has ever been. We will have confidence in our ability to maintain that level of safety throughout the life of the Shuttle Program. We are confident that we can accomplish our role in the exploration initiative and complete International Space Station assembly in a timely fashion. We are fully complying with all of the CAIB recommendations by developing innovative means of mitigating the risk of those issues that we cannot solve directly by making supporting systems more robust.

All of these solutions will undergo thorough assessment by the Stafford-Covey Return to Flight Task Group. They will also determine whether we have successfully met the intent of the CAIB Report and are ready to return to flight.

As we move closer to returning to flight, we are also moving into a new era of human exploration. The Space Shuttle has a critical role to play in these efforts. Our return to flight will enable the completion of the International Space Station and the expansion of critical research necessary for human exploration. While we do this, the memory of the crew of the Shuttle Columbia will continue to inspire NASA and our nation to achieve more, and to explore further.
This revision supercedes all earlier iterations of this Implementation Plan.
A Message From Sean O’Keefe

Over the course of seven months last year, the Columbia Accident Investigation Board (CAIB) thoroughly and intensively examined the cause of the Columbia accident and issued its exhaustive report and recommendations. In addition to identifying the problems that led to the Columbia accident, the CAIB emphasized the need for a clearer direction from which to drive NASA’s human exploration agenda. On January 14, 2004, the President articulated a new vision for space exploration. The first step in the President’s exploration vision is to return the Space Shuttle to flight as soon as practical, based on the recommendations of the CAIB. We have endeavored to fix the problems identified by the CAIB and to return the Space Shuttle safely to flight.

In this, the second complete revision of our Return to Flight Implementation Plan, we provide updates to previously released information describing how we are embracing the CAIB Report and its recommendations, and pursuing those critical actions that we have adopted to make flying the Space Shuttle safer. We will also identify, where appropriate, how our long-term planning has changed in response to the President’s exploration vision that calls for the retirement of the Space Shuttle when the International Space Station is complete. Our Plan continues to be a living document, periodically updated to reflect our progress toward a safe return of the Space Shuttle to flight.

The STS-107 crew of Mike Anderson, David Brown, Kalpana Chawla, Laurel Clark, Rick Husband, Willie McCool, and Ilan Ramon devoted their lives to the NASA vision and the exploration of space, and became the inspiration for the President’s exploration vision. We are committed to safely returning to flight and safely flying the Space Shuttle fleet until its retirement. To do less would diminish the life-long contributions of the STS-107 crew.

Sean O’Keefe
Return to Flight
Message from the
Space Flight Leadership Council

The Columbia Accident Investigation Board (CAIB) Report has provided NASA with a roadmap “to resume our journey into space.” The recommendations “reflect the Board’s strong support for return to flight at the earliest date consistent with the overriding objective of safety.” NASA fully accepts the Board’s findings and will comply with its recommendations.

To do this, the NASA Implementation Plan for Return to Flight and Beyond outlines the path that NASA will take to respond to the CAIB Report. It is a “living document” that will be continually updated to record NASA’s progress toward safe return to flight as well as activities to institutionalize the technical, managerial, cultural, communications, and safety changes necessary to sustain safe flight operations for as long as the Space Shuttle’s unique capabilities are needed.

This implementation plan addresses each CAIB recommendation with a specific plan of action. Recommendations identified as return to flight by the CAIB or NASA must be completed before resuming Space Shuttle flight operations. All other recommendations and their implementation timing and strategies are included as well.

We are beginning a new chapter in NASA’s history, recommitted to excellence in all aspects of our work, strengthening our culture, and enhancing our technical capabilities. In doing so, we will ensure that the legacy of Columbia continues as we strive to improve the safety of human space flight.

Smarter, stronger, safer!

Dr. Michael A. Greenfield, Ph.D.
Associate Deputy Administrator
for Technical Programs

William F. Readdy
Associate Administrator
for Space Flight
Contents

Return to Flight Summary .. xiii
Overview ... xiii
NASA Space Shuttle Return to Flight Suggestions xix
CAIB Recommendations Implementation Schedule xxii
Return to Flight Cost Summary ... xxvii

Part 1 – NASA’s Response to the Columbia Accident Investigation Board’s Recommendations

3.2-1 External Tank Thermal Protection System Modifications [RTF] .. 1-1
3.3-2 Orbiter Hardening [RTF] ... 1-13
3.3-1 Reinforced Carbon-Carbon Nondestructive Inspection [RTF] .. 1-17
6.4-1 Thermal Protection System On-Orbit Inspect and Repair [RTF] .. 1-21
3.3-3 Entry with Minor Damage ... 1-31
3.3-4 Reinforced Carbon-Carbon Database 1-33
3.3-5 Minimizing Zinc Primer Leaching 1-35
3.8-1 Reinforced Carbon-Carbon Spares 1-37
3.8-2 Thermal Protection System Impact Damage
 Computer Modeling ... 1-39
3.4-1 Ground-Based Imagery [RTF] 1-41
3.4-2 External Tank Separation Imagery [RTF] 1-45
3.4-3 On-Vehicle Ascent Imagery [RTF] 1-47
3.6-1 Update Modular Auxiliary Data Systems 1-53
3.6-2 Modular Auxiliary Data System Redesign 1-55
Contents

4.2-2 Enhance Wiring Inspection Capability 1-57
4.2-1 Solid Rocket Booster Bolt Catcher [RTF] 1-59
4.2-3 Closeout Inspection [RTF] 1-63
4.2-4 Micrometeoroid and Orbital Debris Risk 1-65
4.2-5 Foreign Object Debris Processes [RTF] 1-69
6.2-1 Scheduling [RTF] 1-71
6.3-1 Mission Management Team
 Improvements [RTF] 1-77
7.5-1 Independent Technical Engineering
 Authority .. 1-81
7.5-2 Safety and Mission Assurance
 Organization .. 1-87
7.5-3 Reorganize Space Shuttle Integration Office ... 1-91
9.1-1 Detailed Plan for Organizational
 Changes [RTF] ... 1-95
9.2-1 Mid-Life Recertification 1-97
10.3-1 Digitize Closeout Photographs [RTF] 1-99
10.3-2 Engineering Drawing Update 1-101

Part 2 – Raising the Bar – Other Corrective Actions

2.1 – Space Shuttle Program Actions
SSP-1 Quality Planning and Requirements
 Document/Government Mandated
 Inspection Points 2-1
SSP-2 Public Risk of Overflight 2-3
SSP-3 Contingency Shuttle Crew Support 2-5
SSP-4 Acceptable Risks Hazards 2-7
SSP-5 Critical Debris Sources 2-9
SSP-6 Waivers, Deviations, and Exceptions 2-11
SSP-7 NASA Accident Investigation Team
 Working Group Findings 2-13
SSP-8 Certification of Flight Readiness
 Improvements .. 2-15
SSP-9 Failure Mode and Effects Analyses/
 Critical Items Lists 2-17
Contents

SSP-10 Contingency Action Plans 2-19
SSP-11 Rudder Speed Brake Actuators 2-21
SSP-12 Radar Coverage Capabilities
 and Requirements 2-23
SSP-13 Hardware Processing and Operations 2-25
SSP-14 Critical Debris Size 2-27
SSP-15 Problem Tracking, In-Flight Anomaly
 Disposition, and Anomaly Resolution 2-31

2.2 – CAIB Observations

O10.1-1 Public Risk Policy 2-35
O10.1-2 Public Overflight Risk Mitigation 2-37
O10.1-3 Public Risk During Re-Entry 2-37
O10.2-1 Crew Survivability 2-39
O10.4-1 KSC Quality Planning Requirements
 Document ... 2-41
O10.4-2 KSC Mission Assurance Office 2-43
O10.4-3 KSC Quality Assurance Personnel
 Training Programs 2-45
O10.4-4 ISO 9000/9001 and the Shuttle 2-47
O10.5-1 Review of Work Documents for STS-114 2-49
O10.5-2 Orbiter Processing Improvements 2-51
O10.5-3 NASA Oversight Process 2-53
O10.6-1 Orbiter Major Maintenance Planning 2-55
O10.6-2 Workforce and Infrastructure
 Requirements .. 2-57
O10.6-3 NASA's Work with the U.S. Air Force 2-59
O10.6-4 Orbiter Major Maintenance Intervals 2-61
O10.7-1 Orbiter Corrosion 2-63
O10.7-2 Long-Term Corrosion Detection 2-65
O10.7-3 Nondestructive Evaluation inspections 2-67
O10.7-4 Corrosion Due to Environmental Exposure 2-69
O10.8-1 A-286 Bolts 2-71
O10.8-2 Galvanic Coupling 2-73
O10.8-3 Room Temperature Vulcanizing 560
 and Kapton .. 2-75
Contents

O10.8-4 Acceptance and Qualification Procedures . . 2-77
O10.9-1 Hold-Down Post Cable System Redesign . . 2-79
O10.10-1 External Tank Attach Ring 2-83
O10.11-1 Shuttle Maintenance Through 2020 2-87
O10.12-1 Agencywide Leadership and Management Training 2-89

2.3 CAIB Report, Volume II, Appendix D.a
D.a-1 Review Quality Planning Requirements
 Document Process 2-93
D.a-2 Responsive System to Update Government
 Mandatory Inspection Points 2-94
D.a-3 Statistically Driven Sampling of Contractor
 Operations 2-95
D.a-4 Forecasting and Filling Personnel
 Vacancies 2-96
D.a-5 Quality Assurance Specialist
 Job Qualifications 2-98
D.a-6 Review Mandatory Inspection
 Document Process 2-99
D.a-7 Responsive System to Update Government
 Mandatory Inspection Points at the
 Michoud Assembly Facility 2-100
D.a-8 Use of ISO 9000\9001 2-101
D.a-9 Orbiter Corrosion 2-102
D.a-10 Hold-Down Post Cable Anomaly 2-103
D.a-11 Solid Rocket Booster External
 Tank Attach Ring 2-104
D.a-12 Crew Survivability 2-105
D.a-13 RSRM Segment Shipping Security 2-106
D.a-14 Michoud Assembly Facility Security 2-107

Appendix A – NASA's Return to Flight Process
Appendix B – Return to Flight Task Group
The *Columbia* Accident Investigation Board (CAIB) Report has provided NASA with the roadmap for moving forward with our return to flight efforts. The CAIB, through its diligent work, has determined the causes of the accident and provided a set of comprehensive recommendations to improve the safety of the Space Shuttle Program. NASA accepts the findings of the CAIB, we will comply with the Board’s recommendations, and we embrace the report and all that is included in it. This implementation plan outlines the path that NASA will take to respond to the CAIB recommendations and safely return to flight, while taking into account the Vision for Space Exploration.

At the same time that the CAIB was conducting its assessment, NASA began pursuing an intensive, Agency-wide effort to further improve our human space flight programs. We are taking a fresh look at all aspects of the Space Shuttle Program, from technical requirements to management processes, and have developed a set of internally generated actions that complement the CAIB recommendations.

NASA will also have the benefit of the wisdom and guidance of an independent, advisory Return to Flight Task Group, led by two veteran astronauts, Apollo commander Thomas Stafford and Space Shuttle commander Richard Covey. Members of this Task Group were chosen from among leading industry, academia, and government experts. Their expertise includes knowledge of fields relevant to safety and space flight, as well as experience as leaders and managers of complex systems. The diverse membership of the Task Group will carefully evaluate and publicly report on the progress of our response to implement the CAIB’s recommendations.

The space program belongs to the nation as a whole; we are committed to sharing openly our work to reform our culture and processes. As a result, this first installment of the implementation plan is a snapshot of our early efforts and will continue to evolve as our understanding of the action needed to address each issue matures. This implementation plan integrates both the CAIB recommendations and our self-initiated actions. This document will be periodically updated to reflect changes to the plan and progress toward implementation of the CAIB recommendations, and our return to flight plan.

In addition to providing recommendations, the CAIB has also issued observations. Follow-on appendices may provide additional comments and observations from the Board. In our effort to raise the bar, NASA will thoroughly evaluate and conclusively determine appropriate actions in response to all these observations and any other suggestions we receive from a wide variety of sources, including from within the Agency, Congress, and other external stakeholders.

Through this implementation plan, we are not only fixing the causes of the *Columbia* accident, we are beginning a new chapter in NASA’s history. We are recommitting to excellence in all aspects of our work, strengthening our culture and improving our technical capabilities. In doing so, we will ensure that the legacy of *Columbia* guides us as we strive to make human space flight as safe as we can.

Key CAIB Findings

The CAIB focused its findings on three key areas:

- Systemic cultural and organizational issues, including decision making, risk management, and communication;
- Requirements for returning safely to flight; and
- Technical excellence.

This summary addresses NASA’s key actions in response to these three areas.

Changing the NASA Culture

The CAIB found that NASA’s history and culture contributed as much to the *Columbia* accident as any technical failure. NASA will pursue an in-depth assessment to identify and define areas where we can improve our culture and take aggressive corrective action. In order to
do this, we will

- Create a culture that values effective communication and empowers and encourages employee ownership over work processes.
- Assess the existing safety organization and culture to correct practices detrimental to safety.
- Increase our focus on the human element of change management and organizational development.
- Remove barriers to effective communication and the expression of dissenting views.
- Identify and reinforce elements of the NASA culture that support safety and mission success.
- Ensure that existing procedures are complete, accurate, fully understood, and followed.
- Create a robust system that institutionalizes checks and balances to ensure the maintenance of our technical and safety standards.
- Work within the Agency to ensure that all facets of cultural and organizational change are continually communicated within the NASA team.

To improve communication and decision making, NASA will

- Ensure that we focus first on safety and then on all other mission objectives.
- Actively encourage people to express dissenting views, even if they do not have the supporting data on hand, and create alternative organizational avenues for the expression of those views.
- Revise the Mission Management Team structure and processes to enhance its ability to assess risk and to improve communication across all levels and organizations.

To strengthen the Space Shuttle Program management organization, NASA has

- Increased the responsibility and authority of the Space Shuttle Systems Integration Office in order to ensure effective coordination among the diverse Space Shuttle elements. Staffing for the Office will also be expanded.
- Established a Deputy Space Shuttle Program Manager to provide technical and operational support to the Manager.
- Created a Flight Operations and Integration Office to integrate all customer, payload, and cargo flight requirements.

To continue to manage the Space Shuttle as a developmental vehicle, NASA will

- Be cognizant of the risks of using it in an operational mission, and manage accordingly, by strengthening our focus on anticipating, understanding, and mitigating risk.
- Perform more testing on Space Shuttle hardware rather than relying only on computer-based analysis and extrapolated experience to reduce risk. For example, NASA is conducting extensive foam impact tests on the Space Shuttle wing.
- Address aging issues through the Space Shuttle Service Life Extension, including midlife recertification.

To enhance our benchmarking with other high-risk organizations, NASA is

- Completing a NASA/Navy benchmarking exchange focusing on safety and mission assurance policies, processes, accountability, and control measures to
identify practices that can be applied to NASA programs.
• Collaborating with additional high-risk industries such as nuclear power plants, chemical production facilities, military flight test organizations, and oil-drilling operations to identify and incorporate best practices.

To expand technical and cultural training for Mission Managers, NASA will
• Exercise the Mission Management Team with realistic in-flight crisis simulations. These simulations will bring together the flight crew, flight control team, engineering staff, the Mission Management Team, and other appropriate personnel to improve communication and to teach better problem recognition and reaction skills.
• Engage independent internal and external consultants to assess and make recommendations that will address the management, culture, and communications issues raised in the CAIB report.
• Provide additional operational and decision-making training for mid- and senior-level program managers. Examples of such training include, Crew Resource Management training, a US Navy course on the Challenger launch decision, a NASA decision-making class, and seminars by outside safety, management, communications, and culture consultants.

Returning Safely to Flight

The physical cause of the Columbia accident was insulation foam debris from the External Tank left bipod ramp striking the underside of the leading edge of the left wing, creating a breach that allowed superheated air to enter and destroy the wing structure during entry. To address this problem, NASA will identify and eliminate critical ascent debris and will implement other significant risk mitigation efforts to enhance safety.

Critical Ascent Debris

To eliminate critical ascent debris, NASA
• Is redesigning the External Tank bipod assembly to eliminate the large foam ramp and replace it with electric heaters to prevent ice formation.
• Will assess other potential sources of critical ascent debris and eliminate them. NASA is already pursuing a comprehensive testing program to understand the root causes of foam shedding and develop alternative design solutions to reduce the debris loss potential.
• Will conduct tests and analyses to ensure that the Shuttle can withstand potential strikes from noncritical ascent debris.

Additional Risk Mitigation

Beyond the fundamental task of eliminating critical debris, NASA is looking deeper into the Shuttle system to more fully understand and anticipate other sources of risk to safe flight. Specifically, we are evaluating known potential deficiencies in the aging Shuttle, and are improving our ability to perform on-orbit assessments of the Shuttle’s condition and respond to Shuttle damage.

Assessing Space Shuttle Condition

NASA uses imagery and other data to identify unexpected debris during launch and to provide general engineering information during missions. A basic premise of test flight is a comprehensive visual record of vehicle performance to detect anomalies. Because of a renewed understanding that the Space Shuttle will always be a developmental vehicle, we will enhance our ability to gather operational data about the Space Shuttle.

To improve our ability to assess vehicle condition and operation, NASA will
• Implement a suite of imagery and inspection capabilities to ensure that any damage to the Shuttle is identified as soon as practicable.
• Use this enhanced imagery to improve our ability to observe, understand, and fix deficiencies in all parts of the Space Shuttle. Imagery may include
 – ground-, aircraft-, and ship-based ascent imagery
 – new cameras on the External Tank and Solid Rocket Boosters
 – improved Orbiter and crew handheld cameras for viewing the separating External Tank
 – cameras and sensors on the International Space Station and Space Shuttle robotic arms
 – International Space Station crew inspection during Orbiter approach and docking
• Establish procedures to obtain data from other appropriate national assets.
• For the time being we will launch the Space Shuttle missions in daylight conditions to maximize imagery capability until we fully understand and can mitigate the risk that ascent debris poses to the Shuttle.

Responding to Orbiter Damage

If the extent of the Columbia damage had been detected during launch or on orbit, NASA would have done everything possible to rescue the crew. In the future, we will fly with plans, procedures, and equipment in place that will offer a greater range of options for responding to on-orbit problems.

To provide the capability for Thermal Protection System on-orbit repairs, NASA is

• Developing materials and procedures for repairing Thermal Protection System tile and reinforced carbon-carbon panels in flight. Thermal Protection System repair is feasible but technically challenging. The effort to develop these materials and procedures is receiving the full support of the Agency’s resources, augmented by experts from industry, academia, and other U.S. Government agencies.

To enhance the safety of our crew, NASA

• Is evaluating a contingency concept for an emergency procedure that will allow stranded Shuttle crew to remain on the International Space Station for extended periods until they can safely return to Earth.

• Will apply the lessons learned from Columbia on crew survivability to future human-rated flight vehicles. We will continue to assess the implications of these lessons for possible enhancements to the Space Shuttle.

Enhancing technical excellence

The CAIB and NASA have looked beyond the immediate causes of the Columbia tragedy to proactively identify both related and unrelated technical deficiencies.

To improve the ability of the Shuttle to withstand minor damage, NASA will

• Develop a detailed database of the Shuttle’s thermal protection system, including reinforced carbon-carbon and tiles, using advanced nondestructive inspection and additional destructive testing and evaluations.

• Enhance our understanding of the reinforced carbon-carbon operational life and aging process.

• Assess potential thermal protection system improvements for Orbiter hardening.

To improve our vehicle processing, NASA

• And our contractors are returning to appropriate standards for defining, identifying, and eliminating foreign object debris during vehicle maintenance activities to ensure a thorough and stringent debris prevention program.

• Has begun a review of existing Government Mandatory Inspection Points. The review will include an assessment of potential improvements, including development of a system for adding or deleting Government Mandatory Inspection Points as required in the future.

• Will institute additional quality assurance methods and process controls, such as requiring at least two employees at all final closeouts and at External Tank manual foam applications.

• Will improve our ability to swiftly retrieve closeout photos to verify configurations of all critical subsystems in time critical mission scenarios.

• Will establish a schedule to incorporate engineering changes that have accumulated since the Space Shuttle’s original design into the current engineering drawings. This may be best accomplished by transitioning to a computer-aided drafting system, beginning with critical subsystems.

To safely extend the Space Shuttle’s useful life, NASA

• Will develop a plan to recertify the Space Shuttle, as a part of the Shuttle Service Life Extension

• Is revalidating the operational environments (e.g., loads, vibration, acoustic, and thermal environments) used in the original certification.

• Will continue pursuing an aggressive and proactive wiring inspection, modification, and refurbishment program that takes full advantage of state-of-the-art technologies.

• Is establishing a prioritized process for identifying, approving, funding, and implementing technical and infrastructure improvements.
To address the public overflight risk, NASA will

- Evaluate the risk posed by Space Shuttle overflight during entry and landing. Controls such as entry ground track and landing site changes will be considered to balance and manage the risk to persons, property, flight crew, and vehicle.

To improve our risk analysis, NASA

- Is fully complying with the CAIB recommendation to improve our ability to predict damage from debris impacts. We are validating the Crater debris impact analysis model use for a broader range of scenarios. In addition, we are developing improved physics-based models to predict damage. Further, NASA is reviewing and validating all Space Shuttle Program engineering, flight design, and operational models for accuracy and adequate scope.

- Is reviewing its Space Shuttle hazard and failure mode effects analyses to identify unacknowledged risk and overly optimistic risk control assumptions. The result of this review will be a more accurate assessment of the probability and severity of potential failures and a clearer outline of controls required to limit risk to an acceptable level.

- Will improve the tools we use to identify and describe risk trends. As a part of this effort, NASA will improve data mining to identify problems and predict risk across Space Shuttle program elements.

To improve our Certification of Flight Readiness, NASA is

- Conducting a thorough review of the Certification of Flight Readiness process at all levels to ensure rigorous compliance with all requirements prior to launch.

- Reviewing all standing waivers to Space Shuttle program requirements to ensure that they are necessary and acceptable. Waivers will be retained only if the controls and engineering analysis associated with the risks are revalidated. This review will be completed prior to return to flight.

Next Steps

The CAIB directed that some of its recommendations be implemented before we return to flight. Other actions are ongoing, longer-term efforts to improve our overall human space flight programs. We will continue to refine our plans and, in parallel, we will identify the budget required to implement them. NASA will not be able to determine the full spectrum of recommended return to flight hardware and process changes, and their associated cost, until we have fully assessed the selected options and completed some of the ongoing test activities.

Conclusion

The American people have stood with NASA during this time of loss. From all across the country, volunteers from all walks of life joined our efforts to recover Columbia. These individuals gave their time and energy to search an area the size of Rhode Island on foot and from the air. The people of Texas and Louisiana gave us their hospitality and support. We are deeply saddened that some of our searches also gave their lives. The legacy of the brave Forest Service helicopter crew, Jules F. Mier, Jr., and Charles Krenek, who lost their lives during the search for Columbia debris will join that of the Columbia’s crew as we try to do justice to their memory and carry on the work for the nation and the world to which they devoted their lives.

All great journeys begin with a single step. With this initial implementation plan, we are beginning a new phase in our return to flight effort. Embracing the CAIB report and all that it includes, we are already beginning the cultural change necessary to not only comply with the CAIB recommendations, but to go beyond them to anticipate and meet future challenges.

With this and subsequent iterations of the implementation plan, we take our next steps toward return to safe flight. To do this, we are strengthening our commitment to foster an organization and environment that encourages innovation and informed dissent. Above all, we will ensure that when we send humans into space, we understand the risks and provide a flight system that minimizes the risk as much as we can. Our ongoing challenge will be to sustain these cultural changes over time. Only with this sustained commitment, by NASA and by the nation, can we continue to expand human presence in space—not as an end in itself, but as a means to further the goals of exploration, research, and discovery.

The Columbia accident was caused by collective failures; by the same token, our return to flight must be a collective endeavor. Every person at NASA shares in the responsibility for creating, maintaining, and implementing the actions detailed in this report. Our ability to rise to the challenge of embracing, implementing, and perpetuating the changes described in our plan will ensure that we can fulfill the NASA mission—to understand and protect our home planet, to explore the Universe and search for life, and to inspire the next generation of explorers.
As part of NASA’s response to the Columbia Accident Investigation Board (CAIB) recommendations, the Administrator asked that a process be put in place for NASA employees and the public to provide their ideas to help NASA safely return to flight. With the first public release of NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond on September 8, 2003, NASA created an electronic mailbox to receive RTF suggestions. The e-mail address is “RTFsuggestions@nasa.gov.” A link to the e-mail address for RTF suggestions is posted under the return to flight link on the NASA Web page “www.nasa.gov.”

The first e-mail suggestion was received on September 8, 2003. Since then, NASA has received a total of 1932 messages, averaging 72 messages per week. NASA responds to each message individually, including answering any questions contained in the suggestion, and providing information about where the message will be forwarded for further review and consideration.

Many of the messages received are provided for review to a Project or Element Office within the Space Shuttle Program, the International Space Station Program, the Safety and Mission Assurance Office, the Training and Leadership Development Office, the newly established NASA Engineering and Safety Center, or to the NASA Team formed to address the Agencywide implications of the CAIB Report for organization and culture.

NASA organizations receiving suggestions are asked to review the message and use the suggestion as appropriate in their RTF activities. When a suggestion is forwarded, the recipient is encouraged to contact the individual who submitted the suggestion for additional information to assure that the suggestion’s intent is clearly understood.

Table 1 provides a summary of the results. The table includes the following information: (1) the categories of suggestions; (2) the number of suggestions received per category; and (3) examples of RTF suggestion content from each category.
Synopsis of Return to Flight Suggestions

<table>
<thead>
<tr>
<th>Category</th>
<th>No. of Suggestions</th>
<th>Example Suggestion Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiter</td>
<td>573</td>
<td>(1) Develop a redundant layer of Reinforced Carbon-Carbon panels on the Orbiter wing leading edge (WLE). (2) Cover the WLE with a titanium skin to protect it from debris during ascent.</td>
</tr>
<tr>
<td>External Tank</td>
<td>526</td>
<td>(1) Insulate the inside of the External Tank (ET) to eliminate the possibility of foam debris hitting the Orbiter. (2) Shrink wrap the ET to prevent foam from breaking loose.</td>
</tr>
<tr>
<td>General Space Shuttle Program</td>
<td>267</td>
<td>(1) Simulate Return to Launch Site scenarios. (2) Orbit a fuel tank to allow the Orbiter to refuel before entry and perform a slower entry. (3) Establish the ability to return the Shuttle without a crew on board.</td>
</tr>
<tr>
<td>Imagery/Inspection</td>
<td>130</td>
<td>(1) Use the same infrared imagery technology as the U.S. military to enable monitoring and tracking the Space Shuttle during night launches. (2) Use a remotely controlled robotic free-flyer to provide on-orbit inspection. (3) Bring back the Manned Maneuvering Unit to perform on-orbit inspection of the Orbiter.</td>
</tr>
<tr>
<td>Systems Integration</td>
<td>106</td>
<td>(1) Mount the Orbiter higher up on the ET to avoid debris hits during launch. (2) Incorporate temporary shielding between the Orbiter and ET that would fall away from the vehicle after lift off.</td>
</tr>
<tr>
<td>Crew Rescue/Ops</td>
<td>69</td>
<td>(1) Implement a joint crew escape pod or individual escape pods within the Orbiter cockpit. (2) Have a second Shuttle ready for launch in case problems occur with the first Shuttle on orbit. (3) Have enough spacesuits available for all crewmembers to perform an emergency extravehicular activity.</td>
</tr>
<tr>
<td>Aerospace Technology</td>
<td>65</td>
<td>Quickly develop a short-term alternative to the Space Shuttle based on existing technology and past Apollo-type capsule designs.</td>
</tr>
<tr>
<td>Public Affairs</td>
<td>52</td>
<td>NASA needs to dramatically increase media coverage to excite the public once again, to better convey the goals and challenges of human space flight, and to create more enthusiasm for a given mission.</td>
</tr>
<tr>
<td>NASA Culture</td>
<td>50</td>
<td>(1) Host a monthly employee forum for discussing ideas and concerns that would otherwise not be heard. (2) Senior leaders need to spend more time in the field to keep up with what is actually going on.</td>
</tr>
<tr>
<td>NASA Safety and Mission Assurance</td>
<td>46</td>
<td>(1) Learn from the Naval Nuclear Reactors Program. (2) The Government Mandatory Inspection Point review should not be limited to just the Michoud Assembly Facility and Kennedy Space Center elements of the Program.</td>
</tr>
<tr>
<td>Space Shuttle Program Safety</td>
<td>20</td>
<td>(1) Develop new Solid Rocket Boosters (SRBs) that can be thrust-controlled to provide a safer, more controllable launch. (2) Use rewards and incentives to promote the benefits of reliability and demonstrate the costs of failure.</td>
</tr>
<tr>
<td>International Space Station</td>
<td>12</td>
<td>(1) Adapt an expendable rocket booster to launch Multi-Purpose Logistics Modules to the International Space Station (ISS). (2) Add ion engines to the ISS to give it extra propulsion capability.</td>
</tr>
<tr>
<td>Leadership and Management</td>
<td>10</td>
<td>(1) Employees need to be trained while still in their current job to prepare them for increasing positions of responsibility. (2) Institute a rotational policy for senior management, similar to that of the U.S. Armed Forces.</td>
</tr>
<tr>
<td>NASA Engineering and Safety Center</td>
<td>5</td>
<td>(1) Use a group brainstorming approach to aid in identifying how systems might fail. (2) NESC needs to get involved during a project's start as well as during its mission operations.</td>
</tr>
<tr>
<td>Solid Rocket Boosters</td>
<td>1</td>
<td>Ensure that the SRB hold-down bolts are properly reevaluated.</td>
</tr>
<tr>
<td>Total (As of March 15, 2004)</td>
<td>1932</td>
<td></td>
</tr>
</tbody>
</table>
CAIB Recommendations Implementation Schedule

COLUMBIA ACCIDENT
- Columbia Accident Investigation Board (CAIB) Chartered
- Return to Flight Planning Team Chartered
- Return to Flight Task Group Chartered
- CAIB Final Report
- NASA Return to Flight Implementation Plan
- NASA Return to Flight Readiness Review

<table>
<thead>
<tr>
<th>BOARD RECOMMENDATIONS</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2-1 ELIMINATE ET TPS DEBRIS-SHEDDING WITH EMPHASIS ON BIPOD STRUTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3-1 DETERMINE STRUCTURAL INTEGRITY OF REINFORCED CARBON-CARBON SYSTEM COMPONENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3-2 INCREASE THE ORBITER'S ABILITY TO SUSTAIN DEBRIS DAMAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3-3 INCREASE ORBITER'S ABILITY TO ENTER EARTH'S ATMOSPHERE WITH MINOR DAMAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3-4 DEVELOP COMPREHENSIVE DATABASE OF FLOWN REINFORCED CARBON-CARBON COMPONENTS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.3-5 IMPROVE MAINTENANCE OF LAUNCH PAD STRUCTURES</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- CDR – Critical Design Review
- ET – External Tank
- FRCS – Forward Reaction Control Sys
- HW – Hardware
- IT – InterTank
- KSC – Kennedy Space Center
- LH2 – Liquid Hydrogen
- LO2 – Liquid Oxygen
- MLGD – Main Landing Gear Doors
- NDI – Non-Destructive Inspection
- OPS – Operations
- OV – Orbiter Vehicle
- PRCB – Prop Reqts Ctrl Board
- RCC – Reinforced Carbon-Carbon
- SSP – Space Shuttle Program
- TPS – Thermal Protection System
- TRR – Test Readiness Review
- WAD – Work Authorization Document
- WLE – Wing Leading Edge

Timeline
- Jan 03
- Feb 03
- Mar 03
- Apr 03
- May 03
- Jun 03
- Jul 03
- Aug 03
- Sep 03
- Oct 03
- Nov 03
- Dec 03
- Jan 04
- Feb 04
- Mar 04
- Apr 04
- May 04
- Jun 04
- Jul 04
- Aug 04
- Sep 04
- Oct 04
- Nov 04
- Dec 04
- Jan 05
- Feb 05
- Mar 05
- Apr 05
- May 05
- Jun 05

Notable Events
- Bipod Redesign Delta CDR
- NDI of PAL Ramp ET-120
- Valid Of LH2IT Throat panel closeout
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Valid Of LH2IT Throat panel closeout
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
- Bipod TPS closeout valid.
- Bipod TPS redesign valid.
CAIB Recommendations Implementation Schedule

Legend
- CDR = Critical Design Review
- ET = External Tank
- FOD = Foreign Object Debris
- ISS = International Space Station
- KSC = Kennedy Space Center
- MMT = Mission Management Team
- MMOD = Micrometeoroid/Orb Debris
- OPS = Operations
- PRCB = Program Rqts Control Board
- RTFTG = Return to Flight Task Group
- SFLC = Space Flight Leadership Council
- SIM = Simulation
- SLEP = Service Life Extension Program
- SSP = Space Shuttle Program
- TPS = Thermal Protection System
- WLE = Wing Leading Edge

Board Recommendations

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2-1 Test and Qualify Flight Hardware Bolt Catchers</td>
<td>Complete CDR</td>
<td>Complete Qualification</td>
<td>Deliver 1st Flight Article</td>
</tr>
<tr>
<td>4.2-2 Develop State-of-the-Art Means to Inspect Orbiter Wiring as Part of SLEP</td>
<td>Present Project Plan to SSP PRCB</td>
<td>Present Findings to SSP Mgr</td>
<td>Cost & Deliver Sensors for Vehicle Install</td>
</tr>
<tr>
<td>4.2-3 Require at Least Two Employees Attend All Final Closeouts and Intertank Hand Spraying Procedures</td>
<td>Review with the RTFTG</td>
<td>Assess adequacy of MMOD requirements</td>
<td></td>
</tr>
<tr>
<td>4.2-4 Require Shuttle to Operate with Same Degree of Safety for Micrometeoroid and Orbital Debris as ISS</td>
<td>Baseline of FOD items</td>
<td>USA Ops Proc. Dev.</td>
<td>Final Training Plan Review with the RTFTG</td>
</tr>
<tr>
<td>4.2-5 KSC Quality Assurance and USA Must Return to Straightforward, Industry-Standard Definition of “Foreign Object Debris”</td>
<td>Begin Mgmt. walkdowns</td>
<td>Ongoing: Review and trend metrics</td>
<td></td>
</tr>
</tbody>
</table>

6.2-1 Adopt and Maintain Shuttle Flight Schedule Consistent with Available Resources

- Establish STS-114 baseline schedule
- Baselines RTF schedule

6.3-1 Implement a Training Program That the MMT Faces Potential Crew and Vehicle Safety Contingencies

- Process Changes to PRCB
- Project Status
- Process Changes
- Interim Training Plan
- Status to SFLC and RTF TG
- Final Training Plan
- Status to RTFTG
- Misc. MMT Process Revs
- TPS Ins & Nat. Assets Sim.
CAIB Recommendations Implementation Schedule

Board Recommendations

6.3-2 Modify MOA with National Imagery and Mapping Agency to Make Shuttle Flight Imaging Standard Equipment

- Begin crew & flight controller training
- KC-135 tile repair testing

6.4-1 Develop Practicable Capability to Inspect and Effect Emergency Repairs to the TPS

- Find and test TPS for RCC viability

7.5-1 Establish Independent TEA Responsible for Technical Requirements and Waivers

- Develop Imp. Plan for each OSF Center
- Assign Center ITA Mgr & key personnel
- OSMA New Personnel Hired

7.5-2 HQS Office of Safety and Mission Assurance Should Have Direct Line Authority over SSP Safety Organization

- NESC Functional
- Redefined PAR Process in place
- SAM Workforce in place

7.5-3 Reorganize Space Shuttle Integration Office to Make It Capable of Integrating All Elements of SSP Including Orbiter

- Release debris environment comps
- Assign Chief Int. engineer
- Review SEIO Quality/Scope Assessment
- Complete Ind. Review of Env. Cond.

Internal NASA Schedule if being used to track clearances/training of personnel

- Begin crew & flight controller training
- KC-135 tile repair testing
- Begin RCC repair concept tests
- TPS repair material selection
- Baseline ISS flight tech. dmg criteria
- SSP analysis for dock repair
- Procedure for inspection and repair

Legend

- ISS – International Space Station
- ITA – Independent Technical Authority
- MOA – Memorandum of Agreement
- NESC – NASA Engineering & Safety Center
- OSF – Office of Safety & Flight Assurance
- PAR – Pre-Launch Assessment Review
- POP – Program Operating Plan
- RCC – Reinforced Carbon-Carbon
- SEIO – Systems Engineering and Integration Office
- SAM – Safety and Mission Assurance
- SSP – Space Shuttle Program
- TEA – Technical Engineering Authority
- TPS – Thermal Protection System
CAIB Recommendations Implementation Schedule

BOARD RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Recommendation</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1-1 DEFINE, ESTABLISH, TRANSITION, AND IMPLEMENT INDEPENDENT TEA, SAFETY PROGRAM, AND REORGANIZED SPACE SHUTTLE INTEGRATION OFFICE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.2-1 DEVELOP AND CONDUCT VEHICLE RECERTIFICATION AT MATERIAL, COMPONENT, SUBSYSTEM, AND SYSTEM LEVELS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3-1 DEVELOP INTERIM PROGRAM OF CLOSEOUT PHOTOGRAPHS FOR CRITICAL SUBSYSTEMS THAT DIFFER FROM ENGINEERING DRAWINGS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10.3-2 PROVIDE RESOURCES FOR LONG-TERM PROGRAM TO UPGRADE SHUTTLE ENGINEERING DRAWING SYSTEM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend
- EO – Engineering Order
- I/F – Interface
- ITA – Independent Technical Authority
- JSC – Johnson Space Center
- KSC – Kennedy Space Center
- MSFC – Marshall Space Flight Center
- PRCB – Program Requirements Control Board
- SFLC – Space Flight Leadership Council
- SIMS – Still Imagery Management System
- SLEP – Service Life Extension Program
- SW – Software

- Present revised SLEP options to SFLC
- Implementation of initial plans begins
- Agency-wide ITA Implementation
- Projects xml photoreqs to KSC Ground Ops
- Provide train to MER
- Demo SIMS I/F to JSC/MSFC
- Present drawing conversion concept to PRCB
- Complete graphical drill down S/W Imp.
- Dev/complete SIMS training module
- Begin EO Incorporation
- TBD: Annual Reports to Congress

Note: Present revised SLEP options to SFLC.
NASA began to incur costs in fiscal year (FY) 2003, originally estimated at approximately $40.5M, to initiate return to flight (RTF) actions based on preliminary Columbia Accident Investigation Board (CAIB) recommendations and internal Shuttle Program actions. In November 2003, NASA identified a total of $60M of FY 2003 RTF activities that had sufficient maturity to allow reasonable cost estimates, and had been approved for funding by the Space Shuttle Program Requirements Control Board (PRCB) and verified by the RTF Planning Team (RTFPT). Since November, additional corrective actions have been initiated based on the final CAIB Report recommendations and internal Shuttle Program actions. The total cost of FY 2003 RTF activities is now known to be $93.5M.

For FY 2004, $265M of potential RTF activities have been identified to date, of which $124M have been approved through the PRCB and verified by the RTFPT. The remaining $141M of identified potential FY 2004 RTF activities are still under evaluation to confirm the estimated cost and associated out-year phasing. Cost estimates for RTF activities are dynamic. Additional funding may be required from other Agency sources. As soon as these additional RTF activities are fully defined, they will be shared with Congress in NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond.

Not included in cost estimates provided are additional RTF elements being evaluated for a start in FY 2004 and other RTF funding requirements resulting from a complete evaluation of the CAIB Report, such as replacement of hardware (e.g., cargo integration, Orbiter pressure tanks); other agencies’ on-orbit assessment; and Program reserves. Several solutions to improve NASA’s culture and some of the Space Shuttle Program’s (SSP’s) actions detailed in “Raising the Bar – Other Corrective Actions” (referred to as SSP corrective actions for the remainder of this summary) will be integrated into existing processes and may not always require additional funding.

The proposed SSP solutions for all RTF actions will be reviewed by the Space Shuttle PRCB before receiving final NASA implementation approval and being included in future updates. This process applies to solutions to the CAIB recommendations as well as to the SSP corrective actions.

The PRCB has responsibility to direct studies of identified problems, formulate alternative solutions, select the best solution, and develop overall cost estimates. The membership of the PRCB includes the SSP Manager, Deputy Manager, all Project and Element Managers, Safety and Mission Assurance personnel, and the Team Leader of the RTFPT.

PRCB deliberations are further evaluated by the RTFPT to ensure that comprehensive, integrated, and cohesive approaches are selected to address the recommendations and solutions as outlined in this Plan. The membership of the RTFPT group includes approximately 30 experienced senior personnel from the Office of Space Flight and its field centers (at Johnson Space Center (JSC), Kennedy Space Center (KSC), Marshall Space Flight Center (MSFC), and Stennis Space Center (SSC)).

In the process of down-selecting to two or three “best options,” the projects and elements approve funding to conduct tests, perform analysis, develop prototype hardware and flight techniques, and/or obtain contractor technical expertise that is outside the scope of existing contracts.

The Space Flight Leadership Council (SFLC) is regularly briefed on the overall activities and progress associated with RTF and becomes directly involved when the SSP and RTFPT are ready to recommend a comprehensive solution to a CAIB recommendation or SSP corrective action. The SFLC receives a technical discussion of the solution as well as an assessment of cost and schedule. With the concurrence of the SFLC, the SSP then receives the authority to proceed. The membership of the SFLC includes the Associate Administrator for the Office of Space Flight, Associate Deputy Administrator for Technical Programs, Deputy Associate Administrator for ISS [International Space Station] and SSP, Associate Administrator for Safety and Mission Assurance, RTFPT Team Lead, Space Shuttle Program Manager, and the...
Office of Space Flight Center Directors (at JSC, KSC, MSFC, and SSC).

All recommended solutions are further reviewed, for both technical merit and to determine if the solution responds to the action, by the Return to Flight Task Group (also known as the Stafford-Covey Task Group).

As decisions are made through the process described above, NASA will provide updated cost estimates in subsequent revisions of NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond. Current estimates for NASA’s initial RTF requirements are based on cost-estimating relationships derived from previous cost history, and typically include costs such as studies, engineering, development, integration, certification, verification, implementation, and retrofit, if appropriate.

Return to Flight Budget Estimates/Implementation Plan Map for New Estimates Including Threats
As of 1/29/04

<table>
<thead>
<tr>
<th>Initiated RTF Activities</th>
<th>($ Millions)</th>
<th>Recommendation Numbers Map to Implementation Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 03</td>
<td>FY 04</td>
<td>CAIB #3.2-1</td>
</tr>
<tr>
<td>Orbiter RCC Inspections</td>
<td>4</td>
<td>21</td>
</tr>
<tr>
<td>On-orbit TPS Inspection & EVA Tile Repair</td>
<td>46</td>
<td>53</td>
</tr>
<tr>
<td>Orbiter TPS Hardening</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td>Orbiter Certification / Verification</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>External Tank Items (Camera, Bipod Ramp, etc.)</td>
<td>26</td>
<td>60</td>
</tr>
<tr>
<td>SRB Items (Bolt Catcher, ETA Ring Invest., Camera)</td>
<td>0</td>
<td>14</td>
</tr>
<tr>
<td>Ground Camera Ascent Imagery Upgrade</td>
<td>8</td>
<td>36</td>
</tr>
<tr>
<td>Other (System Intgr. JBOSC Sys, SSME Tech Assess)</td>
<td>2</td>
<td>60</td>
</tr>
<tr>
<td>Stafford - Covey Team</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total SSP RTF Related</td>
<td>94</td>
<td>265</td>
</tr>
</tbody>
</table>

Other RTF Related

| NASA Engineering and Safety Center (NESC) | 45 | X | X | X |
NASA’s Response to the Columbia Accident Investigation Board’s Recommendations

The following section details NASA’s response to each CAIB recommendation in the order that it appears in the CAIB Report. We must comply with those actions marked “RTF” before we return to flight. This is a preliminary plan that will be periodically updated. As we begin to implement these recommendations and continue our evaluation of the CAIB Report, we will be able to respond more completely. Program milestones built on the CAIB recommendations will determine when we can return to safe flight.
BACKGROUND

Figure 3.2-1-1 illustrates the primary areas on the External Tank (ET) being evaluated as potential debris sources for return to flight (RTF).

ET Forward Bipod Background

Before STS-107, several cases of foam loss from the left bipod ramp were documented through photographic evidence. The most significant foam loss events in the early 1990s were attributed to debonds or voids in the “two-tone foam” bond layer configuration on the intertank area forward of the bipod ramp. The intertank foam was thought to have peeled off portions of the bipod ramp when liberated. Corrective action taken after STS-50 included implementation of a two-gun spray technique in the ET bipod ramp area (figure 3.2-1-2) to eliminate the two-tone foam configuration. After the STS-112 foam loss event, the ET Project began developing redesign concepts for the bipod ramp; this activity was still under way at the time of the STS-107 accident. Dissection of bipod ramps conducted for the STS-107 investigation has indicated that defects resulting from a manual foam spray operation over an extremely complex geometry could produce foam loss.

Figure 3.2-1-1. Primary potential ET debris sources being evaluated.
Liquid Oxygen (LO₂) Feedline Bellows Background

Three ET LO₂ feedline sections incorporate bellows to allow feedline motion. The bellows shields (figure 3.2-1-3) are covered with Thermal Protection System (TPS) foam, but the ends are exposed. Ice and frost form when moisture in the air contacts the cold surface of the exposed bellows. Although Space Shuttle Program (SSP) requirements include provisions for ice on the feedline supports and adjacent lines, ice in this area presents a potential source of debris in the critical debris zone—the area from which liberated debris could impact the Orbiter.

Protuberance Airload (PAL) Ramps Background

The ET PAL ramps are designed to reduce adverse aerodynamic loading on the ET cable trays and pressurization lines (figure 3.2-1-4). The only PAL ramp foam loss event occurred on STS-4. The foam loss was associated with a repair operation; a recurrence of such a loss has been precluded by limiting repairs allowed on PAL ramps. However, the PAL ramps are covered with large, thick, manually sprayed foam applications (using a less complex...
manual spray process than that used on the bipod) that could, if liberated, become the source of large debris.

ET Liquid Hydrogen (LH$_2$) Intertank Flange Background

The ET LH$_2$/intertank flange (figure 3.2-1-5) is a manually fastened mechanical joint that is closed out with a two-part manual spray foam application. There is a history of foam loss from this area. The divots from the LH$_2$/intertank flange area typically weigh less than 0.1 lb. and emanate from within the critical debris zone, which is the area of the ET where debris loss could adversely impact the Orbiter or other Shuttle elements.

NASA IMPLEMENTATION

NASA has initiated a three-phase approach to eliminate the potential for debris loss from the ET. Phase 1 includes those activities that will be performed before return to flight. Phase 2 includes debris elimination enhancements that can be incorporated into the ET production line as the enhancements become available, but are not considered mandatory for RTF. Phase 3 represents potential long-term development activities that will be examined to achieve the ultimate goal of eliminating the possibility of debris loss. Implementation of Phase 3 efforts will be weighed against plans to retire the Shuttle after the completion of the International Space Station (ISS) assembly planned for the end of the decade.

As part of the Phase 1 effort, NASA is enhancing or redesigning the areas of known critical debris sources (figure 3.2-1-1). This includes redesigning the forward bipod fitting, eliminating ice from the LO$_2$ feedline bellows, and eliminating debris from the LH$_2$/intertank flange closeout. In addition to these known areas of debris, NASA is reassessing all TPS areas to validate the TPS configuration, including both automated and manual spray applications. Special consideration is being given to the LO$_2$ and LH$_2$ PAL ramps due to their size and location. This task includes assessing the existing verification data, establishing requirements for additional verification data, and evaluating methods to improve process control of the TPS application. NASA is also pursuing a comprehensive testing program to understand the root causes of foam shedding and develop alternative design solutions to reduce the debris loss potential. Research is being conducted at Marshall Space Flight Center, Arnold Engineering and Development Center, Eglin Air Force Base, and other sites. As part of this effort, NASA is developing nondestructive investigation (NDI) techniques to conduct ET TPS inspection without damaging the fragile insulating foam. During Phase 1, NDI will be used on the LO$_2$ and LH$_2$ PAL ramps.
Phase 2 efforts will include pursuing the automation of critical manual TPS spray processes, redesigning or eliminating the LO₂ and LH₂ PAL ramps, and enhancing the NDI screening tool. Efforts will also be made to enhance the TPS material to reduce its debris loss potential and to enhance the TPS thermal analysis tools to better size and potentially eliminate TPS on the vehicle.

The Phase 3 effort, if implemented, will examine redesigning the ET to eliminate the debris shedding potential at the source. This could include items such as developing a “smooth” LO₂ tank without external cable trays or pressurization lines, developing a smooth intertank in which an internal orthogrid eliminates the need for external stringers, and implementing a protuberance tunnel in the LH₂ tank. These changes could provide a tank with a smooth outer mold line that eliminates the need for complex TPS closeouts and manual sprays.

ET Forward Bipod Implementation Approach

NASA has initiated a redesign of the ET forward bipod fitting (figure 3.2-1-6). The baseline design change eliminates the need for large bipod foam ramps. The bipod fittings have been redesigned to incorporate redundant heaters in the base of the bipod to prevent ice formation as a debris hazard.

LO₂ Feedline Bellows Implementation Approach

NASA evaluated three concepts to eliminate ice formation on the bellows (figure 3.2-1-7). Analysis and testing eliminated the flexible bellows boot as a potential solution since it could not eliminate ice formation within the available volume. The heated gaseous nitrogen (GN₂) or gaseous helium purge options were also eliminated since they did not reduce the potential for foam divot formation. NASA selected the condensate drain “drip lip” with integral gasket of RTF retrofit. We will use a combination of analysis and testing to verify the effectiveness of the baseline design solution.
NASA has conducted tests to determine the cause of foam liberation from the LH₂/intertank flange area. Migration of gaseous or liquid nitrogen from inside the intertank to voids in the foam was shown to be the root cause for LH₂/intertank flange foam losses during ground testing. Several design concepts have been evaluated to ensure that the LH₂/intertank flange closeouts will not generate critical debris in flight. These concepts ranged from active purge of the intertank crevice to enhanced foam application procedures. The selected design solution incorporates an enhanced three-step manual closeout process to eliminate voids and seal leak paths from inside the intertank region to the foam. Also, additional material will be injected into the volume inside the intertank crevice to fill that area, significantly reduce liquid nitrogen formation there, and prevent any nitrogen that does form from migrating into the foam.

A recent update to the Level II debris transport analyses has expanded the critical debris zone that must be addressed, and significantly reduced the allowable debris mass in this region. The debris allowable has been reduced from a mass of 0.2 lb. in this region to approximately 0.04 lb. The critical debris zone has been expanded from ±67.5° from the top of the External Tank (the top of the tank directly faces the underside of the Orbiter) to greater than ±80° from the top of the tank. As a result, a new closeout process for the thrust panel of the intertank flange region needs to be developed. The plan is to apply the new closeout to the entire thrust panel, expanding the enhanced closeout region to ±112° from the top of the tank (figure 3.2-1-8).

PAL Ramps Implementation Approach

There has been only one PAL ramp foam loss event in the history of the Shuttle, on STS-4. The foam loss was related to a repair operation; its reoccurrence has been precluded by limiting repairs on all PAL ramps. However, the ET PAL ramp configurations will also be assessed to reduce or eliminate them as potential sources of TPS debris.

Due to the size and location of the PAL ramps, NASA has placed them at the top of the priority list for TPS verification reassessment and NDI. NASA will work to increase confidence in the existing design before RTF. Phase 2 implementation will remove or reduce the size of the PAL ramps. NASA’s goal is to reduce or eliminate the potential debris source without adding further risk to the hardware that the PAL ramps are designed to protect. Four options are being evaluated for redesign: no ramps, foam mini-ramp, trailing edge fence, and leading edge fence (figure 3.2-1-9).

TPS (Foam) Verification Reassessment Implementation Approach

NASA has developed a certification plan for both manual and automated TPS applications in the critical debris zones. This assessment will be performed by evaluating...
existing verification data and will include a review and update of the process controls applied to foam applications, especially the manual spray applications that have a greater risk of foam loss. As part of this update, NASA will ensure that at least two certified production operations personnel attend all final closeouts and critical hand-spraying procedures to ensure proper processing (ref. Recommendation 4.2-3).

NDI of Foam Implementation Approach

NASA is pursuing development of TPS NDI techniques to improve our confidence in the foam application processes. If successful, advanced NDI will provide an additional level of process verification. The initial focus for RTF will be on applying NDI to the PAL ramps.
TERAHERTZ IMAGING

Solid circles = Detected
Open circles = Weak Indications
14 Detected
5 Missed
0 False calls
(9 indications below threshold, open circles)

Figure 3.2-1-10. Terahertz images.
During Phase 1, NASA surveyed state-of-the-art technologies, evaluated their capabilities, down-selected, and began developing a system to detect critical flaws in ET insulation systems. At an initial screening, test articles with known defects, such as voids and delaminations (figure 3.2-1-10), were provided to determine detection limits of the various NDI methods.

After the initial screening, NASA selected the Terahertz and backscatter radiation technologies and conducted more comprehensive probability of detection (POD) tests for those applicable NDI methods. The Phase 2 activities will optimize and fully certify the selected technologies for use on the ET.

STATUS

NASA has completed an initial assessment of debris sources on the ET, including both credible size and frequency or probability of liberated debris.

ET Forward Bipod Status

NASA has successfully completed a Systems Design Review (SDR) and a Preliminary Design Review (PDR). The Critical Design Review (CDR) was held in November 2003, with a Delta CDR held in March 2004. The Delta CDR Board meeting completing the review is planned for April 2004. No significant issues remain for the bipod redesign implementation. Thermal verification tests on prelaunch ice prevention have been conducted, with an automated heater control baselined and validated based on bipod web temperature measurements. Structural verification tests have confirmed the performance of the modified fitting in flight environments. Wind tunnel testing has verified the TPS closeout performance when exposed to ascent aerodynamic and thermal environments. Remaining open work includes finalizing the TPS process control and verification approach for the foam application, and conducting an integrated bipod test using hydrogen and the tank fluid and a prototype ground control system.

LO₂ Feedline Bellows Status

NASA selected the TPS “drip lip” option to address ice formation on the LO₂ feedline bellows. The drip lip diverts condensate from the bellows and significantly reduces ice formation. This drip lip with a gasket insert (figure 3.2-1-11) was chosen as the baseline option due to the reduced implementation complexity and the ability to support both forward and aft bellows. The drip lip design is nearly complete; however, development testing remains to select the optimum gasket design and material.

Longer-term Phase 2 design solutions are also being pursued with the supplier of the feedline bellows assembly to eliminate the icing concern.

LH₂/Intertank Flange Closeout Status

NASA has successfully determined the root cause of foam loss. Gaseous nitrogen used as a safety purge in the intertank came into contact with the extremely cold hydrogen tank dome and condensed into liquid. The liquid nitrogen migrated into the foam and then filled voids in the foam caused by unacceptable variability in the manual foam application. During ascent, the liquid nitrogen returned to a gaseous state, pressurizing the voids and causing the foam to detach.

NASA evaluated the foam loss in this region with extensive, rigorous testing and analysis. First, a series of 1×1” aluminum substrate panels with induced voids of varying diameters and depths below the foam surface were subjected to the vacuum, heat profiles, and backface cryogenic temperatures experienced during launch.
These tests were successful at producing divots in a predictable manner.

Follow-on testing was conducted on panels that simulated the liquid hydrogen intertank flange geometry and TPS closeout configuration to replicate divot formation in a flight-like configuration. Two panel configurations were simulated (figure 3.2-1-12), a 3-stringer configuration and a 5-stringer configuration. The panels were subjected to flight-like conditions, including front face heating, backface cryogenics and heating (consisting of a 1.5-hour chill-down, 5-hour hold, and 8-minute heating), ascent pressure profile, and flange deflection. These tests were successful at demonstrating the root cause failure mode for foam loss from the liquid hydrogen tank/intertank flange region.

With this knowledge, NASA evaluated the LH₂/intertank closeout design to minimize foam voids and nitrogen leakage from the intertank into the foam (figure 3.2-1-5). Several design concepts were initially considered to eliminate debris, including incorporating an active helium purge of the intertank crevice to eliminate the formation of liquid nitrogen and developing enhanced foam application procedures.

Testing indicated that a helium purge would not completely eliminate the formation of foam divots, since helium, too, could produce enough pressure in the foam voids to cause divot formation. As a result, the purge solution was eliminated from consideration.

NASA is now pursuing two other solutions. First, NASA is developing a material to fill the crevice void and processes that will ensure appropriate application of the material in this difficult-to-reach area. This material will reduce or eliminate nitrogen condensation that leads to foam divots.

Second, NASA is making progress in enhancing the TPS closeout in the LH₂ intertank area to reduce the presence of defects within the foam by using a three-step closeout procedure. This approach greatly reduces or eliminates void formations in the area of the flange joining the LH₂ tank to the intertank.

In addition, a study has been performed at both KSC and the Michoud Assembly Facility (MAF) to reduce the potential for TPS damage during ground processing. The study identified a series of recommendations, including reducing access to critical areas of the ET, installing debris safety barriers, improving the work platforms in the area, and investigating a topcoat that would more readily show handling damage. Testing performed on eight panels using the enhanced closeout configuration
demonstrated the effectiveness of the closeout; there were no foam cracks or divots formed in any of the tests.

NASA now understands the failure mechanism of the foam and will implement redundant solutions. The external three-step enhanced closeout procedure reduces foam loss to a level below acceptable limits by removing critical voids in the foam. Also, the internal volume fill reduces the foam failures to small divots that are within the debris allowables by eliminating the mechanism by which the voids in the foam are pressurized and divots are formed. With these redundant solutions, NASA will be able to certify the safety of the ET foam in the flange area that connects the hydrogen tanks to the intertank.

PAL Ramps Status

Because the PAL ramps (figure 3.2-1-12) have an excellent flight history, NASA’s baseline approach for RTF is to develop sufficient certification data to accept the debris risk of the existing design. This will be accomplished by evaluating the available verification data and augmenting it with additional tests, analyses, and/or inspections. This will include dissecting several existing PAL ramps to understand the void sizes produced by the existing PAL ramp TPS process. If NASA is unable to obtain sufficient data to recertify the existing PAL ramps, the Agency will remove the PAL ramp and replace it with an improved-process manual spray application. In addition, an automated PAL ramp spray is being evaluated for Phase 2 activities.

Concept design activities are in work to eliminate the PAL ramps as part of the Phase 2 activity. Redesign options include eliminating the PAL ramps altogether, implementing smaller mini-ramps, or incorporating a cable tray aero block fence on either the leading or trailing edge of the tray. NASA conducted subscale wind tunnel testing of the candidates that indicated a good potential for eliminating the foam PAL ramps. Additional wind tunnel tests are planned for this spring and summer.

TPS (Foam) Verification Reassessment Status

The SSP has established a TPS Certification Plan for the ET RTF efforts. This plan relies on a combination of inspections, tests, analyses, and demonstrations to certify each TPS application within the critical debris zone. All TPS applications will undergo visual inspection, verification of the sprays to specific acceptance criteria, and validation of the acceptance criteria. A series of materials properties tests is being performed to provide data for analysis reflecting a statistical lower bound for hardware performance. Acceptance testing, including raw and cured materials at both the supplier and the MAF, is being used to demonstrate the as-built hardware integrity is consistent with design requirements and test databases. Mechanical property tests, including plug pull, coring, and density, are being performed on the as-built hardware.

NASA is also conducting stress analysis of foam performance under flight-like structural loads and environmental conditions, with component strength and fracture tests grounding the assessments. Production-like demonstrations are being performed upon completion of all design and development efforts to verify and validate the acceptability of the production parameters. Dissection of equivalent or flight hardware is under way to determine process performance. TPS defect testing is being conducted to determine the critical defect sizes for each application. In addition, a variety of bond adhesion, cryoflex, storage life verification, cryo/load/thermal tests, and acceptance tests are under way to fully certify the TPS application against all failure modes. Finally, a Manual Spray Enhancement Team has been established to provide recommendations for improving the TPS closeout of manual spray applications.

NDI of Foam Status

Activities have been initiated to develop NDI techniques for use on ET TPS. The following prototype systems under development by industry and academia were evaluated:

- Backscatter Radiography: University of Florida
- Microwave/Radar: Marshall Space Flight Center, Pacific Northwest National Labs, University of Missouri, Ohio State
- Shearography: Kennedy Space Center, Laser Technology, Inc.
- Terahertz Imaging: Langley Research Center, Picometrix, Inc., Rensselaer
- Laser Doppler Vibrometry: Marshall Space Flight Center, Honeywell

The Terahertz Imaging and Backscatter Radiography systems were selected for further probability of detection (POD) testing based on the results of the initial proof-of-concept tests. The microwave system will still be evaluated during the Phase 2 development activity. This additional POD testing has been completed, but the results are still being analyzed. The preliminary results,
however, indicate that these technologies are not yet reliable enough to be used to certify TPS applications over complex geometries, such as the bipod or intertank flange regions. The technologies will continue to be developed to support PAL ramp evaluation and for Phase 2 implementation.

FORWARD WORK

- Finalize critical characteristics that could cause catastrophic damage to the Orbiter.
- Complete Delta CDR Board of bipod fitting redesign and complete the TPS verification testing.
- Implement the “drip lip” design option for the oxygen tank feedline bellows and establish the gasket design.
- Assess the data requirements to certify current PAL ramps design and develop concept designs for PAL ramps.
- Complete the TPS certification activities, including generating the materials properties, obtaining the dissection results, determining the critical debris size for each application, and completing the required assessments.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Complete bipod redesign Delta CDR Board</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Perform NDI of PAL ramp on ET-120 (1st RTF tank)</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Complete validation of LH$_2$/IT stringer panel closeout</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Complete bipod TPS closeout validation</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Complete bellows “drip lip” validation</td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Complete validation of LH$_2$/IT thrust panel closeout</td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Complete bipod retrofit on ET-120</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 04</td>
<td>Complete flange closeout on ET-120</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Ready to ship ET-120 to KSC</td>
</tr>
</tbody>
</table>
BACKGROUND
The STS-107 accident demonstrated that the Space Shuttle Thermal Protection System (TPS) design is vulnerable to impact. Identification of all sources of debris and potential modifications to the design of the TPS, referred to as Orbiter hardening, are expected to make the Orbiter less vulnerable to this risk.

NASA IMPLEMENTATION
A Program Requirements Control Board (PRCB) action authorized assessment of potential TPS modifications for Orbiter hardening. As part of this action, NASA is defining candidate redesigns that will reduce impact damage risk to vulnerable TPS areas and is developing an assessment plan for other steps to improve Orbiter hardening.

Initially, a Space Shuttle Program (SSP)-chartered planning team identified 17 specific design options that fell into eight broader design families. Further testing and analysis, combined with new data from the ongoing Columbia Accident Investigation Board investigation, led NASA to hone its criteria for defining and prioritizing Orbiter hardening options. Each TPS enhancement option was evaluated against the damage history, vulnerability, and criticality potential of the area and the potential safety, operations, and performance benefits of the enhancement. The team focused on those changes that achieve the following goals: increase impact durability for ascent and micrometeoroid and orbital debris impacts; increase temperature capability limits; reduce leak paths; add entry redundancy; increase contingency trajectory limits; and reduce contingency operations. These candidates were presented to the SSP PRCB, which prioritized them, eliminating seven from further consideration. Some of the remaining ten options required breaking down into smaller elements. The result was a final set of 15 Orbiter hardening options grouped into eight different design families. These results were presented to the PRCB in June 2003, including forward action plan recommendations for the revised design families (see table 3.3-2-1).

The SSP has established a plan to determine the impact resistance of both Reinforced Carbon-Carbon (RCC) and tiles in their current configurations. The SSP is also working to identify all debris sources from all Space Shuttle elements including the External Tank (ET), the Solid Rocket Boosters, and the Orbiter. Additional detail on this work can be found in SSP-14, Critical Debris Size. The SSP Systems Engineering and Integration Office is providing transport analyses to identify potential velocity, impact location, and impact angle for the debris sources. In parallel, an impact test program is being conducted to determine the impact resistance of RCC and tile using various debris sources under conditions that encompass the full range of parameters provided by the transport analysis. The data generated from this testing will be used to correlate an accurate set of analytical models to further understand the damage threat. Further testing will be conducted on specific Orbiter insulation configurations that were identified during the investigation, including the leading edge structural subsystem access panels (located directly behind the RCC) and the edge tile configuration of the main landing gear doors (MLGD).

STATUS
For each of the redesign options listed above, NASA is developing a detailed feasibility assessment that will include cost and schedule for either full implementation or for the next proposed phase of the project. The Orbiter hardening options have been grouped into three categories based on the implementation phasing. The three phases are defined as

- Phase I: High criticality options that will be implemented before return to flight (RTF).
- Phase II: Modifications that are not RTF constraints. Feasible Phase II options will be implemented as soon as opportunities arise.
- Phase III: Long-term improvement options. The implementation time of Phase III items is longer than one year after RTF.

Columbia Accident Investigation Board
Recommendation 3.3-2

Initiate a program designed to increase the Orbiter’s ability to sustain minor debris damage by measures such as improved impact-resistant Reinforced Carbon-Carbon and acreage tiles. This program should determine the actual impact resistance of current materials and the effect of likely debris strikes. [RTF]
<table>
<thead>
<tr>
<th>Family</th>
<th>Redesign Proposal</th>
<th>Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>WLESS</td>
<td>“Sneak Flow” Front Spar Protection (RCC #5 – 13)</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>“Sneak Flow” Front Spar Protection (RCC #1 – 4, 4 – 22)</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Lower Access Panel Redesign/BRI 20 Tile Implementation</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Insulator Redesign</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Robust RCC</td>
<td>III</td>
</tr>
<tr>
<td>Landing Gear and ET Door Thermal Barriers</td>
<td>Main Landing Gear Door Corner Void</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td>Main Landing Gear Door Enhanced Thermal Barrier Redesign</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>Nose Landing Gear Door Thermal Barrier Material Change</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>External Tank Door Thermal Barrier Redesign</td>
<td>III</td>
</tr>
<tr>
<td>Vehicle Carrier Panels – Bonded Stud Elimination</td>
<td>Forward RCS Carrier Panel Redesign – Bonded Stud Elimination</td>
<td>I</td>
</tr>
<tr>
<td>Tougher Lower Surface Tiles</td>
<td>Tougher Periphery (BRI 20) Tiles around MLGD, NLGD, ETD, Window Frames, Elevon Leading Edge and Wing Trailing Edge</td>
<td>III</td>
</tr>
<tr>
<td></td>
<td>Tougher Acreage (BRI 8) Tiles and Ballistics SIP on Lower Surface</td>
<td>III</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>TPS Instrumentation</td>
<td>III</td>
</tr>
<tr>
<td>Elevon Cove</td>
<td>Elevon Leading Edge Carrier Panel Redesign</td>
<td>III</td>
</tr>
<tr>
<td>Tougher Upper Surface Tiles</td>
<td>Tougher Upper Surface Tiles</td>
<td>III</td>
</tr>
<tr>
<td>Vertical Tail</td>
<td>Vertical Tail AFSI High Emittance Coating</td>
<td>III</td>
</tr>
</tbody>
</table>

Table 3.3-2-1. Eight Design Families Targeted for Enhancement.

Phase I options will be implemented before RTF. Phase II includes potential constraints to flight; and additional tests and analyses may require some of these options to be moved to Phase I. Phase III consists of the long-term options that will increase the Orbiter’s impact resistance capability. The qualification and certification of one Phase III option, tougher lower and upper surface tiles, has been approved by the SSP. This and the other modifications will be implemented as material development is completed and opportunities become available.

Phase I options consist of elimination of MLGD corner void, elimination of Forward Reaction Control System (FRCS) bonded studs, and wing spar protection for the most vulnerable RCC panels 5 through 13. Phase II options consist of MLGD-enhanced thermal barrier redesign and wing spar protection for all other RCC panels. The remaining options will be considered as part of Phase III.

For Phase I, the interim MLGD corner void elimination modification was completed on Orbiter Vehicle (OV)-103 and OV-104; this modification will improve thermal protection around the seals in the MLGD. OV-105 will receive the same interim modification unless NASA is able to proceed to the planned final modification with redundant seals.

SSP approved the engineering solution to remove FRCS-bonded studs and replace them with mechanically fastened studs for all three vehicles. This will ensure stronger attachment points for key TPS elements.
Bonded studs are currently being removed from OV-103 FRCS. OV-104 and OV-105 are scheduled to receive this same modification in the next few months.

The design for wing spar protection modification behind RCC panels 5 through 13 is in the final engineering stages and is scheduled for release on May 26, 2004. This modification will increase the Orbiter’s ability to successfully enter the Earth’s atmosphere with minor wing leading edge (WLE) damage. OV-104 and OV-103 will initially receive this modification. Instead of modifying RCC panels 5 through 13 as on OV-103 and OV-104, all 22 RCC panel locations on both wings of OV-105 will receive the same modification during its current Orbiter Major Modification.

For Phase II options, the designs to modify the wing spar protection behind RCC panels 1 through 4 and 14 through 22 on OV-103 and OV-104 will be finalized at the end of June 2004.

All Phase III options are still being reviewed by the SSP at this time with the exception of toughened lower surface and upper surface tiles, which have been approved and are under development. Conceptual development of these improvements has just been completed and work is continuing into the analysis and preliminary design phase, which will be completed by January 2005.

NASA continues to work on identifying debris sources and generating test plans for the TPS impact tests. Three full-scale impact tests of RCC were conducted at Southwest Research Institute. The first test used a foam projectile of 0.1 lb. mass at 700 ft/sec (fps); the second test doubled the kinetic energy of the initial test by using a 0.2 lb. projectile at 700 fps. Neither test resulted in damage to the RCC panel. The third test again doubled the kinetic energy by using a 0.16 lb. projectile at 1167 fps. This test resulted in multiple through cracks and permanent deflections in the RCC panel.

FORWARD WORK

NASA will continue to implement the Plan according to the schedule below. Decision packages for each redesign option will be brought to the PRCB for disposition.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jun 03</td>
<td>Initial plan reported to PRCB (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 03</td>
<td>Initial Test Readiness Review held for Impact Tests (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Nov 03</td>
<td>Phase I Implementation Plans to PRCB (MLGD corner void, FRCS carrier panel design—bonded stud elimination, and WLE impact detection instrumentation)</td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04</td>
<td>Phase II Implementation Plans to PRCB (WLE front spar protection and horse collar redesign, MLGD redundant thermal barrier redesign) (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>Phase III Implementation Plans to PRCB (include robust RCC, ET door thermal barrier redesign, advanced WLE instrumentation, elevon cove leading edge carrier panel redesign, etc.)</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendation 3.3-1

Develop and implement a comprehensive inspection plan to determine the structural integrity of all Reinforced Carbon-Carbon (RCC) components. This inspection plan should take advantage of advanced non-destructive inspection technology. [RTF]

Note: The Stafford Covey Task Group held a plenary session on April 15, 2004, in Houston, Texas. NASA’s progress toward answering this recommendation was reviewed, and the Task Group agreed that the actions taken were sufficient to close this recommendation.

BACKGROUND

Current on-vehicle inspection techniques are inadequate to assess the structural integrity of Reinforced Carbon-Carbon (RCC) components and attachment hardware. There are two aspects to the problem: (1) how we assess the structural integrity of RCC components and attach hardware throughout their service life, and (2) how we verify that the flight-to-flight RCC mass loss caused by aging does not exceed established criteria. At present, structural integrity is assured by wide design margins; comprehensive nondestructive inspection (NDI) is conducted only at the time of component manufacture.

Mass loss is monitored through a destructive test program that periodically sacrifices flown RCC panels to verify by test that the actual material properties of the panels are within the predictions of the mission life model.

The RCC NDI techniques currently certified include X-ray, ultrasound (wet and dry), eddy current, and computer-aided tomography (CAT) scan. Of these, only eddy current can be done without removing components from the vehicle. While eddy current testing is useful for assessing the health of the RCC outer coating and detecting possible localized subsurface oxidation and mass loss, it reveals little about a component’s internal structure. Since the other certified NDI techniques require hardware removal, each presents its own risk of unintended damage. Only the vendor is fully equipped and certified to perform RCC X-ray and ultrasound. Shuttle Orbiter RCC components are pictured in figure 3.3-1-1.

NASA IMPLEMENTATION

The Space Shuttle Program (SSP) is pursuing inspection capability improvements using newer technologies to allow comprehensive NDI of the RCC without removing it from the vehicle. A technical interchange meeting held in May 2003 included NDI experts from across the country. This meeting highlighted five techniques with potential for near-term operational deployment: (1) flash thermography, (2) ultrasound (wet and dry), (3) advanced eddy current, (4) shearography, and (5) radiography. The SSP must still assess the suitability of commercially available equipment and standards for flight hardware. Once an appropriate in-place inspection method is fielded, the SSP will be able to positively verify the structural integrity of RCC hardware without risking damage by removing the hardware from the vehicle.

NASA is committed to clearing the RCC by certified inspection techniques before return to flight. The near-term plan calls for removing all RCC components and returning them to the vendor for comprehensive NDI. For the long term, a Shuttle Program Requirements Control Board (PRCB) action was assigned to review inspection criteria and NDI techniques for all Orbiter RCC nose cap, chin panel, and wing leading edge (WLE) system components. Viable NDI candidates were reported to the PRCB in January 2004, and specific options were chosen.

RCC structural integrity and mass loss estimates will be validated by off-vehicle NDI of RCC components and destructive testing of flown WLE panels. All WLE panels, seals, nose caps, and chin panels will be removed from Orbiter Vehicle (OV)-103, OV-104, and OV-105 and returned to the vendor’s Dallas, Texas, facility for comprehensive NDI. Inspections will include a mix of ultrasonic, X-ray, and eddy current techniques. In addition, NASA has introduced off-vehicle flash thermography for all WLE panels and accessible nose cap and chin panel surfaces; any questionable components will be subjected to CAT scan for further evaluation. Data collected will be used to support development of future in-place NDI techniques.

The health of RCC attach hardware will be assessed using visual inspections and NDI techniques appropriate to the...
critical flaw sizes inherent in these metallic components. This NDI will be performed on select components from OV-103 and OV-104. Destructive evaluation of select attach hardware from both vehicles will also be undertaken. Additional requirements will be established, if necessary, upon completion of initial inspections.

STATUS

Advanced On-Vehicle NDI: Near-term advanced NDI technologies were presented to the PRCB in January 2004. Thermography, contact ultrasonics, eddy current, and radiography were selected as the most promising techniques to be used for on-vehicle inspection that could be developed in less than 12 months. The PRCB approved the development of these techniques.

OV-104: The nose cap, chin panel, and all WLE RCC panel assemblies were removed from the vehicle and shipped to the vendor for complete NDI. The data analysis from this suite of inspections was completed in March 2004. Vendor inspection of all WLE panels and the analysis of the final panel are complete. Eddy current inspections of the nose cap and chin panel were performed before these components were removed, and the results compare favorably to data collected when the components were manufactured, indicating mass loss and coating degradation are within acceptable limits. Off-vehicle infrared thermography inspection at KSC is being performed to compare with vendor NDI. All findings will be cleared on a case-by-case basis through the KSC Material Report (MR) system.

OV-103: As part of the OV-103 Orbiter maintenance down period (OMDP), WLE panels were removed from the vehicle, inspected by visual and tactile means, and then shipped to the vendor for NDI. The analysis of the inspection results will be completed in May 2004. X-ray inspection of the RCC nose cap, which was already at the vendor for coating refurbishment, revealed a previously undocumented 0.025 in. × 6 in. tubular void in the upper left-hand expansion seal area. While this discrepancy does not meet manufacturing criteria, it is located in an area of the panel with substantial design margin (900% at end of panel life) and is acceptable for flight. The suite of inspections performed on the OV-103 nose cap has confirmed the Orbiter’s flight worthiness and, to date, revealed nothing that might call into question the structural integrity of any other RCC component. Off-vehicle infrared thermography inspection at KSC is being performed for comparison with vendor NDI. All findings will be cleared on a case-by-case basis through the KSC MR system.

OV-105: All OV-105 RCC components (WLE, nose cap, and chin panel) will be removed and inspected during its OMDP, which began in December 2003. Off-vehicle infrared thermography inspection at KSC is being performed to compare with vendor NDI. All findings will be cleared on a case-by-case basis through the KSC MR system.

RCC Structural Integrity: Three flown RCC panels with 15, 19, and 27 missions respectively have been destructively tested to determine actual loss of strength due to oxidation. The testing of this flown hardware to date confirms the conservativeness of the RCC material A-Allowables values used for design and projected mission life.

RCC Attach Hardware: The RCC Problem Resolution Team was given approval for a plan to evaluate attach hardware through NDI and destructive testing. Detailed hardware NDI inspection (dye penetrant, eddy current) to address environmental degradation (corrosion and embrittlement) and fatigue damage concerns have been performed on selected OV-103/104 WLE panels in the high heat and fatigue areas. No degradation or fatigue damage concerns were found.

FORWARD WORK

OV-104 RCC system readiness for flight will be based on results of ongoing WLE, nose cap, and chin panel inspections and NDI.

The near-term advanced on-vehicle NDI techniques are in development, as are process and standards for their use. Decisions on long-term NDI techniques (those requiring more than 12 months to develop) will be made after inspection criteria are better established. Data storage, retrieval, and fusion with CATIA CAD models is planned to enable easy access to NDI data for archiving and disposition purposes.
Figure 3.3-1-1. Shuttle Orbiter RCC components.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Sep 03</td>
<td>OV-104 WLE RCC NDI analysis complete</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>Completion of NDI on OV-104 WLE attach hardware</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>OV-103 chin panel NDI</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04</td>
<td>Report viable on-vehicle NDI candidates to the SSP</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04</td>
<td>Completion of NDI on OV-103 WLE attach hardware</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Feb 04</td>
<td>OV-103 nose cap NDI analysis</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Feb 04</td>
<td>OV-104 chin panel NDI analysis</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>OV-104 nose cap NDI analysis</td>
</tr>
</tbody>
</table>

April 26, 2004
BACKGROUND

The Board determined, and NASA accepts, that an on-orbit Thermal Protection System (TPS) inspection and repair capability is an important part of the overall TPS risk mitigation plan. Currently, Shuttle flights are planned only to the International Space Station (ISS), and, as outlined in the Vision for Space Exploration, NASA will retire the Space Shuttle fleet following assembly of the ISS.

There are additional risks associated with creating and deploying a fully autonomous inspection capability without ISS resources. Therefore, NASA has decided to focus its development of TPS inspection and repair on those capabilities that enhance the Shuttle’s suite of assessment and repair tools while taking full advantage of ISS resources.

The Space Flight Leadership Council has directed the Space Shuttle Program (SSP) to focus its efforts on developing and implementing inspection and repair capability appropriate for the first return to flight missions using ISS resources as required. NASA will focus its efforts on mitigating the risk of multiple failures (such as an ISS mission failing to achieve the correct orbit or dock successfully, or the Orbiter being damaged during or after undocking and suffering critical TPS damage) through maximizing the Shuttle’s ascent performance margins to achieve ISS orbit, using the docked configuration to maximize inspection and repair capabilities, and flying protective attitudes following undocking from the ISS. However, NASA will continue to analyze the relative merit of different approaches to mitigating the risks identified by the Columbia Accident Investigation Board.

This approach to avoiding unnecessary risk has also led NASA to recognize that autonomous missions carry a higher risk than ISS missions. A brief summary of the additional risks associated with autonomous missions is described below:

1. Lack of Significant Safe Haven. The inability to provide a “safe haven” while inspection, repair, and potential rescue are undertaken creates additional risk in autonomous missions. NASA estimates that a typical Space Shuttle flight crew of seven astronauts could stay aboard the ISS for up to 68 days if required to do so by an emergency situation on the Space Shuttle. This safe haven capability allows the flight crew and ground teams to consider all options, determine the best course of action, take the time required to understand the cause of the failure and affect repairs, or send an appropriate rescue vehicle to bring the crew home. For an autonomous mission, however, the crew would be limited to an additional on-orbit stay of no more than two to four weeks, depending on how remaining consumables are rationed.

2. Unprecedented Double Workload for Ground Launch and Processing Teams. Because the rescue window for an autonomous mission is only two to four weeks, NASA would be forced to process two vehicles for launch simultaneously to ensure timely rescue capability. Any processing delays to one vehicle would require a delay in the second vehicle. The launch countdown for the second launch would begin before the actual launch of the first vehicle.

Columbia Accident Investigation Board
Recommendation 6.4-1

For missions to the International Space Station, develop a practicable capability to inspect and effect emergency repairs to the widest possible range of damage to the Thermal Protection System, including both tile and Reinforced Carbon-Carbon, taking advantage of the additional capabilities available when near to or docked at the International Space Station.

For non-Station missions, develop a comprehensive autonomous (independent of Station) inspection and repair capability to cover the widest possible range of damage scenarios.

Accomplish an on-orbit Thermal Protection System inspection, using appropriate assets and capabilities, early in all missions.

The ultimate objective should be a fully autonomous capability for all missions to address the possibility that an International Space Station mission fails to achieve the correct orbit, fails to dock successfully, or is damaged during or after undocking.
This short time period for assessment is a serious concern. It would require two highly complex processes to be carried out simultaneously, and it would not permit thorough assessment by the launch team, the flight control team, and the flight crew.

3. No Changes to Cargo or Vehicle Feasible. Because of the very short timeframe between the launch of the first vehicle and the requirement for a rescue flight, no significant changes could reasonably be made to the second vehicle. This means that it would not be feasible to change the cargo on the second Space Shuttle to support a repair to the first Shuttle, add additional rescue hardware, or make vehicle modifications to avoid whatever situation caused the need for a rescue attempt in the first place. Not having sufficient time to make the appropriate changes to the rescue vehicle or the cargo could add significant risk to the rescue flight crew or to crew transfer. The whole process would be under acute schedule pressure and undoubtedly many safety and operations waivers would be required.

4. Rescue Mission. Space Shuttles routinely dock with the ISS, and Soyuz evacuation procedures are supported by extensive training, analysis, and documentation. A rescue from the ISS, with multiple hatches, airlocks, and at least one other vehicle available (Soyuz), is much less complex and risky than that required by a stranded Space Shuttle being rescued by a second Space Shuttle. When NASA first evaluated free-space transfer of crew, which would be required to evacuate the Shuttle in an autonomous mission, many safety concerns were identified. This analysis would need to be done again, in greater detail, to identify all of the potential issues and safe solutions.

5. Tile Survey (expanded inspection requirements) and Thermal Protection System Repair. The current inspection method for acreage tile, gear door seals, and the elevon cove is to photograph these areas from the ISS during rendezvous. To support an autonomous mission, NASA would have to develop a new method for inspecting these critical areas using the Shuttle Remote Manipulator System (SRMS) with an instrumented boom extension. Unvalidated autonomous boom operations represent an unknown risk. NASA’s current planned TPS repair method for an ISS-based repair uses the ISS robotic arm to stabilize an extravehicular activity (EVA) crew person over the worksite. These assets are not available for an autonomous mission, so NASA would have to develop a single-use alternate method for stabilizing the crewmember. This method would have to provide greater stability than the current ISS option under development to protect both the crewmember and the other TPS areas from additional damage. Such a concept represents a challenging undertaking, which could take months or years to develop to meet safety and mission assurance standards and requirements.

NASA IMPLEMENTATION

Note: the remainder of this section refers to inspection and repair during nominal Shuttle missions to the ISS.

- Taken together, TPS inspection and repair represent one of the most challenging and extensive return to flight tasks.
- NASA’s near-term TPS risk mitigation plan calls for: Space Shuttle vehicle modifications to eliminate the liberation of critical debris; fielding improved ground and vehicle-based cameras and impact sensors for debris detection and damage assessment; on-orbit TPS surveys using the SRMS and Space Station Remote Manipulator System (SSRMS) cameras; and ISS crew observations during Shuttle approach and docking. Techniques for repairing tile and Reinforced Carbon-Carbon (RCC) by EVA are under development. The combination of these capabilities will help to ensure a low probability that critical damage will be sustained, while increasing the probability any damage that does occur can be detected and the consequences mitigated in flight.

NASA’s long-term TPS risk mitigation steps will refine and improve all elements of the near-term plan, ensuring an effective inspection and repair capability.

Inspection

The first step in structuring effective inspections is to establish baseline criteria for resolving critical damage. NASA has defined preliminary critical damage inspection criteria that form the basis for TPS inspection and repair development work. The detailed criteria are evolving based on recent and ongoing tests and analyses. Our goal is to define damage thresholds for all TPS zones below which no repair is required before entry. These criteria are a function of the damage surface dimensions, depth, and entry heating at each location on the vehicle. The preliminary criteria are shown in figure 6.4-1-1.

A combination of Shuttle and ISS assets will be capable of imaging critical TPS damage in all areas. The Orbiter
Minimum Crack Length Resolution

-0.25 inch -0.5 inch -1.0 inch -3.0 inch

Figure 6.4-1-1. Preliminary TPS damage inspection criteria.
Boom Sensor System (OBSS) Project is currently developing a sensor system that will be flown on the first flight and used to inspect the wing leading edge (WLE) and the nose cap. The system will also be used to inspect and measure the depth of any critical TPS damage that other inspection devices, such as Station-based cameras, have detected. The OBSS consists of sensors on the end of a boom system that is launched installed on the starboard sill. The boom (figure 6.4-1-2) will be used in conjunction with the SRMS to inspect the WLE RCC and nose cap prior to docking with ISS. After the Orbiter is docked to ISS, the OBSS will be used to further inspect any suspect areas on the Orbiter. In addition, the boom will have the capability to support an EVA crewmember if needed to support the inspection activities.

In February 2004, the SSP established an Inspection Tiger Team to review all inspection capabilities and to develop a plan to most effectively integrate these capabilities before return to flight. The tiger team succeeded in producing a comprehensive in-flight inspection, imagery analysis, and damage assessment strategy that will be implemented through the existing flight-planning process. The best available cameras and laser sensors suitable for detecting critical damage in each TPS zone will be used in conjunction with digital still photographs taken from ISS during the Orbiter’s approach. The pitch-around maneuver required to facilitate this imagery has been developed and is pictured in figure 6.4-1-3. Shuttle crews are currently training to fly this maneuver. The tiger team strategy also laid the foundation for a more refined impact sensor and imagery system following the first two successful flights. This plan is being enhanced to clearly establish criteria for transitioning from one suite of

Figure 6.4-1-2 Orbiter Boom Sensor System (OBSS).
Along with the work of the tiger team, the Shuttle Engineering and Integration Office began development of a TPS Readiness Determination Operations Concept. Most critically, this document will specify the process for collecting, analyzing, and applying the diverse inspection data in a way that ensures effective and timely mission decision-making.

Repair

TPS Repair Access

NASA has developed a combined SRMS and SSRMS “flip around” operation to allow TPS repairs while the Shuttle is docked to the ISS; this operation involves turning the Shuttle into a belly-up position that provides arm access to the repair site. As depicted in figure 6.4-1-4, the SRMS grapples the ISS while docked. The docking mechanism hooks are then opened, and the SRMS rotates the Orbiter into a position that presents the lower surface to the ISS. The EVA crew then works from the SSRMS, with the SSRMS used to position the crewmember to reach any TPS surface needing repair. After the repair, the SRMS maneuvers the Orbiter back into position and reattaches the Orbiter to the docking mechanism. This technique provides access to all TPS surfaces without the need for new equipment. The procedure will work through ISS flight 1J (which will add the Japanese Experiment Module to the ISS on orbit assembly). After ISS flight 1J, the ISS grapple fixture required to support this technique will be blocked and new inspection techniques will need to be developed.

RCC Repair

The main challenges to repairing RCC are maintaining a bond to the RCC coating during entry heating and meeting very small edge step requirements. The RCC repair project is pursuing three complementary repair concepts that together will enable repair of a wide variety of potential RCC damage: Plug Repair; Rigid Wrap Repair; and Crack Repair. Plug Repair consists of an insert intended to repair holes in the WLE with sizes from 0.5 in. to 4 in. in diameter. The Rigid Wrap is a complete overwrap for a given RCC panel intended to repair any catastrophic damage detected on a given panel (figure 6.4-1-5). Crack Repair uses a material application intended to fill cracks and small holes in the WLE. All three concepts are expected to have limitations in terms of damage characteristics, damage location, and testing/analysis. Schedules for design, development, testing, evaluation, and production of these concepts are in work.

This effort is still in the concept definition phase and is much less mature than the tile repair material study. NASA is evaluating concepts across six NASA centers, 11 contractors, and the United States Air Force Research Laboratory.
Although we are aggressively pursuing RCC repair, it is too early in development to forecast a completion date.

Tile Repair

NASA has made significant progress in developing credible tile repair processes and materials. An existing, silicone-based, cure-in-place ablator has shown positive results in development testing. A manufacturing process change appears to control a foaming problem observed during early tests when applying this material in vacuum. The material adheres to aluminum, primed aluminum, tile, strain isolation pads, and tile adhesive in vacuum and cures in vacuum. This tile repair material has now transitioned to characterization and qualification testing. Detailed thermal analyses and testing are under way to confirm that this material can be applied and cured in the full range of orbit conditions. Additional arc jet, radiant heating, thermal-vacuum, and KC-135 zero-gravity tests are scheduled to confirm that this material will survive the entry environment when applied using the proposed repair techniques. Assuming the continued testing of the existing ablator is successful, the tile repair materials and tools should be ready in the December 2004–March 2005 timeframe. Although other candidate materials have been identified, detailed engineering development of these materials was deferred based on the positive results of the existing ablator. The photos in figure 6.4-1-6 show a test sample of this material before and after an arc jet test run to 2300°F. Figure 6.4-1-7 shows
a side view of a plug (similar to a wall anchor) that is ready to insert and results from arc jet testing.

NASA is developing EVA tools and techniques for TPS repair. NASA has already developed prototype specialized tools for applying and curing tile repair materials. The lessons learned from this process will enable similar development of RCC repair tools in the future. We are also beginning to develop new and innovative EVA techniques for working with the fragile Shuttle TPS system while ensuring that crew safety is maintained. EVAs for TPS repair represent a significant challenge; the experiences gained through the numerous complex ISS construction tasks performed over the past several years are contributing to our ability to meet this challenge.

STATUS

The following actions have been completed:

- Quantified SRMS, SSRMS, and ISS digital still camera inspection resolution
- Feasibility analyses for docked repair technique using SRMS and SSRMS
- Air-bearing floor test of overall boom to SRMS interface
- OBSS conceptual development, design requirements, and preliminary design review
- Engineering assessment for lower surface radio frequency communication during EVA repair
- Simplified Aid for EVA Rescue (SAFER) technique conceptual development and testing
- Feasibility testing on tile repair material
- Tile repair material transition from concept development to validation tests
- 1-G suited tests on tile repair technique
- Initial KC-135 tile repair technique evaluations
- Review of all Shuttle systems for compatibility with the docking repair scenario

![Figure 6.4-1-7. Plug success in arc jet testing.](image-url)
DATA
- Ground Cameras
- Ground Radar
- Impact Sensors
- Crew Handheld D/L
- ET Umb Well D/L
- In-flight ET Camera
- In-flight SRB I/T Camera
- In-flight SRB ETA Camera
- In-flight SRB Fwd Camera

INSPECTION (Free Flight)
- OBSS (Active Search)
- OBSS (As Required)
- AERCam/Advanced Inspection
- ISS Rndz Pitcharound
- SRMS (w or w/o Crew)
- Crew on SAFER/OBSS
- National Assets

INSPECTION (Docked)
- OBSS
- AERCam/Advanced Inspection
- Crew on SAFER/OBSS
- Crew on SSRMS/OTD
- SSRMS/SRMS
- Undock – Fliparound
- Extension on ISS

REPAIR
- Undock – Fliparound
- RMS Extension left on ISS

<table>
<thead>
<tr>
<th>MISSIONS</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td>ULF1</td>
<td>12A</td>
<td>12A1</td>
<td>12A</td>
</tr>
<tr>
<td>Phase</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Figure 6.4-1-8. Integrated operations concepts for inspection and repair.
• Inspection Tiger Team strategy formulated
• Selected three complementary RCC repair techniques for further development
• Developed the inspection and repair of the RCC and tile operations concept (figure 6.1-4.8)

FORWARD WORK

High-level material and concept screening began in September 2003, using facilities at JSC, Ames Research Center, Langley Research Center (LaRC), and Lockheed-Martin. We are prepared to use other facilities at LaRC; Marshall Space Flight Center; Glenn Research Center; Lockheed-Martin; Boeing; Arnold Engineering Development Center at Arnold Air Force Base, Tennessee; University of Texas; and CIRA PWT in Italy as required to avoid test delays. Candidates that pass the screening tests will then be tested more rigorously for feasibility in entry-like conditions to facilitate down-selection. As with the tile repair material, RCC repair material final candidates will then transition to validation testing and certification through the normal engineering process.

NASA will continue to develop OBSS hardware development and operational procedures.

In addition to planned TPS repair capability, special on-orbit tests are under consideration for STS-114 to further evaluate TPS repair materials, tools, and techniques.

Final detailed analyses are in work to optimize Shuttle attitude control and redocking methods during repair.

Detailed procedures for techniques and systems configuration will be published as part of the Flight Operations Review data package in August 2004.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 03</td>
<td>1-G suited and vacuum testing begins on tile repair technique (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 03</td>
<td>Generic crew and flight controller training begins on inspection maneuver during approach to ISS (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 03</td>
<td>KC-135 testing of tile repair technique (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>Start of RCC repair concept screening tests (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>Tile repair material selection (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Human thermal-vacuum, end-to-end tile repair tests</td>
</tr>
<tr>
<td>SSP</td>
<td>June 04</td>
<td>Baseline ISS flight repair technique and damage criteria</td>
</tr>
<tr>
<td>Space Shuttle and ISS Programs</td>
<td>Jan 04</td>
<td>All Shuttle systems analyses complete for docked repair technique</td>
</tr>
<tr>
<td>JSC/Mission Operations Directorate</td>
<td>Aug 04</td>
<td>Formal procedure development complete for inspection and repair</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>Tile repair materials and tools delivery</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>RCC repair material selection</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board
Recommendation 3.3-3
To the extent possible, increase the Orbiter’s ability to successfully re-enter Earth’s atmosphere with minor leading edge structural sub-system damage.

BACKGROUND
The STS-107 accident demonstrated that the Space Shuttle Leading Edge Structural Subsystem (LESS) is vulnerable, and damage to the LESS can cause the loss of the Orbiter. The Space Shuttle Program (SSP) is developing and implementing a comprehensive test and analysis program to redefine the maximum survivable LESS damage for entry. This information will support the requirements for inspection and ultimately the boundaries within which a Thermal Protection System (TPS) repair can be performed. In addition, the SSP is already pursuing LESS improvements that will increase the Orbiter’s capability to enter the Earth’s atmosphere with “minor” damage to the LESS. These improvements are only mentioned here, since they are covered in recommendations R3.3-1, R3.3-2, and R6.4-1. NASA’s efforts to define minor and critical damage using Reinforced Carbon-Carbon (RCC) from impact tests, arc jet tests, and wind tunnel tests are covered in SSP Action 14.

NASA IMPLEMENTATION
The SSP will evaluate operational adjustments in vehicle or trajectory design within existing certification limits for reducing thermal effects on the LESS during entry. Possibilities include weight reduction, cold-soaking the Orbiter, lowering the orbit before deorbit, and trajectory shaping. Additionally, NASA is considering contingency flight design options including expanding entry design constraints and increasing the angle-of-attack profile.

STATUS
In each of the above areas, NASA is developing detailed implementation plans and feasibility assessments. A draft of the preliminary RCC damage assessment test and analysis plan was presented to the Orbiter Project Office in September 2003. The goal of this plan is to develop acceptable criteria of damage by considering RCC thermo-chemical response combined with residual strength and damage growth issues. The schedule for this testing will be determined by facility and RCC coupon availability. Evaluation of potential damage caused by micrometeoroid/orbital debris is also being planned. An outcome of this evaluation will be an experimental database, which will be used to develop engineering models and calibration of numerical analysis tools.

FORWARD WORK
Additional analysis will be required before incorporating the results of these assessments in flight rules and flight design. Implementation strategies, which are needed to balance the risk of changes in these areas, will be developed as a part of this analysis. Decision packages for studies will be brought to the Program Requirements Control Board.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Vehicle/trajectory design operational adjustment recommendation</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 04</td>
<td>Contingency flight design options recommend-ation</td>
</tr>
</tbody>
</table>

Review of the STS-107 investigation evaluations on different entry trajectory options has been completed. Evaluations of options within certification were repeated with entry trajectory conditions consistent with International Space Station missions. Similar trends were noted. Both studies showed only minor improvements in the entry thermal environment for RCC. A preliminary evaluation of contingency flight design options has begun. This high-level evaluation shows the potential for more noticeable improvements to the entry thermal environment; however, an understanding of increased risk in other entry trajectory parameters, as well as a better understanding of thermal effects on the overall vehicle, is needed to formulate recommendations.
BACKGROUND

The only material properties data for flown Reinforced Carbon-Carbon (RCC) components is from two panels, both of which were destructively tested by the Space Shuttle Program (SSP). Both panels were removed from Orbiter Vehicle (OV)-102. One panel, 10 left (10L), was tested after 19 flights and the other panel, 12 right (12R), was tested after 15 flights. The results from these tests were compared to the analytical model and indicated that the model was conservative.

NASA IMPLEMENTATION

An RCC material characterization program is under way using existing flight assets to obtain data on strength, stiffness, stress-strain curves, and fracture properties of RCC for comparison to earlier testing data. The SSP has established a plan to determine the impact resistance of RCC in its current configuration using previously flown panels, those with 26-30 flights. In addition, tension, compression, in-plane shear, interlaminar shear, and high strain rate properties will be developed. Data on the attachment lug mechanical properties, corner mechanical properties, and coating adherence will also be obtained. NASA will maintain a comprehensive database developed with the information from these evaluations and characterization programs.

STATUS

Panel 8L (OV-104 with 26 flights) has been tested and the data are being distributed to the teams performing the analysis of material properties. As expected, data so far have shown slightly degraded properties when compared with new material, but well above the allowables used in the mission life models for RCC. Material property data will also be collected from the remnants of panels 10L and 12R. Panel 6L (OV-103 with 30 flights) will be used to perform thermal and mechanical testing for material susceptibility to crack propagation during the flight envelope. Panel 9L (OV-103 with 27 flights) was severely cracked during a series of full-scale, damage threshold determination impact tests and the cracked sections will be cut out and used for damage tolerance assessment in the arc jet facility. A new panel 9L, along with panel 10L (OV-103 with 30 flights) will be used to determine the impact capability of the RCC. Panel 9R (with 30 flights) from OV-103 will be destructively tested, using methods similar to those used on Panels 10L and 12R, to compare its material properties to the analytical model and to add to the database.

FORWARD WORK

The study of materials and processes will be central to understanding and cataloging the material properties and their relation to the overall health of the wing leading edge subsystem. Materialography and material characteristics (porosity, coating/substrate composition, etc.) for RCC panels are being evaluated with the objective of correlating mechanical property degradation to microstructural/chemical changes and nondestructive inspection results. Once developed, the database will be used to direct design upgrades and mission/life adjustments. The long-term plan will include additional RCC assets as required to ensure that the database is fully populated (ref. R3.8-1).

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Sep 03 (Completed)</td>
<td>Section of Panel 8L test specimens for material property testing</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 03 (Completed)</td>
<td>Panel 9L impact test number 1</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep/Oct 03 (Completed)</td>
<td>Material property testing of Panel 8L specimens</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03 (Completed)</td>
<td>Panel 9L impact test number 2 and 3</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Panel 9R mission life material properties testing for comparison to the analytical model</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board
Recommendation 3.3-4

In order to understand the true material characteristics of Reinforced Carbon-Carbon components, develop a comprehensive database of flown Reinforced Carbon-Carbon material characteristics by destructive testing and evaluation.
BACKGROUND

Zinc coating is used on launch pad structures to protect against environmental corrosion. “Craze cracks” in the Reinforced Carbon-Carbon (RCC) panels allow rainwater and leached zinc to penetrate the panels and cause pinholes.

NASA IMPLEMENTATION

Before return to flight (RTF), Kennedy Space Center (KSC) will enhance the launch pad structural maintenance program to reduce RCC zinc oxide exposure to prevent zinc-induced pinhole formation in the RCC (figure 3.3-5-1). The enhanced program has four key elements. KSC will enhance the postlaunch inspection and maintenance of the structural coating system, particularly on the rotating service structure. Exposed zinc primer will be recoated to prevent liberation and rainwater transport of zinc-rich compounds. Additionally, postlaunch pad structural wash-downs will be assessed to determine if they can be enhanced to minimize the corrosive effects of acidic residue on the pad structure. This will help prevent corrosion-induced damage to the topcoat and prevent exposure of the zinc primer. NASA will also investigate options to improve the physical protection of Orbiter RCC hardware and implement a sampling program to monitor the effectiveness of efforts to inhibit zinc oxide migration on all areas of the pad structure.

STATUS

NASA is pursuing enhanced inspection, structural maintenance, wash-down, and sampling options to reduce zinc leaching. Changes to applicable work authorization documents are being formulated and will be incorporated before RTF. The options developed will be presented to the Space Shuttle Program Requirements Control Board (PRCB) in April 2004.

FORWARD WORK

The RCC Problem Resolution Team will continue to identify and assess potential mechanisms for RCC pinhole formation. Options for an enhanced pad wash-down system will be implemented as soon as they are approved and designs are complete.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>Dec 03 (Completed)</td>
<td>Complete enhanced inspection, maintenance, wash-down, and sampling plan</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Present to the PRCB options for enhanced physical protection of RCC hardware at the launch pads</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Incorporate required work authorization document changes</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board

Recommendation 3.3-5

Improve the maintenance of launch pad structures to minimize the leaching of zinc primer onto Reinforced Carbon-Carbon components.
Figure 3.3-5-1. RCC pinholes.

Note: Pinholes are approximately 0.040 inch in diameter.
BACKGROUND
There are 44 wing leading edge (WLE) panels installed on an Orbiter. All of these components are made of Reinforced Carbon-Carbon (RCC). The panels in the hotter areas, panels 6 through 17, have a useful mission life of 50 flights or more. The panels in the cooler areas, panels 1 through 5 and 18 through 22, have longer lives, as high as 100 flights depending on the specific location. The “hot” panels (6 through 17) are removed from the vehicle every other Orbiter maintenance down period and are shipped to the original equipment manufacturer, Lockheed Martin, for refurbishment. Because these panels have a long life span, we have determined that a minimum of one spare ship-set is sufficient for flight requirements.

Since few panels have required replacement, few new panels have been produced since the delivery of Orbiter Vehicle (OV)-105. Currently, Lockheed Martin is the only manufacturer of these panels.

NASA IMPLEMENTATION
NASA’s goal is to maintain a minimum of one spare ship-set of RCC WLE panel assemblies. To achieve this goal, six additional panel assemblies are required to have a complete spare ship-set. The last of these panels will be available no later than March 2005. Additional panel assemblies over and above the one ship-set required will be considered.

STATUS
The buildup of RCC panels requires the use of graphitized rayon fabric, silicon carbide, tabular alumina, silicon metal, tetraethylorthosilicate [TEOS], Prepreg, and Sermabond 487. In addition to the six panels needed to complete one entire ship-set, there are enough raw materials currently available to build up to four additional ship-sets of RCC panels.

FORWARD WORK
The Space Shuttle Program (SSP) Leading Edge Subsystem Prevention/Resolution Team has developed a prioritized list of additional spare panels over and above the one ship-set of spare panels currently required to support the Program. The total procurement will be based on the requirements for the spare ship-set, impact tolerance testing, and the development of damage repair techniques. The manufacturing schedule options will be presented to the Logistics Operations Configuration Control Board in April 2004 for decision.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jun 03 (Completed)</td>
<td>Authorization to build six panels to complete ship-set</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Program Requirements Control Board decision on additional space RCC panels</td>
</tr>
<tr>
<td>SSP</td>
<td>Mar 05</td>
<td>Delivery of six additional panels</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board

Recommendation 3.8-1
Obtain sufficient spare Reinforced Carbon-Carbon panel assemblies and associated support components to ensure that decisions related to Reinforced Carbon-Carbon maintenance are made on the basis of component specifications, free of external pressures relating to schedules, costs, or other considerations.
BACKGROUND

Foam impact testing, sponsored by the *Columbia* Accident Investigation Board (CAIB), proved that some current engineering analysis capabilities require upgrades and improvement to adequately predict vehicle response during certain events. In particular, the CAIB found that NASA’s current impact analysis software tool, Crater, failed to correctly predict the level of damage to the Thermal Protection System (TPS) due to the External Tank foam impact to *Columbia* during STS-107 ascent and contributed to an inadequate debris impact assessment.

NASA IMPLEMENTATION

In addition to improving Crater and other predictive impact models, the Space Shuttle Program (SSP) assigned an action to all Program elements to evaluate the adequacy of all preflight and in-flight engineering analysis tools.

The SSP elements will investigate the adequacy of existing analysis tools to ensure that limitations or constraints in use are defined and documented, and formal configuration management control is maintained. Additionally, tools that are used less frequently, primarily those used to clear mission anomalies, will undergo a more detailed assessment that includes a review of the requirements and verification activities. Results of these element reviews will be briefed in detail at the SSP Integration Control Board (ICB) prior to briefing the specific findings and recommendations to the SSP Manager at the Program Requirements Control Board (PRCB). From these efforts, NASA will have a set of validated physics-based computer models for assessing items like damage from debris impacts.

STATUS

The SSP is currently working with the Boeing Company, Southwest Research Institute, Glenn Research Center, Langley Research Center, Johnson Space Center (JSC) Engineering Directorate, and other organizations to develop and validate potential replacement tools for Crater. Each model offers unique strengths and promises significant improvements beyond the current analytical capability.

An integrated analysis and testing approach is being used to develop the models for Reinforced Carbon-Carbon (RCC) components. The analysis is based on comprehensive dynamic impact modeling. Testing will be performed on RCC coupons, subcomponents, and wing leading edge panels to provide basic inputs to and validation of these models. Testing to characterize various debris materials will be performed as part of model development. An extensive TPS tile impact testing program will be performed to increase this knowledge base. A hydrocode-type model will be correlated to the database and available for analysis beyond the testing database.

In parallel with the model development and its supporting testing, an integrated analysis is being developed involving debris source identification, transport, and impact damage, and resulting vehicle temperatures and margins. This integrated analysis will be used to establish impact damage thresholds that the Orbiter can safely withstand without requiring on-orbit repair. Insight from this work will be used to identify Shuttle modifications (e.g., TPS hardening, trajectory changes) to eliminate unsafe conditions. In addition, this information will be used as part of the on-orbit repair work, identifying potential types of damage and allowing a risk/benefit trade among return, repair, and rescue.

Columbia Accident Investigation Board
Recommendation 3.8-2

Develop, validate, and maintain physics-based computer models to evaluate Thermal Protection System damage from debris impacts. These tools should provide realistic and timely estimates of any impact damage from possible debris from any source that may ultimately impact the Orbiter. Establish impact damage thresholds that trigger responsive corrective action, such as on-orbit inspection and repair, when indicated.
During future Shuttle missions requiring real-time impact analysis, we anticipate that a suite of models offering a range of predictive accuracies balanced against computer run times will be available for use. Relatively quick analyses with conservative assumptions may be used for initial analysis. This analysis will be augmented with longer-run, more specific models that will provide more detailed results.

Most SSP models and tools have been reviewed for accuracy and completeness. The remaining reviews will be completed within the next several months. Foam impact tests will provide empirical data that will be inserted into the analytical models to define the limits of the models’ applicability.

FORWARD WORK

All SSP elements presented initial findings and plans for completing their assessments to the ICB in July 2003, and are continuing to evaluate the adequacy of their math models and tools. We will assess the adequacy of Bumper (ref. R4.2-4) to perform risk management associated with micrometeoroid and orbital debris (MMOD). We will verify and validate this model to ensure that key components (e.g., debris environment, model assumptions, algorithms, vehicle failure criteria, magnitude of uncertainties) assessments are based on the best available technical data.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 03</td>
<td>Report math models and tools assessment initial findings and plans to ICB and PRCB</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 03</td>
<td>Integrated plan for debris transport, impact assessment, and TPS damage modeling</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 03/Aug 04</td>
<td>Report math models and tools assessment final findings and recommendations to ICB and PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>Reverification/validation of MMOD risk models</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Verification/validation of new impact analysis tools</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 04</td>
<td>TPS impact testing and model development</td>
</tr>
</tbody>
</table>
BACKGROUND

NASA has decided to develop an integrated suite of improved imagery capabilities that will serve the Space Shuttle through launch, on-orbit operations, and landing. This will allow us to take advantage of the combination of these capabilities to expeditiously address any problems identified over the course of a mission. Our response to each of the Columbia Accident Investigation Board imagery recommendations will be a component of the larger integrated system.

The combination of assets to be held as constraints to launch is under review, but the selection criteria will ensure damage detection and improved engineering assessment capability. The integrated system will include, but is not limited to:

- Ground-based ascent imagery
- Aircraft and ship-based ascent imagery
- On-vehicle (External Tank (ET), Solid Rocket Booster (SRB)) ascent imagery
- Orbiter umbilical well imagery of ET separation
- Shuttle crew handheld still and video imagery of the separated ET
- Shuttle Remote Manipulator System cameras
- Space Station Remote Manipulator System cameras
- Imagery from ISS during the Orbiter’s approach and docking
- Extravehicular activity inspection imagery using wireless video system

Evaluation of the STS-107 ascent debris impact was hampered by the lack of high-resolution, high-speed cameras. The current tracking camera assets at the Kennedy Space Center (KSC) (figure 3.4-1-1) and on the Air Force Eastern Range will be improved to provide the best possible engineering data during Shuttle ascent. For all future launches, NASA will provide the capability for three complementary views of the Shuttle that will allow us to pinpoint the location of any potential damage.

Ground cameras provide visual data suitable for detailed analysis of vehicle performance and configuration from prelaunch through SRB separation. Images can be used to assess debris shed in flight, including origin, size, and trajectory. In addition to providing information about debris, the images will provide detailed information on Shuttle systems used for trend analysis that will allow us to further improve the Shuttle.

NASA and the U.S. Air Force are improving ground assets for viewing launch activities. These evaluations include various still and motion imagery capabilities, the best location for each camera, day versus night coverage, and minimum weather requirements.
NASA IMPLEMENTATION

To ensure that three useful views of the Shuttle vehicle can be obtained during ascent, for the time being NASA will launch in daylight at a time of day in which sufficient lighting for the ET separation is provided. This will maximize imagery capability for engineering assessment of the ET modifications.

Obtaining three useful views in the dynamic imaging environment from liftoff through SRB separation requires dividing this time into three overlapping periods:

• Short-range images (T-10 seconds through T+57 seconds)
• Medium-range images (T-7 seconds through T+100 seconds)
• Long-range trackers (T-7 or vehicle acquisition through T+165 seconds)

These time periods provide for steps in lens focal lengths to improve image resolution as the vehicle moves away from each camera location. Some cameras are at fixed locations, while others are mounted on mobile trackers.

NASA and the U.S. Air Force will optimize the camera configuration for each flight. We will evaluate the locations of the cameras to ensure that the images provide the necessary resolution and coverage to support our analysis requirements.

The locations at Launch Complex 39-B for short-range tracking cameras are as shown in figure 3.4-1-2. The locations for medium-range and long-range cameras are shown in figure 3.4-1-3. Existing cameras will be moved, modernized, and augmented to comply with new requirements.

STATUS

NASA is procuring additional cameras to provide increased redundancy and refurbishing existing cameras. For instance, the optics for the Cocoa Beach, Florida, camera (the “fuzzy camera” on STS-107) have been returned to the vendor for repair. We have completed an evaluation on current and additional camera locations, and refined the requirements for camera sites. Additional sites have been picked and are documented in the Launch and Landing Program Requirements Document 2000, sections 2800 and 3120. Additional operator training will be...
provided to improve tracking, especially in difficult weather conditions.

FORWARD WORK

NASA is evaluating improving camera optics, upgrading tracking capabilities, and adjusting camera settings. Ship-based and airborne sensors are also under review.

The Space Shuttle Program (SSP) is addressing hardware upgrades, operator training, and quality assurance of ground-based cameras according to the integrated imagery requirements assessment.

NASA is developing appropriate launch commit criteria and pre-countdown camera operability checks. The launch commit criteria must be carefully chosen considering risk and safety of flight concerns because the cameras begin to function less than ten seconds before launch—after the two propellant tanks are pressurized, the auxiliary power units are activated, and just as the Space Shuttle Main Engines are starting.

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Feb 04</td>
<td>Evaluate and recommend additional camera locations</td>
</tr>
<tr>
<td></td>
<td>May 04</td>
<td>Refurbish 14 existing trackers. Trackers will be borrowed from other ranges to support launch until the vendor delivers refurbished trackers</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Baseline revised Launch Commit Criteria</td>
</tr>
<tr>
<td>SSP</td>
<td>Feb 05</td>
<td>Acquire new optics and cameras</td>
</tr>
<tr>
<td>SSP</td>
<td>Mar 05</td>
<td>Acquire six additional trackers, optics, cameras, and spares for all systems. Six trackers will be borrowed from other ranges to support launches until the vendor delivers the new KSC trackers</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 05</td>
<td>Install remote control capability</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 05</td>
<td>Report options for upgrading timing distribution system</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 06</td>
<td>Investigate options and select optimum configuration for advanced tracking technologies</td>
</tr>
</tbody>
</table>
BACKGROUND

NASA agrees that it is critical to verify the performance of the External Tank (ET) modifications to eliminate ascent debris. Additionally, real-time downlink of this information may help in the early identification of some risks to flight. The Space Shuttle currently has two onboard high-resolution cameras that photograph the ET after separation; however, the images from these cameras are available only postflight and are not downlinked to the Mission Control Center (MCC) during the mission. Therefore, no real-time imaging of the ET is currently available to provide engineering insight into potential debris during the mission.

NASA IMPLEMENTATION

To provide the capability to downlink images of the ET after separation for image analysis, NASA is replacing the 35mm film camera in the Orbiter umbilical well with a high-resolution digital camera and equipping the flight crew with a handheld digital still camera with a telephoto lens. Umbilical and handheld camera images will be downlinked after safe orbit operations are established.

NASA has defined the Enhanced Launch Vehicle Imaging System (ELVIS) as imaging equipment on the Orbiter, ET, and Solid Rocket Boosters. The ELVIS integration team is composed of members from across the Program to consolidate efforts to obtain additional data to view debris sources and impact locations as well as review design changes.

STATUS

NASA has completed its assessment and concluded that it is feasible to accommodate the new umbilical well camera before return to flight. Orbiter design engineering and modifications to provide this capability are under way on all three vehicles. We anticipate being able to provide imagery from this camera on STS-114. This capability will be supplemented by handheld still imagery to provide additional views of the separating ET.

FORWARD WORK

NASA will continue installation of the digital cameras and establish the capability to downlink the images from the Shuttle’s umbilical well cameras to the ground during flight. NASA is also beginning to develop plans for effectively analyzing and integrating the real-time data to be of greatest benefit to mission decision-making. The Space Shuttle Program (SSP) will research options to improve functionality in reduced light conditions.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Sep 03</td>
<td>Initiate Orbiter umbilical well feasibility study (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Complete preliminary design review/critical design review on approved hardware</td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Begin Orbiter umbilical well installations</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 04</td>
<td>Begin system functional testing</td>
</tr>
</tbody>
</table>
BACKGROUND
The damage to the left wing of Columbia occurred shortly after liftoff, but went undetected for the entire mission. Although there was ground photographic evidence of debris impact, we were unaware of the extent of the damage. Therefore, NASA is adding on-vehicle cameras that will help to detect and assess damage.

NASA IMPLEMENTATION
To meet the requirement to assess the health and status of the Orbiter Thermal Protection System (TPS), NASA will use a combination of on-vehicle ascent cameras and on-orbit inspections. The on-orbit inspections will consist of information from an Orbiter Boom Sensor System (OBSS) and photographs from the International Space Station (ISS). On-orbit inspections will provide more detailed and higher resolution inspection coverage.

On flight day two of STS-114, the Shuttle crew will perform the first inspection of the wing leading edge (WLE) and nose cap Reinforced Carbon-Carbon (RCC) using the Shuttle Remote Manipulator System (SRMS), or robotic arm, and the OBSS. The OBSS, a 50-ft instrumented boom that will be carried in the Shuttle payload bay, will be grappled by the SRMS to facilitate viewing areas of the Shuttle that would not be accessible using just the SRMS. The OBSS will allow the crew to make an early assessment of the WLE and nose cap RCC areas.

The ISS crew will perform a subsequent inspection of Shuttle tile, including the Orbiter WLE and forward section of both wings’ TPS, by taking digital photos of the Shuttle as it performs a rotation maneuver about 600 ft from the ISS. Both sets of high-resolution imagery will be downlinked to the ground for evaluation. On-orbit inspection techniques are discussed in detail in our response to R6.4-1.

In addition to the primary on-orbit inspection techniques, NASA will use a suite of cameras in various locations on the Space Shuttle. These cameras will supplement ground-based imagery until Solid Rocket Booster (SRB) separation and provide the primary views through External Tank (ET) separation. Before return to flight, a camera with downlink capability will be added to the ET to view the bipod area and Orbiter lower tile acreage. In addition, cameras will be installed on each SRB to view the ET intertank area. In the future, as new technologies become available, NASA will evaluate the capability of on-vehicle cameras to assess total impact damage.

STATUS
The advantages and disadvantages of externally mounted camera options on the ET and SRBs were presented to the Program Requirements Control Board on July 24, 2003. The approved minimum configuration for STS-114 (figure 3.4-3-1) includes cameras mounted on the (1) ET liquid oxygen (LO2) feedline fairing location and (2) SRB forward skirt location.

Furthermore, NASA has approved design and installation of additional cameras on the ET and SRBs for the earliest possible implementation (figures 3.4-3-2 and 3.4-3-3). These configurations widen the scope of the available imagery. This will improve coverage of the Orbiter WLE and forward section of both wings’ TPS. In addition, the planned OBSS and ISS photographs will provide imagery of all RCC and all tiles on the underside of the Orbiter, which includes critical landing gear door and umbilical door areas.

FORWARD WORK
NASA will continue to research options to improve camera resolution, functionality in reduced lighting conditions, and alternate camera mounting configurations. In the meantime, work is proceeding on the new SRB camera design and implementation of the approved ET and SRB cameras.
Figure 3.4-3-1. ET flight cameras (STS-114 configuration).

Figure 3.4-3-2. ET flight cameras (TBD configuration).
Figure 3.4-3. ET flight cameras (TBD configuration).

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>May 03</td>
<td>Start ET hardware modifications</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 03</td>
<td>Authority to proceed with ET LO$_2$ feedline and SRB forward skirt locations;</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td>implementation approval for ET camera</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Systems Requirements Review</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Begin ET camera installations</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Review SRB camera enhancements for mission effectivity</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Begin SRB forward skirt camera installation</td>
</tr>
</tbody>
</table>
BACKGROUND
The Columbia Accident Investigation Board found, and NASA concurs, that the full capabilities of the United States to assess the condition of the Columbia during STS-107 should have been used but were not.

NASA IMPLEMENTATION
NASA has already concluded a Memorandum of Agreement with the National Imagery and Mapping Agency (subsequently renamed the National Geospatial-Intelligence Agency (NGA)) that provides for on-orbit assessment of the condition of each Orbiter vehicle as a standard requirement. In addition, NASA has initiated discussions with other agencies to explore the use of appropriate national assets to evaluate the condition of the Orbiter vehicle. Additional agreements have been developed and are in final review. The operational teams have developed standard operating procedures to implement agreements with the appropriate government agencies at the Headquarters level.

NASA has determined which positions/personnel will require access to data obtained from external sources. NASA will ensure that all personnel are familiar with the general capabilities available for on-orbit assessment and that the appropriate personnel are familiar with the means to gain access to that information. Over 60 percent of the requested clearances have been completed and the remainder are nearly complete.

Plans to demonstrate and train people in these new processes have been developed and will be exercised over the next few months, well before the launch of STS-114. Since this action may involve receipt and handling of classified information, the appropriate security safeguards will be observed during its implementation.

FORWARD WORK
Testing and validation of these procedures will be accomplished over the next few months.

SCHEDULE
An internal NASA process is being used to track clearances, training of personnel, and the process validation.
The Modular Auxiliary Data System instrumentation and sensor suite on each Orbiter should be maintained and updated to include current sensor and data acquisition technologies.
BACKGROUND

The Modular Auxiliary Data System (MADS)* provides limited engineering performance and vehicle health information postflight. There are two aspects to this recommendation: (1) redesign for additional sensor information, and (2) redesign to provide the ability to select certain data to be recorded and/or telemetered to the ground during the mission. To meet these recommendations, a new system must be developed to replace MADS. The evaluation of this replacement is currently in progress to address system obsolescence issues and also provide additional capability.

Requirements are being baselined for the Vehicle Health Monitoring System (VHMS), which is being developed to replace the existing MADS with an all-digital industry standard instrumentation system. VHMS will provide increased capability to enable easier addition of sensors that will lead to significant improvements in monitoring vehicle health.

NASA IMPLEMENTATION

The VHMS Project will provide the capability to collect, condition, sample, time-tag, and store all sensor data. The collected data can be downlinked to the ground during flight operations or archived for download after landing. The VHMS will also allow the addition of other sensor data and other instrumentation systems.

STATUS

The VHMS Project has successfully baselined the systems requirements for the Digital MADS (DMADS), which will replace the existing MADS.

The VHMS Project gained Program Requirements Control Board (PRCB) approval to evaluate the addition of payload bay accelerometers to Orbiter Vehicle (OV)-104 for STS-121. These accelerometers are currently installed on OV-103 and will be active for STS-114.

Columbia Accident Investigation Board
Recommendation 3.6-2

The Modular Auxiliary Data System should be redesigned to include engineering performance and vehicle health information and have the ability to be reconfigured during flight in order to allow certain data to be recorded, telemetered, or both, as needs change.

To improve data collection ability in the short term until the availability of the DMADS, the PRCB also approved an assessment of connecting the MADS Pulse Code Modulation Unit to the solid-state recorder to provide on-orbit downlink of additional low-rate MADS ascent data. If implemented, this will increase NASA’s ability to access data during missions.

FORWARD WORK

The Space Shuttle Program (SSP) will continue VHMS Project requirements reviews and implementation plans, and will provide status updates to the PRCB.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Aug 03</td>
<td>VHMS Program Requirements Review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>VHMS Program Requirements Document baseline at Space Shuttle Upgrades PRCB</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04</td>
<td>Modular Memory Unit-Retrofit (MMU-R) Requirements Document baseline</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Mar 04</td>
<td>MMU-R System Requirements Review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
</tbody>
</table>

*Note that the *Columbia* Accident Investigation Board Report alternately refers to this as the OEX Recorder.*
BACKGROUND

A significant amount of Orbiter wiring is insulated with Kapton, a polyimide film used as electrical insulation. Kapton-insulated wire has many advantages; however, several disadvantages have been identified. As a result, the Space Shuttle Program (SSP) has had Kapton wiring concerns that have been, and continue to be, addressed. Extensive multifaceted remedial and corrective actions have been implemented across the Orbiter fleet to address Kapton wiring concerns.

While technology-based wire damage identification techniques are available to the Orbiter workforce, the most effective method used to date has been visual inspection. Techniques such as Hipot, a high-potential dielectric verification test, and time domain reflectometry (TDR), a test that identifies changes in the impedance between conductors, are rarely effective for detecting damage that does not expose the conductor or where a subtle impedance change is present. Neither is an effective method for detecting subtle damage to wiring insulation. While current technologies may be relatively ineffective in detecting subtle wire damage, we recognize that visual inspection in all areas is impractical. The Orbiters contain some wire runs, such as those installed beneath the crew module, that are completely inaccessible to inspectors during routine ground processing. Even where wire is installed in accessible areas, not every wire segment is available for inspection due to bundling and routing techniques.

NASA IMPLEMENTATION

NASA is taking a broad approach to mitigate Orbiter wiring concerns by developing promising technologies and partnering with other government agencies. The SSP is continuing to improve its inspection and repair techniques. Additionally, the Program is evaluating other wire insulation types, identifying inaccessible wiring, and developing a wire replacement methodology.

At Ames Research Center, engineers are developing the proposed Hybrid Reflectometer, a TDR derivative. The goals of this development are to mature TDR technologies (including hardware and software) for more sensitive wire insulation defect detection, and to package the system into a device for operational use in the Orbiter.

At Langley Research Center (LaRC), engineers are developing a wire insulation age-life tester. Potential technologies for this application include ultrasonic and infrared spectroscopy. Additionally, LaRC engineers are developing an ultrasonic crimp joint tool to measure the integrity of wire crimps as they are made. At Johnson Space Center, engineers are developing a destructive age-life test capability.

The problem of aging wiring is not unique to NASA or the SSP. Current military and civilian aircraft are being used beyond their original design lives. As a result, continual research is conducted to safely extend the life of these aircraft and their systems. NASA will partner with industry, academia, and other government agencies to find the most effective means to address these concerns. For example, NASA will continue to participate in the Joint Council for Aging Aircraft and collaborate with the Air Force Research Laboratory.

STATUS

NASA is developing promising technologies and collaborating with industry and other government agencies to find the most effective means to address these concerns. The Orbiter Project Office approved a project plan to address this recommendation and provided fiscal year 2004 funding.

FORWARD WORK

NASA will continue to seek solutions to this difficult technical issue.
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Present project plan to the Program Requirements Control Board</td>
</tr>
</tbody>
</table>
BACKGROUND

The External Tank (ET) is attached to the Solid Rocket Boosters (SRBs) at the forward skirt thrust fitting by the forward separation bolt. The pyrotechnic bolt is actuated at SRB separation by fracturing the bolt in half at a predetermined groove, releasing the SRBs from the ET thrust fittings. The bolt catcher attached to the ET fitting retains the forward half of the separation bolt. The other half of the separation bolt is retained within a cavity in the forward skirt thrust post (figure 4.2-1-1).

The STS-107 bolt catcher design consisted of an aluminum dome welded to a machined aluminum base bolted to both the left- and right-hand ET fittings. The inside of the bolt catcher was filled with a honeycomb energy absorber to decelerate the ET half of the separation bolt (figure 4.2-1-2).

Static and dynamic testing demonstrated that the manufactured lot of bolt catchers that flew on STS-107 had a factor of safety of approximately 1. The factor of safety for the bolt catcher assembly should be 1.4.

NASA IMPLEMENTATION

The new bolt catcher assembly and related hardware will be designed and qualified by testing as a complete system to demonstrate compliance with factor-of-safety requirements. The bolt catcher housing will be fabricated from a single piece of aluminum forging (figure 4.2-1-3) that removes the weld from the original design (figure 4.2-1-4). Further, a new energy-absorbing material will be selected, the thermal protection material is being reassessed (figure 4.2-1-5), and the ET attachment bolts and inserts (figure 4.2-1-6) are being redesigned and resized.

Columbia Accident Investigation Board

Recommendation 4.2-1

Test and qualify the flight hardware bolt catchers.

Figure 4.2-1-1. SRB/ET forward attach area.
Figure 4.2-1-2. Bolt catcher impact testing.

Figure 4.2-1-3. New one-piece forging design.

Figure 4.2-1-4. Original two-piece welded design.
STATUS

The redesign of the bolt catcher assembly is under way. Redesign and resizing of the ET attachment bolts and inserts are being worked jointly by the SRB and ET Projects. Testing to characterize the energy absorber material is complete. Testing is ongoing to determine the design loads and demonstrate that the assembly complies with the 1.4 factor-of-safety requirement. Cork has been selected as the Thermal Protection System (TPS) material for the bolt catcher. TPS qualification testing is under way including weather exposure followed by combined environment testing, to include vibration, acoustic, pyrotechnic, shock, and first-stage thermal testing.

FORWARD WORK

- Complete structural development.
- Perform structural qualification testing.
- Complete thermal protection material qualification testing.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>May 04</td>
<td>Complete Critical Design Review</td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Complete Qualification</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Deliver First Flight Article</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendation 4.2-3

Require that at least two employees attend all final closeouts and intertank area hand-spraying procedures. [RTF]

Note: The Stafford Covey Task Group held a plenary session on April 15, 2004, in Houston, Texas. NASA's progress toward answering this recommendation was reviewed, and the Task Group agreed that the actions taken were sufficient to close this recommendation.

BACKGROUND

External Tank (ET) final closeouts and intertank area hand-spraying processes typically require more than one person in attendance to execute procedures. Those closeout processes that can currently be performed by a single person did not necessarily specify an independent witness or verification.

NASA IMPLEMENTATION

NASA has established a Thermal Protection System (TPS) verification team to verify, validate, and certify all future foam processes. The verification team will assess and improve the TPS applications and manual spray processes. Included with this assessment is a review and an update of the process controls applied to foam applications, especially the manual spray applications. Spray schedules, acceptance criteria, quality, and data requirements will be established for all processes during verification using a Material Processing Plan (MPP). The plan will define how each specific part closeout is to be processed. Numerous TPS processing parameters and requirements will be enhanced, including additional requirements for observation and documentation of processes. In addition, a review is being conducted to ensure the appropriate quality coverage based on process enhancements and critical application characteristics.

The MPPs will be revised to require, at a minimum, that all ET critical hardware processes, including all final closeouts and intertank area hand-spray procedures, be performed in the presence of two certified Production Operations employees. The MPPs will also include a step to require technicians to stamp the build paper to verify their presence, and to validate the work was performed according to plan. Additionally, quality control personnel will witness and accept each manual spray TPS application. Government oversight of TPS applications will be determined upon completion of the revised designs and the identification of critical process parameters.

STATUS

The Space Shuttle Program (SSP) has approved the revised approach for ET TPS certification and the Space Flight Leadership Council approved it for Return to Flight Task Group (RTFTG) review. TPS verification activities are under way and specific applicable ET processing procedures are under review.

The RTFTG advised NASA to expand its response to this recommendation to include a wider review of all final closeouts of flight hardware. In response, NASA has initiated an audit of flight hardware closeouts at the Shuttle element manufacturing sites and of launch preparations at Kennedy Space Center. This comprehensive audit is currently under way and will be completed by May 2004.

FORWARD WORK

Complete the verification activities and implement the modifications, including modifying the MPPs to reflect the requirement that a minimum of two certified Production Operations employees be present for critical hardware processes. Formally document the requirements Program-level documentation.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET</td>
<td>Dec 03</td>
<td>Review revised processes with the RTFTG</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>All flight</td>
<td>May 04</td>
<td>Audit results of all SSP elements due</td>
</tr>
<tr>
<td>hardware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>elements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>SSP element audit findings presented to SSP Manager</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Response due; action closed</td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 05</td>
<td>Revised requirements formally documented</td>
</tr>
</tbody>
</table>

April 26, 2004

NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond
BACKGROUND

Micrometeoroid and orbital debris (MMOD) is a continuing concern. The current differences between the International Space Station (ISS) and Orbiter MMOD risk allowances for a critical debris impact are based on the original design specifications for each of the vehicles. Specifically, the ISS was designed for long-term MMOD exposure, whereas the Orbiter was designed for short-term MMOD exposure. The debris impact factors that are considered when determining the MMOD risks for a spacecraft are mission duration, attitude(s), altitude, inclination, year, and the on-board payloads.

The current Orbiter impact damage guidelines dictate that there will be no more than a 1 in 200 risk for loss of vehicle for any single mission. This recommendation suggests that the Orbiter meet the same degree of safety that the ISS meets in regards to MMOD risks. The ISS currently has a 0.5 percent catastrophic risk of MMOD debris impact per year. If we assume there will be five Space Shuttle flights per year, this would require that the Orbiter meet an annual average MMOD critical damage risk of 1 in 1000 for any single mission. This risk tolerance may vary from mission to mission, depending on whether the risk profile is determined annually or over the remaining life of the Shuttle Program. NASA continues to evaluate the appropriate means of determining the Shuttle MMOD risk profile.

NASA uses a computer simulation and modeling tool called BUMPER to assess the risk from MMOD impact to the Orbiter during each flight and takes into account the mission duration, attitude variations, altitude, and other factors. BUMPER has been certified for use on both the ISS and the Orbiter. BUMPER has also been examined during numerous technical reviews and deemed to be the world standard for orbital debris risk assessment. Optimized trajectories, vehicle changes, results from trade studies, and more detailed ballistic limit calculations are used to improve the fidelity of the BUMPER results.

NASA IMPLEMENTATION

To comply with the recommendation to operate the Orbiter with the same degree of safety for MMOD as calculated for ISS, NASA is evaluating:

- Orbiter vehicle design upgrades to decrease vulnerability to MMOD
- Operational changes
- Development of an inspection capability to detect and repair critical damage
- Addition of an on-board impact sensor system to detect critical damage that may occur to the Thermal Protection System (TPS) during ascent or while on orbit

Once they are fully defined, NASA will change the MMOD safety criteria from guidelines to requirements.

STATUS

NASA's assessments indicate that a combination of operational and hardware changes may meet the Columbia Accident Investigation Board (CAIB) recommendation for less than a 1 in 1000 probability of critical impact from MMOD on each mission. Appropriate changes will be made over time according to prioritization based on a combination of the efficacy of the change and the relative difficulty of its implementation.

In the short term following return to flight (RTF), NASA is considering the following actions to achieve a 1 in 1000 to 1 in 1200 critical impact risk per mission:

1. Yawing the ISS-Shuttle stack postdock by 180 degrees
2. Implementing late mission (Flight Day 6) inspection of TPS followed by repair if necessary
3. Installing wing leading edge (WLE) damage detection sensors and implementing inspection, repair, and/or
Contingency Shuttle Crew Support (CSCS) operations if damage is detected during flight

A longer-term strategy is also under consideration that shows promise of achieving a reduction in MMOD risk well below CAIB recommendations to a 1 in 1500 to 1 in 1700 mission risk level. The steps to accomplish this level of protection include the following:

1. Either continuing the 180-degree yaw strategy post-ISS dock, or docking to a nadir port on Node 2 placing the Orbiter in a tail-forward/belly-to-Earth attitude, a low-risk orientation for MMOD damage

2. Selective hardening of TPS tiles and WLE to reduce impact hazards from both launch debris and on-orbit MMOD strikes

3. Extending the impact damage detection sensors to the wing and belly TPS areas of the vehicle. If damage is detected, closer inspection of the impacted area will be initiated followed by repair or resorting to CSCS procedures if necessary

NASA is continuing to evaluate the following:

• Orbiter vehicle design upgrades to decrease vulnerability to MMOD

The NASA response to CAIB Recommendation 3.3-2 addresses Orbiter hardening options that may lower MMOD risks.

Hypervelocity impact tests are being conducted on various toughened tile options to assess risk reduction. The first phase of testing on these options will be complete in April 2004; risk assessments and program reviews will be done by July 2004; and a second phase of testing will occur before March 2005.

• Operational changes

The Shuttle Program Flight Operations and Integration Office is exploring alternative Orbiter orientations to reduce the MMOD impact risk after docking to the ISS. Three Shuttle/ISS orientation cases are being investigated by the Shuttle/Station joint technical working groups (JTWGs) to support the MMOD risk assessment. The first two postdocked cases include the baseline docking location in the nominal ISS/Shuttle attitude and in a 180-degree yaw orientation from the nominal attitude. The third option is to dock the Orbiter to a nadir port on Node 2, which puts the Orbiter in a tail-forward/belly-to-Earth attitude. The first two cases are being assessed for the short-term ISS assembly following RTF and before Node 2 installation to the Station. The JTWG feasibility findings are being coordinated with the Station vehicle integrated performance and resources (VIPER) working group to produce an integrated feasibility assessment with respect to power generation, flight control, loads and dynamics, thermal, and propellant impacts. Special emphasis is being placed on the Node 2 nadir docking option since this orientation reduces the critical risk to the Shuttle to the greatest extent. Preliminary feasibility results for joint Program review are expected from the VIPER working group in April 2004.

• Development of an inspection capability to detect and repair critical damage

The NASA response to CAIB Recommendation 6.4-1 covers development of inspection capability. Flight Day 6 inspection will provide the capability to view more of the Orbiter’s potential MMOD impact areas and will provide a later inspection opportunity than previously available with only a Flight Day 2 inspection.

• Addition of an on-board impact sensor system to detect critical damage that may occur to the TPS during ascent or while on orbit

The initial impact damage sensor system for RTF will be capable of detecting impacts to the WLE Reinforced Carbon-Carbon (RCC) panels during ascent and on orbit. Future implementation for other Orbiter impact critical areas will be the focus as the critical stages of the WLE system development are completed. A broad range of data is being taken from flight data and ground impact tests to develop the operability of the initial system and requirements for a follow-on, high-reliability, impact sensor system.

Flight data history and ground test impact accelerometer responses are being correlated to derive models of expected readings for use as analysis tools during the mission. Impact tests involve both ascent and hypervelocity conditions, a variety of projectiles and locations, and both low- and high-fidelity test articles. Tap/response tests have been conducted on the Orbiter wing and leading edge spar itself to assist in model validation. TPS damage team assessments of the impact type and damage conditions that are flight critical or need on-orbit repair will be used to determine what levels of accelerometer response will warrant additional on-orbit inspection during the mission.
Additional ascent and hypervelocity tests are being performed on flight-like tiled skin panels and test articles to model the responses on the leading edge spar accelerometers to impacts.

FORWARD WORK

Investigations will continue on potential vehicle modifications, such as new impact debris sensors, next-generation tiles and toughened strain isolation pad materials, improved RCC, and improved crew module aft bulkhead protection. Additionally, a study is under way to assess the advantages of alternative docking locations on ISS, as well as other ISS modifications that reduce the Orbiter’s exposure to MMOD while docked. Hypervelocity impact tests will continue to be performed, and the BUMPER code will be updated to support the risk reduction effort.

<table>
<thead>
<tr>
<th>SCHEDULE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsibility</td>
</tr>
<tr>
<td>Space Shuttle Program (SSP)</td>
</tr>
<tr>
<td>SSP</td>
</tr>
<tr>
<td>SSP</td>
</tr>
<tr>
<td>SSP</td>
</tr>
</tbody>
</table>
Figure 4.2-4-1. Post Dock Orientations.
BACKGROUND
Beginning in 2001, debris at Kennedy Space Center (KSC) was divided into two categories, “processing debris” and foreign object debris (FOD). FOD was defined as debris found during the final or flight-closeout inspection process. All other debris was labeled processing debris. The categorization and subsequent use of two different definitions of debris led to the perception that processing debris was not a concern.

NASA IMPLEMENTATION
NASA will stop using the term “processing debris.” A team of NASA and United Space Alliance (USA) employees has benchmarked similar industry and Department of Defense (DoD) processing facilities. A consistent definition of FOD has been developed and implemented across all processing activities. NASA is working with USA to update Shuttle processing operating procedures and develop metrics to reflect the definition change.

Approximately two months after the development of the improved FOD control program, NASA will perform a baseline audit. In addition, NASA will include FOD as an element of surveillance activities (e.g., hardware surveillance, process surveillance, and process sampling activities). NASA management will also participate in periodic walkdowns of processing areas for all three shifts.

The new FOD control program will be rolled out to all employees. The FOD training and the FOD Web site will also be updated and improved.

STATUS
The team completed benchmarking trips, visiting four installations, and is documenting the results and comparing them with the KSC FOD Program. An FOD definition has been developed and will be finalized with the release of the revised USA Operating Procedure in April 2004. In addition, the contractor and NASA managers are conducting inspection walkdowns.

FORWARD WORK
Remaining work includes documenting the FOD Program as an operating procedure, implementing increased NASA surveillance, and performing a baseline audit of the improved FOD Program.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>Ongoing</td>
<td>Review and trend metrics</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>Initiate NASA Management walkdowns</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>FOD Control Program benchmarking</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04</td>
<td>Revised FOD definition (Completed)</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>USA Operating Procedure released</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Implement FOD surveillance</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Baseline audit of implementation of FOD definition, training, and surveillance</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>Periodic surveillance audit</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendation 6.2-1

Adopt and maintain a Shuttle flight schedule that is consistent with available resources. Although schedule deadlines are an important management tool, those deadlines must be regularly evaluated to ensure that any additional risk incurred to meet the schedule is recognized, understood, and acceptable.[RTF]

BACKGROUND

Schedules are integral parts of program management and provide for the integration and optimization of resource investments across a wide range of connected systems.

The Space Shuttle Program (SSP) needs to have a visible schedule with clear milestones to effectively achieve its mission. Schedules associated with all activities generate very specific milestones that must be completed for mission success. Nonetheless, schedules of milestone-driven activities will be extended when necessary to ensure safety. NASA will not compromise system safety in our effort to optimize schedules.

NASA IMPLEMENTATION

NASA’s priorities will always be flying safely and accomplishing our missions successfully. NASA will adopt and maintain a Shuttle flight schedule that is consistent with available resources. Schedule risk will be regularly assessed, and unacceptable risk will be mitigated. NASA will develop a process for Shuttle launch schedules that incorporates all of the manifest constraints and allows adequate margin to accommodate a normalized amount of changes. This process will entail building in launch margin, cargo and logistics margin, and crew timeline margin. The SSP will enhance and strengthen the existing risk management system that assesses technical, schedule, and programmatic risks. Additionally, the SSP will examine the risk management process and tools that are currently used by the International Space Station (ISS) where risk data are currently displayed on the One-NASA Management Information System. Senior managers of the Space Flight Enterprise can virtually review schedule performance indicators and risk assessments on a real-time basis.

Recent management changes in NASA’s key human space flight programs will contribute to ensuring that Shuttle flight schedules are appropriately maintained and amended to be consistent with available resources. In 2002, the Office of Space Flight established the position of Deputy Associate Administrator for International Space Station and Space Shuttle Programs (DAA for ISS/SSP) to manage and direct both programs. This transferred the overall program management of the ISS and SSP from Johnson Space Center to Headquarters (figure 6.2-1-1).

The DAA for ISS/SSP was given accountability for the execution of the ISS and SSP, and the authority to establish requirements, direct program milestones, and assign resources, contract awards, and contract fees.

As illustrated in figure 6.2-1-2, the Office of DAA for ISS/SSP employs an integrated resource evaluation process to ensure the effectiveness of both programs. Initial resource allocations are made through our annual budget formulation process. At any given time, there are three fiscal year budgets in work: the current fiscal year budget, the presentation of the next fiscal year Presidential budget to Congress, and preparation of budget guidelines and evaluation of budget proposals for the follow-on year. This overlapping budget process, illustrated in figure 6.2-1-3, provides the means for reviewing and adjusting resources to accomplish an ongoing schedule of activities with acceptable risk.

Defined mission requirements, policy direction, and resource allocations are provided to the ISS and SSP managers for execution. For major decisions affecting return to flight (RTF) efforts, the Space Flight Leadership Council is called upon to provide specific direction. The Office of DAA for ISS/SSP continually evaluates the execution of both programs as policy and mission requirements are implemented with the assigned resources. Resource and milestone concerns are identified through this evaluation process. Continued safe operation of the ISS and SSP is the primary objective of program execution; technical and safety issues are evaluated by the Headquarters DAA staff in preparation for each ISS and SSP mission and continuously as NASA prepares for RTF. As demonstrated in actions before the Columbia accident and continually during the RTF process, adjustments are made to program milestones, such as launch windows, to assure safe and successful operations. Mission anomalies, as well as overall mission performance, are fed back into each program and adjustments are made to benefit future flights.
The Office of DAA for ISS and SSP staff reviews and assesses the status of both programs daily. The cornerstone of the Office of DAA for ISS/SSP staff evaluation process is the NASA Management Information System (MIS) (figure 6.2-1-4). The One-NASA MIS provides NASA senior management with access to critical program data and offers a portal to a significant number of NASA center and program management information systems and Web sites. Among the extensive information on the One-NASA MIS are the Key Program Performance Indicators (KPPIs) (figure 6.2-1-5). The Office of DAA for ISS/SSP uses the KPPIs to present required information to the Space Flight Enterprise Program Management Council (PMC) and the Agency PMC on a quarterly basis.

Overall, the Office of DAA for ISS/SSP has implemented a comprehensive process for continually evaluating the effectiveness of the SSP. This process allows the Office of DAA for ISS/SSP staff to recognize and rapidly respond to changes in status, and to act transparently to elevate issues such as schedule changes that may require decisions from the appropriate leaderships. NASA, the Space Flight Leadership Council, and the Office of DAA for ISS/SSP have repeatedly demonstrated an understanding of acceptable risk, and have responded by changing milestones to assure continued safe operation.

STATUS

Currently, all the appropriate manifest owners have initiated work to identify their requirements. SSP now coordinates with the ISS Program to create an RTF integrated schedule.

The SSP Systems Engineering and Integration Office reports the RTF Integrated Schedule every week to the SSP Program Requirements Control Board. Summary briefs are also provided at each Space Flight Leadership Council meeting. SSP Flight Operations has scheduling and manifesting responsibility for the Program, working both the short-term and long-term manifest options. The current proposed manifest launch dates are all “no earlier than” (NET) dates, and are contingent upon the establishment of an RTF date. A computerized manifesting capability is under development to more effectively manage the schedule margin, launch constraints, and manifest flexibility.

FORWARD WORK

The Columbia accident has resulted in new requirements that must be factored into the manifest. The ISS and SSP are working together to incorporate the RTF changes into the ISS assembly sequence. A periodic system review of the currently planned flights is being performed. After all the requirements have been analyzed and identified, a launch schedule and ISS manifest is established. NASA will continue to add margin that allows some changes while not causing downstream delays in the manifest.

Development will continue on the computer-aided tools to manage the manifest schedule margin, launch constraints, and manifest flexibility.

SSP will be benchmarked against a very effective ISS Program system that currently exists and is well proven for dealing with similar issues.
Until all of the RTF recommendations and implementations plans are identified, a firm STS-114 Shuttle launch schedule cannot be established. In this interim period, the STS-114 launch schedule will be considered an NET schedule and subsequent launch schedules will be based on milestones. The ISS on-orbit configuration is stable and does not drive any particular launch date.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Aug 03</td>
<td>Baseline the RTF constraints schedule</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>Establish STS-114 baseline schedule</td>
</tr>
</tbody>
</table>

Figure 6.2-1-2. Integrated Resource Evaluation Process is Employed by NASA Headquarters, Code M-1.
Figure 6.2-1-3. Office of Deputy Associate Administrator for ISS and SSP Annual Budget Formulation Process.
Figure 6.2-1-4. One NASA management Information System (MIS) is a Tool used to Track Performance of the International Space Station and Space Shuttle Programs.
Figure 6.2-1-5. Space Shuttle Key Program Performance Indicators (KPPIs).
BACKGROUND

The Mission Management Team (MMT) is responsible for making Space Shuttle Program (SSP) decisions regarding preflight and in-flight activities and operations that exceed the authority of the launch director or the flight director. Responsibilities are transferred from the prelaunch MMT chair to the flight MMT chair once a stable orbit has been achieved. The flight MMT is operated during the subsequent on-orbit flight, entry, landing, and postlanding mission phases through crew egress from the vehicle. When the flight MMT is not in session, all MMT members are on-call and required to support emergency MMTs convened because of anomalies or changing flight conditions.

MMT training, including briefings and simulations, has previously concentrated on the prelaunch and launch phases, including launch aborts.

NASA IMPLEMENTATION

NASA’s response will be implemented in two steps:

1. Membership, organization, and chairmanship of the preflight and in-flight MMT will be standardized. The SSP Deputy Manager will chair both phases of the MMT.

2. Flight MMT meetings will be formalized through the use of standardized agenda formats, presentations, action item assignments, and a readiness poll. Existing SSP meeting support infrastructure will be used to ensure MMT meeting information is distributed as early as possible before scheduled meetings, as well as timely generation and distribution of minutes subsequent to the meetings.

3. Responsibilities for the specific MMT membership will be defined. MMT voting membership will be expanded. MMT membership for each mission is established by each participating organization in writing prior to the first preflight MMT.

Columbia Accident Investigation Board

Recommendation 6.3-1

Implement an expanded training program in which the Mission Management Team faces potential crew and vehicle safety contingencies beyond launch and ascent. These contingencies should involve potential loss of Shuttle or crew, contain numerous uncertainties and unknowns, and require the Mission Management Team to assemble and interact with support organizations across NASA/Contractor lines and in various locations. [RTF]
4. Each MMT member will define internal processes for MMT support and problem reporting.

5. Formal processes will be established for review of findings from ascent and on-orbit imagery analyses, postlaunch hardware inspections, and ascent reconstruction and any other flight data reviews to ensure a timely, positive reporting path for these activities.

6. A process will be established to review and disposition mission anomalies and issues. All anomalies will be identified to the flight MMT. For those items deemed significant by any MMT member, a formal flight MMT action and office of primary responsibility (OPR) will be assigned. The OPR will provide a status of the action at all subsequent flight MMT meetings. The MMT will require written requests for action closure. The request must include a description of the issue (observation and potential consequences), analysis details (including employed models and methodologies), recommended actions and associated mission impacts, and flight closure rationale (if applicable).

NASA has also completed a Mission Evaluation Room console handbook that includes MMT reporting requirements, a flight MMT reporting process for on-orbit vehicle inspection findings, and MMT meeting support procedures. Additionally, the SSP published a formal MMT training plan (NSTS 07700, Volume II, Program Structure and Responsibilities, Book 2 - Space Shuttle Program Direcves, Space Shuttle Program Directive 150) that defines the generic training requirements for MMT certification. This plan is comprised of three basic types of training: courses and workshops, MMT simulations, and self-instruction. Courses, workshops, and self-instruction materials were selected to strengthen individual expertise in human factors, critical decision making, and risk management of high-reliability systems. Additionally, the SSP published a fiscal year (FY) 2004 training calendar that identifies the specific training activities to be conducted in FY 2004 and, for each activity, the associated date, objective, location, and point of contact. MMT training activities are well under way with several courses/workshops held at various NASA centers and three simulations completed.

FORWARD WORK

Revisions to project and element processes will be established consistent with the new MMT requirements and will follow formal Program approval. Associated project and element activities in development include, but are not limited to, the following:

1. A flight MMT reporting process for postlaunch pad debris assessment findings.
2. A flight MMT reporting process for launch imagery analysis findings and on-orbit vehicle inspection findings.
3. A flight MMT reporting process for Solid Rocket Booster/Reusable Solid Rocket Motor post-recovery hardware assessment findings.
4. MMT process revisions based on lessons learned during simulations.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>MMT Interim training plan</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>MMT process changes to Program Requirements Change Board</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>Project/element process changes</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Nov 03 –</td>
<td>MMT training</td>
</tr>
<tr>
<td></td>
<td>Return to</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flight</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Nov 03</td>
<td>MMT Simulation Summary</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>MMT On-Orbit simulation</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>MMT SSP/International Space Station (ISS) Joint On-Orbit simulation</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Feb 04</td>
<td>MMT On-Orbit simulation</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>MMT Prelaunch simulation</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>MMT On-Orbit simulation involving Thermal Protection System (TPS) inspection</td>
</tr>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>MMT Prelaunch Contingency simulation. MMT SSP/ISS Joint On-Orbit simulation involving</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TPS inspection and national assets</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>Status to Space Flight Leadership Council and Stafford/Covey Task Group</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Feb 04</td>
<td>MMT Final training plan</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Status to Stafford/Covey Task Group</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Miscellaneous MMT process revisions to address simulations lessons learned</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendations 7.5-1

Establish an independent Technical Engineering Authority that is responsible for technical requirements and all waivers to them, and will build a disciplined, systematic approach to identifying, analyzing, and controlling hazards throughout the life cycle of the Shuttle System. The independent technical authority does the following as a minimum:

- Develop and maintain technical standards for all Space Shuttle Program projects and elements
- Be the sole waiver-granting authority for all technical standards
- Conduct trend and risk analysis at the sub-system, system, and enterprise levels
- Own the failure mode, effects analysis and hazard reporting systems
- Conduct integrated hazard analysis
- Decide what is and is not an anomalous event
- Independently verify launch readiness
- Approves the provisions of the recertification program called for in Recommendation [R9.2-1]

The Technical Engineering Authority should be funded directly from NASA Headquarters and should have no connection to or responsibility for schedule or program cost.

BACKGROUND

NASA has developed a draft plan for addressing recommendations 9.1-1 and 7.5-1, 7.5-2, and 7.5-3. This draft plan has been distributed for review and comment. NASA is in the process of addressing the comments received to this draft plan and revising it appropriately before releasing the plan officially. The following is a summary of the draft plan as it exists on April 19, 2004, and as it applies to R7.5-1.

INTRODUCTION

The Columbia Accident Investigation Board Report recommended establishment of an independent Technical Engineering Authority for the Space Shuttle Program (SSP). NASA chose to expand the concept NASA-wide to include technical organizations in addition to the Engineering Directorates (Mission and Ground Operations, Space and Life Sciences, Safety and Mission Assurance, etc.) as appropriate to the scope of the CAIB recommendation. Therefore, to avoid confusion, NASA dropped the word “engineering” from the title of the authority.

NASA’s Independent Technical Authority (ITA) will provide independence and authority to institution-based technical personnel engaged in key program/project support activities critical to safety and mission success. Independence in this context means organizational independence, as well as independence from program and project funding decision authority. The purpose of the ITA is to provide technical checks and balances by assuring that the program/project manager does not have sole technical and resource authority over safety and mission success relevant technical standards and safety and reliability analysis products. The diagram in figure 7.5-1-1 shows an example of this organizational relationship for the Office of Space Flight Enterprise.

Under the leadership of the Associate Administrator (AA), Office of Safety and Mission Assurance (OSMA) and the NASA Chief Engineer, the Office of Space Flight (OSF) is in the process of initiating implementation of an ITA for the SSP and the International Space Station Program (ISSP).

NASA IMPLEMENTATION

The ITA is an institutional component of NASA, with elements both in the technical organizations at the field Centers and in the functional offices at NASA Headquarters. Agency ITA policy will be provided Agency organizational, program management, and safety
and mission assurance directives owned by the Chief Engineer, Chief Health and Medical Officer, and AA, OSMA. Each center element of the ITA will own and manage the use of technical standards as assigned by Headquarters. As part of establishing the ITA, each Center Director, with the concurrence of the AA for Safety and Mission Assurance and the NASA Chief Engineer, will select an ITA manager to lead ITA activities for their center. ITA functions will be carried out by the ITA manager’s staff and designated technical personnel assigned to center line organizations. The ITA will be responsible for technical standards (including application, change (waiver and deviation exception) authority); inter-center ITA collaboration; technical assessments and hazard analysis; Failure Mode Effects Analysis/Critical Item List (FMEA/CIL) reporting systems; and providing a reclama path for dissenting opinions that cannot be resolved within normal channels.

Table 7.5-1-1 presents the traceability of ITA functions to CAIB recommendations and a comparison of functions before Columbia and after the planned ITA implementation.

ITA Technical Standards

The ITA will be established throughout the Agency, with primary authority for technical standards residing at Headquarters and delegated as appropriate to technical experts throughout the NASA centers. All technical standards are being reviewed for applicability and appropriate change authority. In most cases, such standards already fall under the change authority of Engineering, SMA, or other technical organizations at Headquarters or the centers. Where they do not, the centers and programs/projects will affect an orderly transition of authority to the ITA once it is ready to take on the new responsibility. For NASA standards with Agencywide application, the Headquarters owner (Chief Engineer, OSMA, Chief Health and Medical Officer, or others) will have ultimate change authority.

To effectively and independently maintain control over the application of technical standards, and to ensure proposed deviations from those standards are appropriately considered, the Chief Engineer will establish a system in which “warrants” are assigned to experts in the ITA. These “warrants” are the delegation of authority for approving changes to technical standards to subject matter experts throughout the Agency. The Chief Engineer will also provide the policy for oversight of the warrant process.

In addition, each center element of the ITA will provide guidance to programs on the use of technical standards, and will review inclusion or elimination of standards in program requirements at existing program boards and panels.

ITA Collaboration

The OSF center ITA managers and Headquarters representatives as appropriate will participate in a forum for coordinating technical standard issues of mutual interest.
<table>
<thead>
<tr>
<th>ITA Function</th>
<th>CAIB Recommendation (R7.5-1)</th>
<th>Before Columbia Accident</th>
<th>After ITA Implementation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Standards</td>
<td>Develop and maintain technical standards for all SSP projects and elements. Be the sole waiver-granting authority for all technical standards.</td>
<td>Program had authority for some of its technical standards. Program held waiver-granting authority for these technical standards.</td>
<td>ITA develops and maintains technical standards (through warrants). ITA approves initial application of standards to programs. ITA has sole change (including waiver) authority for technical standards.</td>
</tr>
<tr>
<td>Intercenter Collaboration</td>
<td>N/A</td>
<td>N/A</td>
<td>ITA Forum facilities Headquarters-center and intercenter collaboration; Safety and Reliability Panels handle relevant integration issues through long-established multicenter participation.</td>
</tr>
<tr>
<td>Technical Assessments, Analysis, and Integrated Hazard Assessment</td>
<td>Conduct trend and risk analysis at the subsystem system, and Enterprise levels. Decide what is and is not and anomalous event. Independently verify launch readiness.</td>
<td>Program performed risk assessment and limited trending.</td>
<td>ITA (with help from center line organizations, Independent Assessment, and NASA Engineering and Safety Center as required) conducts trending, integrated hazard, and risk analysis as a check and balance to similar program assessments. The ITA will examine the Program’s new IFA system and independently evaluate and formally approve program recommendations as to what is and is not an IFA.</td>
</tr>
<tr>
<td>FMEA/CIL Reporting Systems</td>
<td>Own the failure mode, effects analysis, and hazard reporting systems.</td>
<td>Program owned review panels and process.</td>
<td>ITA will own the process used by safety and reliability review panels for FMEA/CIL and hazard analyses. The independent SMA organizations will chair these panels as an ITA function and have primary responsibility for approving FMEAs, CILs, and hazard reports as a prerequisite to program approval to the same.</td>
</tr>
</tbody>
</table>
The AA, OSF will appoint the chairperson of this forum from among the center ITA managers. The ITA Forum will focus on facilitating collaboration among centers relevant to OSF matters on the following issues:

- Coordinating the intercenter use of technical standards.
- Coordinating the intercenter involvement in program integration related ITA activities.
- Coordinating intercenter involvement in ITA technical assessments and analysis.
- Coordinating intercenter reclama path for dissenting opinions.

Technical Assessments and Analysis

Center elements of the ITA will provide the Center Director and Headquarters proactive evaluations of problems, trends, and reporting systems, and will conduct assessments using engineering, safety, reliability, quality, trend, integrated hazard, and risk analysis techniques.

Technical leads from the various center line organizations will be matrixed to the center ITA organization so they can remain cognizant of ongoing technical issues, maintain a detailed knowledge of the ongoing position concerning technical matters, and provide a reclama path for dissenting opinion to the Center Director and Headquarters.

Each Center Director will conduct an ITA review prior to major milestones and flights.

- The review will include all ITA products and processes that are a part of the SSP Certificate of Flight Readiness (CoFR).
- The review will include the results of all independent assessments and analyses conducted by the ITA that are relevant to the milestone or flight.
- In addition to the ITA manager’s assessment, all appropriate center-based line organizations will present their state of readiness at the review.
- The results of this ITA assessment will be a principle basis for the signature of the Center Director on the milestone review or CoFR.

The ITA will formally approve program recommendations as to what is and is not an In-Flight Anomaly (IFA) as a prerequisite for Program approval of the same.
Table 7.5-1-2. Shuttle Safety and Reliability panels Chaired by the ITA

<table>
<thead>
<tr>
<th>Panel</th>
<th>Program</th>
<th>Responsible ITA</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Safety Review Panel (GSRP)</td>
<td>ISSP/SSP</td>
<td>Kennedy Space Center ITA</td>
<td>This panel is established to review the ground safety aspects of Space Shuttle payloads and ISS flight hardware, experiments, and cargo. The panel is responsible for conducting safety reviews as defined in NSTS/ISS 13830C, “Payload Safety Review and Data Submittal Requirements for Payloads using the Space Shuttle and International Space Station,” and SSP 30599, “Safety Review Process.” The panel is responsible for assuring the implementation of KHB 1700.7, “Kennedy Space Center Payload Ground Safety Handbook.” It will have the authority to provide ground safety approval of payloads as a prerequisite to Program approval of same.</td>
</tr>
<tr>
<td>ISS Safety Review Panel (JSC)</td>
<td>ISSP/SSP</td>
<td>Johnson Space Center (JSC) ITA</td>
<td>This panel is established to review the safety aspects of ISS flight hardware during the launch, return, and on-orbit mission phases as well as the safety of any visiting vehicles. This panel is cochaired by representatives of the SSP and ISSP. The panel is responsible for conducting safety reviews as defined in SSP 30599, “Safety Review Process.” The panel is responsible for assuring the implementation of SSP 50021, “Safety Requirements Document.” This panel will have the authority to provide approval of all ISS hazard reports as a prerequisite to Program approval of same.</td>
</tr>
<tr>
<td>Payload Safety Review Panel (PSRP)</td>
<td>ISSP/SSP</td>
<td>JSC ITA</td>
<td>This panel is established by the Manager, SSP, and the Manager, ISSP, to review the flight safety aspects of Space Shuttle payloads and ISS experiments and cargo. The panel is responsible for conducting safety reviews as defined in NSTS/ISS 13830C, “Payload Safety Review and Data Submittal Requirements for Payloads using the Space Shuttle and International Space Station.” The panel is responsible for assuring the implementation of NSTS 1700.7B, “Safety Policy and Requirements for Payloads Using the Space Transportation System,” and NSTS 1700.7B Addendum, “Safety Policy and Requirements for Payloads Using the International Space Station.” See JSC Policy Charter, JPC 1152.4K, “Space Shuttle Payload Safety Review Panel (PSRP),” for further details. The panel will have the authority to provide safety approval of payloads as a prerequisite to Program approval of same.</td>
</tr>
<tr>
<td>SSP Reliability and Maintainability (R&M) Panel</td>
<td>SSP</td>
<td>JSC ITA</td>
<td>The SSP R&M Panel is being formed for the purpose of reviewing SSP FMEA/CILs (formerly part of responsibility of SSRP). This Panel will provide formal ITA approval of all FMEA/CILs as a prerequisite to Program approval of same.</td>
</tr>
<tr>
<td>System Safety Review Panel (SSRP)</td>
<td>SSP</td>
<td>JSC ITA</td>
<td>The SSRP is a mechanism for enhancing the SSP system safety management and engineering through informational interchanges, development of concepts to improve the SSP safety program, review of safety documentation, review of SSP integration and cargo integration, review of SSP element-level hazard identification and resolution activities, and recommendations to Level 2 management for hazard report disposition. See JSC NSTSPM Directive No. 110, “Space Shuttle Program (SSP) System Safety Review Panel (SSRP) Charter,” for further details. The authority of this panel will be increased to include formal ITA approval of hazard reports as a prerequisite to Program approval of same.</td>
</tr>
</tbody>
</table>
FMEA/CIL and Hazard Analysis Process

To ensure the FMEA/CIL and hazard analysis system is appropriately managed, the ITA will own the processes used by safety and reliability review panels for FMEA/CIL and hazard analysis. The independent SMA organizations will also provide chairs for these panels as an ITA function. These chairs will have formal approval authority for FMEAs, CILs, and hazard reports as a prerequisite for program approval of the same. Table 7.5-1-2 summarizes the plan for ownership of the various panels relevant to the Space Shuttle.

Reclama Path for Dissenting Opinions

The ITA will provide a reclama path for dissenting opinions that cannot be addressed appropriately through normal channels. The center elements of the ITA will evaluate dissenting opinions across the technical community and ensure that valid technical issues are not overlooked or overridden by cost and schedule pressures. They will also provide a means to elevate issues to center management, OSF management, OSMA, the Chief Health and Medical Office, and the Office of the Chief Engineer.

ITA Funding

To address the CAIB concern about independence, NASA is establishing a system that provides funding to safety and mission assurance and ITA resources outside the authority of the program and project managers. For Headquarters programs like Space Shuttle and International Space Station (ISS), the Enterprise Institutional Program Office (IPO) will be responsible for ITA funding decisions. In all cases, the newly chartered Headquarters Institutional Executive Committee (IEC) will approve resource requirements of the Enterprise IPOs for center institutions including the ITA. The Chief Engineer and OSMA are permanent voting members of the IEC. To assure the independence of resource decision-making for ITA work, the Agency is establishing a new funding mechanism called “directed” service pools. The center will determine the resources needed to perform ITA tasks for each project, and will budget for them in the SMA/ITA pool. The SMA/ITA service pool will have two independent subpools, one for all program support SMA activities and the other for all non-SMA ITA activities.

STATUS

Three NASA functional offices (OSMA, the Chief Health and Medical Office, and the Office of the Chief Engineer) are developing Agencywide ITA policy, including the use of standards, technical warrants, and the fundamentals of the ITA concept itself. OSF is drafting an ITA Implementation Plan and has begun implementation of basic elements of the ITA for Space Shuttle and Space Station.

FORWARD WORK

Policies for an Agencywide ITA are being drafted and NASA centers are developing plans to implement the ITA. Engineering and Safety Standards are being assessed to determine their applicability to the ITA. Implementation of the ITA at OSF centers is already under way. Key milestones in forward work are shown in Table 7.5-1-3.

Table 7.5-1-3. Schedule of Milestones

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSF Center Director</td>
<td>May 04</td>
<td>Develop Implementation Plan for each OSF center</td>
</tr>
<tr>
<td>OSF Center Director</td>
<td>May 04</td>
<td>Assign center ITA manager and identify key ITA personnel</td>
</tr>
<tr>
<td>OSF Center Director, AA/OSF, AA/OSMA, NASA Chief Engineer</td>
<td>Jun 04</td>
<td>Determine required human capital resources for each center’s ITA through the Program Operating Plan process</td>
</tr>
<tr>
<td>AA/SMA and NASA Chief Engineer</td>
<td>Jun 04</td>
<td>Provide necessary policy updates and warrants</td>
</tr>
<tr>
<td>OSF Center ITA Organizations</td>
<td>Jun 04</td>
<td>Dry run of key ITA functions prior to return to flight</td>
</tr>
<tr>
<td>AA OSF</td>
<td>Jun 04</td>
<td>Official “Standup” of OSF ITA</td>
</tr>
<tr>
<td>Center Directors, Enterprises, AA/OSMA, NASA Chief Engineer, Chief Financial Officer</td>
<td>Oct 04</td>
<td>Establishment of independently funded service pools complete</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendations 7.5-2

NASA Headquarters Office of Safety and Mission Assurance should have direct line authority over the entire Space Shuttle Program safety organization and should be independently resourced.

BACKGROUND

NASA has developed a draft plan for addressing recommendations 9.1-1 and 7.5-1, 7.5-2, and 7.5-3. This draft plan has been distributed for review and comment. NASA is in the process of addressing the comments received to this draft plan and revising it appropriately before releasing the plan officially. The following is a summary of the draft plan as it exists on April 19, 2004, and as it applies to R7.5-2.

INTRODUCTION

The *Columbia Accident Investigation Board* (CAIB) Report expressed concern about the lack of adequate capability and independence for the Shuttle Safety and Mission Assurance (SMA) personnel. One critical aspect of their concern was the lack of funding independence of the center-based SMA workforce from the program they support. Under full cost management, this conflict of interest appeared to be intensified. Under the leadership of the Associate Administrator (AA), Office of Safety and Mission Assurance (OSMA), NASA has developed a plan to improve the independence and capability of SMA organizations within NASA.

NASA IMPLEMENTATION

Space Shuttle Program

Each Office of Space Flight (OSF) center provides civil service and support contractor resources to meet the SMA requirements of the Program and its projects and elements. With the exception of a small SMA management team working directly for the Program Manager, the civil servants are assigned to SMA organizations that report through the Center Directors to Headquarters rather than through the Program Managers and are thus organizationally independent of the Program. The plan for recommendation 7.5-2 increases their independence by creating a financial mechanism, a directed service pool, for SMA that allows the centers (not the Program) to determine resource levels to meet the program requirements. These resource levels will be approved and budgeted by the OSF Institutional Program Office (IPO) and Institutional Executive Council (IEC) at Headquarters. The result will be that all center SMA personnel will be both organizationally and financially independent of the program they oversee and support. The Independent Technical Authority (ITA) plan also moves the System Safety Review Panel, Ground Safety Review Panel, Payload Safety Review Panel, and Reliability Panel from the Program and program element offices, where they have been, into the center SMA Directorates. The chairs of these panels will report to their various SMA Directors as an ITA function, although their products and services will continue to be provided to the program. The approval of the chairs of these panels of the safety and reliability plans and products (e.g., hazard reports, Failure Mode and Effects Analysis/Critical Items List, etc.) will be a prerequisite to program approval of same (ref. R7.5-1). These changes in center SMA support tasks and independence represent substantial improvements to program checks and balances.

The NASA SMA support for and oversight of the Space Shuttle Program (SSP) consists of three components, program, center SMA, and now ITA personnel. The Program SMA Manager reports directly to the SSP Manager, and is responsible for the safety, reliability, and quality assurance programs within the Program. The Program SMA Manager has a small staff of discipline experts, and through them directs the safety, reliability, and quality activities of the prime contractors as well as the matrixed support personnel from the Johnson Space Center. The Program SMA office also integrates the safety and mission assurance activities performed by the other OSF centers for the various projects and program elements located at the other Centers. The specific authorities given to the center SMA organizations under the auspices of the new ITA will limit the Program SMA Manager’s authority over significant safety, reliability, and quality activities. An example is the System Safety Review Panel. The Shuttle SMA Manager enforces the program requirement to perform hazard analysis on the prime contractor. The prime contractor delivers the hazard
analysis first to the center SMA organization, and approval of the hazard analysis by the center SMA organization will be a prerequisite to the Program’s acceptance of the same. Another example is quality standards. In recent years, the SSP adopted the quality assurance standard as a program requirement when the institution (like much of government) backed away from prescriptive standards ownership. The Program Manager took over change authority for that standard through his change board. In the future, the Program SMA Manager will continue as in the past to direct the contractor to carry out quality inspections, but now they will be executing per a NASA quality standard that is “owned” by the ITA. If the Program SMA Manager wants to allow the contractor to deviate, the center ITA must first approve the deviation.

Headquarters Office of Safety and Mission Assurance

OSMA is responsible to the Administrator for policy and functional oversight of all safety, reliability, and quality assurance activities within the Agency. It provides independent assurance and audit of center and program SMA activities, owns Agency SMA standards, and serves as an independent appeal path for issues that cannot be resolved by the centers.

With the implementation of the Agency plan for recommendation 9.1-1 (and thus 7.5-2), appropriate center and program documentation will be changed to require that the AA, OSMA formally approves selection of new program SMA Managers for major programs like Shuttle. Further, the AA, OSMA will be required to approve selection of new center SMA Directors, the Independent Verification and Validation (IV&V) Facility Director, and the NASA Engineering and Safety Center (NESC) Director, and to have a formal “functional manager” assessment as part of their annual performance evaluations. Many of these activities were done informally in the past; this plan formalizes these line authority changes.

To address CAIB Finding F7.4-13, OSMA is also rewriting the policy and process governing the OSMA Prelaunch Assessment Review (PAR). The newly created Review and Assessment Division within OSMA is responsible for developing the process and for standardizing it with other similar reviews for International Space Station missions, expendable launch vehicle missions, and certain experimental aerospace vehicle test flights. The purpose of the PAR is to prepare the AA, OSMA for the Shuttle Flight Readiness Review and provide the technical basis for the AA, OSMA’s Certification of Flight Readiness (CoFR) concurrence signature. The policy will clearly require participation by the Program SMA, Center SMA, Independent Assessment (IA), NESC, and IV&V organizations. The PAR agenda will include a summary of SMA activities performed for the mission, as well as a discussion of all outstanding technical issues. Waivers to safety, reliability, and quality standards and requirements, including rationale and risk posture, will be covered, as will any outstanding SMA-related work to be completed prior to the mission, open NASA Safety and Reporting System issues, and CoFR exceptions.

To address the CAIB F7.4-4 concern that system safety policy oversight needed to be elevated at NASA Headquarters, OSMA has hired a dedicated, experienced System Safety Engineer. The first task of the new manager is policy review in conjunction with the Agency policy update.

The NASA Engineering and Safety Centers

The NESC, which will have a continuous presence at each of the OSF centers, represents a substantial increase in the Agency’s independent technical capability. Senior NESC engineers will track the progress of the Shuttle Program during return to flight (RTF) with the intent of looking for tough issues, process misses, model or analysis deficiencies, and minority opinions, to work independently. These personnel, although stationed at the OSF centers, are operationally assigned to the Langley Research Center-based NESC, which is in turn functionally overseen by the Headquarters Office of the Chief Engineer and OSMA, and funded by OSMA. The NESC Program Plan was approved in November 2003.

The NESC will have a presence in SSP major reviews and change boards as an advisor/overseer with the authority of the AA, OSMA to intervene as necessary to prevent an unsafe act or avoid unacceptably high risk. Further, the NESC and a member of the OSMA Headquarters staff will participate in Mission Management Team meetings. They will oversee the process and offer advice, technical support, and a link for the Program to the significant independent engineering capabilities resident in the NESC, IA, and IV&V resources if needed.

NESC is developing interfaces with all the centers and with other government, industry and academic institutions. The NESC recently completed the first of its
“prototype” assessments, and has received good reviews on its initial work with the SSP as well as other activities. It provided a needed second opinion recently to the SSP Manager on the subject of Rudder Speed Brake Actuators. As the NESC ramps up to full capability during this fiscal year (FY), it is proving to be a valuable Agency asset.

Other Safety and Mission Assurance Capability Improvements

As in the past, resident at each space flight center (except Stennis) will be a small group of Independent IA personnel. They are funded by OSMA and have access to various independent support contractors as needed to carry out their assessments. They will continue to provide technical and process assessments for a variety of Headquarters and center-based customers under the direct management of the AA, OSMA. However, with the introduction of the NESC, which is primarily responsible for technical assessments, the IA teams will shift their focus to process and functional reviews. They will work with the NESC and Headquarters OSMA as needed to audit and assess program processes against NASA policy and procedures. They will maintain their technical competence by participating in technical reviews and by using their independent contractor workforce as needed for those reviews that require special competencies.

Also new since the Columbia accident, the software IV&V personnel that support the SSP at the OSF centers and at the Fairmont, West Virginia, IV&V Facility are now organizationally independent of the Program, and are functionally aligned to and funded by the OSMA. This management system has been in place for approximately 12 months, and represents a change from the system that was in effect for many years, in which the SSP held funding authority over its software IV&V.

SMA Financial Independence

Finally, beginning in 2005, all center SMA support to the SSP will be through directed service pools under the control of the OSF IPO through its four centers. The SSP will give the center its requirements for SMA support, and the center will decide the staffing levels required to meet the requirements. The budget for the center SMA service pools will be presented each year by the IPO to the IEC for approval. The AA, OSMA will be a voting member of that committee.

Prior to these changes, the SSP had funding approval authority for about 99% (based on FY 03 estimates) of the total SMA funding level for Shuttle (includes all contractor and center SMA resources). The remaining 1% consisted of center SMA senior supervisor time and approximately $2M per year of OSMA-funded IA activity. Under the new system, which includes the provision of funding approval independence achieved through the directed service pool, the SSP now has funding approval for only about 70% of the total SMA funding level. Nearly all of this funding pays for Shuttle prime and subcontractor SMA. The remaining 30% funding approval is accomplished through the directed service pool approved by the Headquarters IEC and through Headquarters OSMA. This 30% accounts for all center SMA civil service, all SMA support contractors, and OSMA’s NESC, IV&V, and IA that support Shuttle. Part of the reason for this relative shift in funding levels is attributed to OSMA’s substantial budget increase. The OSMA budget for FY 04 is in excess of $100M compared to less than $30M for FY 03. The major difference is the transfer of IV&V ($28M) and creation of the NESC ($45M). IV&V and NESC support multiple programs and activities. The NESC funding is expected to increase over the next two years to approximately $95M per year, including civil servant salaries, contractor, and administrative costs.

Recruiting for SMA

One of the concerns expressed by the CAIB, the Aerospace Safety Advisory Panel, and other internal and external reviews over the years has been the difficulty in drawing good engineers to the SMA organizations. As part of the Agency’s recent Human Resources initiatives, employees must expand their experience beyond their existing organization, such as working at another center, to be considered for career advancement to executive ranks. As part of the response to R7.5-2, the Agency will allow an engineer to move from his/her engineering/operations/project organization to the local SMA organization for at least two years as an alternative to relocation to another center. This approach will be beneficial to the employee, the SMA organization, and the Program, and it will ensure a steady flow of highly motivated technical people into and out of SMA organizations, with engineers returning to their original organizations with increased awareness of and appreciation for SMA disciplines and systems engineering as a whole.

Feedback

As part of NASA’s response to the CAIB concerns about “safety culture,” a respected safety consultant, BST, took an Agencywide survey in February. The survey asked...
several questions relating to leadership, teamwork, safety climate, and, importantly, upward communications. For the next three years, the Agency will be taking steps to transform the organizational culture with special emphasis on improving the upward communication of safety-related concerns. The results of the first survey have recently been published on the NASA Web site. To supplement the CAIB organizational recommendations (7.5-1, 7.5-2, and 7.5-3), selected intervention techniques will be validated over the next six months to measure their effectiveness in addressing known deficiencies. As time goes on, further surveys will help inform the Agency of the effectiveness of its changes on the safety culture. The next set of surveys is scheduled for the summer of this year at selected NASA sites.

STATUS

OSMA staffing was increased in FY 04 to accommodate new functional oversight responsibilities (NESC, IV&V, NASA Parts Program, and Micrometeoroid Orbital Debris Program). Center SMA civil service staffing has also increased in an effort to meet the RTF workload and address prior weaknesses as a part of OSF RTF. These increases improve the capability and competencies of the SMA community in support of the SSP. A new SMA Office has been established within the SSP. The baseline safety culture survey has been accomplished and results disseminated to the workforce. The NESC has stood up and is providing value added on a daily basis across the Agency. The Agency continues to review all Headquarters policy and procedural requirements directives with the intent of clearing up ambiguities.

FORWARD WORK

Headquarters OSMA will complete its PAR process redefinition. Shuttle CoFR processes continue to evolve to clarify SMA and ITA CoFR signature statements. As we progress to RTF, the NESC will continue to conduct trending and assessments of critical SSP systems and processes. The Agency continues to assess its SMA policies, and to work with BST on culture initiatives and feedback.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>NESC/OSMA</td>
<td>Completed</td>
<td>Fully functional and capable NESC in place</td>
</tr>
<tr>
<td>OSMA</td>
<td>Completed</td>
<td>Hire new personnel in OSMA</td>
</tr>
<tr>
<td>OSMA</td>
<td>Jun 04</td>
<td>Updated PAR process in place</td>
</tr>
<tr>
<td>OSF, OSMA, and SSP</td>
<td>TBD</td>
<td>Redefine CoFR signature statements</td>
</tr>
<tr>
<td>ADA Institutions</td>
<td>Summer 04</td>
<td>Follow-on safety culture surveys</td>
</tr>
<tr>
<td>OSMA</td>
<td>Through 05</td>
<td>Clarified and consistent Agency SMA Policy</td>
</tr>
</tbody>
</table>
BACKGROUND

From the Columbia Accident Investigation Board findings, NASA understands that the inconsistent division of responsibilities between the Space Shuttle Integration Office and the Space Shuttle Vehicle Engineering Office led to confused responsibilities for systems engineering and integration within the Space Shuttle Program (SSP). A more robust integration function might have enhanced our ability to recognize the true increase in risk represented by the STS-112 External Tank (ET) bipod ramp foam shedding and its implication for safe flight. NASA has developed a draft plan for addressing recommendations 9.1-1, 7.5-1, 7.5-2, and 7.5-3. This draft plan has been distributed for review and comment. NASA is in the process of addressing the comments received to this draft plan and revising it appropriately before releasing the plan officially. The following is a summary of the draft plan as it exists on April 19, 2004, and as it applies to R7.5-3.

NASA IMPLEMENTATION

The SSP Manager strengthened the role of the Shuttle Integration Office to make it capable of integrating all of the elements of the SSP, including the Orbiter Project. The Program restructured its Space Shuttle Integration Office into a Space Shuttle Systems Engineering and Integration Office (SEIO). The SEIO Manager now reports directly to the SSP Manager, thereby placing the SEIO at a level in the Shuttle organization that establishes the authority and accountability for integration of all Space Shuttle elements.

The new charter clearly establishes the SEIO’s responsibility for systems engineering, integration, performance, and safety of the Space Shuttle vehicle in all of its ground and flight activities where multiple project elements are involved. To clarify responsibilities and to sharpen the focus of the SEIO, the Cargo Integration function (and personnel) from the old Shuttle Integration Office were relocated to the Flight Operations and Integration Office, while the Flight Software function was transferred to SEIO. The number of civil service personnel performing analytical and element systems engineering and integration in the SEIO was doubled by acquiring new personnel from the Johnson Space Center (JSC) Engineering and Mission Operations Directorates and from outside of NASA.

STATUS

The Space Shuttle Vehicle Engineering Office is now the Orbiter Project Office, and its charter is also amended to clarify that SEIO is now responsible for integrating all flight elements.

Integration Control Board (ICB): NASA reorganized and revitalized the ICB. This board reviews and approves element recommendations and actions to ensure the appropriate integration of activities in the SSP. The Orbiter Project Office is a mandatory member of the ICB. Orbiter changes that affect multiple elements must go through the ICB process prior to SSP approval. Orbiter changes for return to flight (RTF) that affect multiple elements, which were not previously reviewed and approved by the ICB, are routed from the Program Requirements Control Board back to the ICB for review and approval prior to implementation.

Space Shuttle Flight Software Office: Functions with multielement integration were relocated from the Orbiter Project to the SEIO. The Space Shuttle Flight Software organization was moved from the Orbiter Project to the SEIO, since the Flight Software Office manages multiple flight element software sources in addition to the Orbiter. Because many integrated Space Shuttle performance requirements are implemented through flight software, this change provides a more comprehensive view of the Space Shuttle as an integrated vehicle. Also, since almost any change to the Shuttle hardware has a corresponding flight software change, placing the flight software function inside SEIO improves the Program’s ability to detect and control the integration of element design changes. Finally, this move also strengthens the SSP by placing the Shuttle Avionics Integration Laboratory within the SEIO.

Systems Integration at Other Centers: All Program integration functions at the Marshall Space Flight Center
MSFC Propulsion Systems Integration (PSI) has increased its contractor and civil service technical strength and its responsibilities within the Program. Agreements between the PSI Project Office and the appropriate MSFC Engineering organizations were expanded to enhance anomaly resolution within the SSP. MSFC Engineering personnel participate in appropriate Program-level integration boards and panels, such as Structures and Loads; Aerodynamics; Aerothermodynamics; and Guidance, Navigation, and Control. PSI also participates in MSFC Element-level boards (e.g., Configuration Control Board, Element Acceptance Review, and Preflight Review) and brings a focused systems perspective and enhanced visibility into changes and anomalies affecting multiple Program elements. A PSI Review Board has been established to address the systems issues and ensure that the items are evaluated, tracked, and worked with the program SEIO.

System Integration Plan (SIP) and the Master Verification Plans (MVPs) Design Change Tools: The role of the SIP and the MVPs for all design changes with multi-element impact has been revitalized. The SEIO is now responsible for all SIPs and MVPs. These tools will further energize SEIO to be a proactive function within the SSP for integration of design changes and verification. SIPs and MVPs are being developed for all major RTF design changes that impact multiple Shuttle elements.

Debris Environments Analyses: The SEIO is responsible for generating all natural and induced design environments analyses. Debris is now treated as an integrated induced environment that will result in element design requirements for generation limits and impact tolerance. All flight elements are being reevaluated as potential debris generators. Computations of debris trajectories under a wide variety of conditions will define the induced environment due to debris. The Orbiter Thermal Protection System (TPS) will be recertified to this debris environment, as will the systems of all flight elements. Specification of debris as an induced design environment will ensure that any change that results in either additional debris generation or additional sensitivity to debris impact will receive full Program attention.

Testing: SEIO is either leading or playing a major role in planning and executing the following tests in support of RTF:

- 3% Wind Tunnel test to support ET redesigned bipod ramp
- Mobile Launch Platform rollout loads fatigue environment test
- Full-scale Reinforced Carbon-Carbon impact testing
- Main Propulsion System prevalve filter effectiveness tests
- Main Propulsion System flowliner tests
- Debris radar cross-section tests
- Booster Separation Motor debris tests

Independent Assessments: A major challenge facing the SSP is to determine if the scope and quality of SEIO’s work is sufficient to deliver high-quality systems engineering and integration. To assure this, the SSP formed a standing independent assessment team to evaluate the performance of the SEIO function. The team is composed of members with experience in integrating large, complex flight systems. The team’s first review was held in January 2004. Also, the SSP has contracted with the Aerospace Corporation to provide daily consultations on systems engineering and integration methodologies and specific vehicle technical issues. Aerospace Corporation is performing an audit of the SEIO function according to the Carnegie Mellon System Engineering Capability Maturity Model. Additionally, a Debris Transport Independent Assessment Team composed of experts from NASA, industry, and academia conducted a special independent assessment of SEIO’s debris transport methodology. Significant improvements to the model were made as a result of this review.

Integrated Planning: SEIO is involved in the following planning activities:

- RTF integrated schedule
- Instrumentation to accompany RTF
- RTF imagery, including both ground and flight
- System integration plans for RTF design changes, such as ET bipod, Solid Rocket Booster bolt catcher, debris generation, debris transport, and debris impact tolerance
- In-flight operations concept for integrating TPS impact and damage assessments
- Night launch operations concept
- Integrated test plans for component testing

Linkages to Other Program Functions: SEIO has increased its engineering civil service staff from 7 to 14 and added a Chief Engineer for Integration to ensure that SEIO takes full advantage of JSC engineering resources. MSFC Engineering now sits as a cochair on system engineering and integration (SE&I) panels to assure a thorough technical review; NASA Aeronautics Centers (Ames Research Center, Dryden Flight Research Center, Langley Research Center, and Glenn Research Center) are now invited to SE&I panels. The ET Project and Safety and Mission Assurance Directorate now have team members colocated with SEIO until the RTF redesign is completed.

FORWARD WORK

While SEIO still has much work to accomplish before RTF, the changes to comply with CAIB Recommendation R7.5-3 are complete. The SSP reorganization in 2003 baselined the organizational and functional changes described above.

Schedule

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP Manager</td>
<td>Aug 03</td>
<td>Approve the SSP Reorganization</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Aug 03</td>
<td>Transition Cargo Integration to Mission Integration</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Aug 03</td>
<td>Reform ICB with Mandatory Orbiter Membership</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Aug 03</td>
<td>Release ET Bipod Redesign Systems Integration Plan</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Oct 03</td>
<td>Release Initial Debris-Induced Environment Computations for Use by Projects</td>
</tr>
<tr>
<td>JSC Engineering Directorate</td>
<td>Oct 03</td>
<td>Assign Chief Integration Engineer</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Oct 03</td>
<td>Approve ET Bipod Redesign Systems Integration Plan</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Oct 03</td>
<td>Transition Flight Software to SEIO</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Oct 03</td>
<td>Complete Independent Review of Initial Debris Environment Computations</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Dec 03</td>
<td>Review SEIO Quality and Scope Assessment</td>
</tr>
<tr>
<td>SSP Systems Integration</td>
<td>Feb 04</td>
<td>Approve Final Debris Environment</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Recommendations 9.1-1

Prepare a detailed plan for defining, establishing, transitioning, and implementing an independent Technical Engineering Authority, independent safety program, and a reorganized Space Shuttle Integration Office as described in R7.5-1, R7.5-2, and R7.5-3. In addition, NASA should submit annual reports to Congress, as part of the budget review process, on its implementation activities. [RTF]

INTRODUCTION

NASA has developed a draft plan for addressing recommendations 9.1-1 and 7.5-1, 7.5-2, and 7.5-3. This draft plan has been distributed for review and comment. NASA is in the process of addressing the comments received to this draft plan and revising it appropriately before releasing the plan officially. The following is a summary of the draft plan as it exists on April 19, 2004, and as it applies to R7.5-1, R7.5-2, and R7.5-3. The R9.1-1 plan outlines the approach for addressing recommendations 7.5-1, 7.5-2, and 7.5-3 by outlining the policies and plans for establishing an independent technical authority (ITA), improved independent safety and mission assurance capability, and enhanced systems integration for all NASA programs and for Shuttle specifically. For further details, refer to the sections of this Plan addressing recommendations 7.5-1, 7.5-2, and 7.5-3 specifically.

NASA IMPLEMENTATION

NASA Headquarters is responsible for providing leadership, policy, oversight, and direction for the Agency in various functional and programmatic areas. The Enterprises, through their Field Centers, are responsible for executing their programs within the bounds of the policies, oversight, and direction by Headquarters. The R9.1-1 Plan outlines the roles and responsibilities of Headquarters functional offices, the Enterprises, and the Field Centers to meet the Columbia Accident Investigation Board (CAIB) recommendations 7.5-1, 7.5-2, and 7.5-3.

Additionally, the plan acknowledges that such far-reaching changes must be addressed from a systems perspective to understand and avoid the unintended negative consequences of change. To do this, the plan establishes clear lines of authority, provides capability to match its authority, and minimizes duplication of accountability. Further, it clarifies total program safety accountability and limits unnecessary layers to NASA assurance organizations.

STATUS

NASA's first interim report addressing CAIB Recommendation 9.1-1 is under review and will be forwarded to the Return to Flight Task Group for review and comment. Although the CAIB recommendation only requires preparation of a detailed plan prior to return to flight, NASA concludes that this important issue requires prompt implementation. Therefore, NASA has begun taking the first steps to establish the policies, procedures, and organizations required to implement these CAIB recommendations within the Office of Space Flight (OSF). For a more detailed status of progress, refer to the sections in this plan addressing recommendations 7.5-1, 7.5-2, and 7.5-3.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSF Center Director</td>
<td>May 04</td>
<td>Develop Implementation Plan for each OSF Center</td>
</tr>
<tr>
<td>Associate Administrator</td>
<td>Jun 04</td>
<td>OSF ITA Standup</td>
</tr>
<tr>
<td>OSF Office of Safety and</td>
<td>Each year as part of budget to Congress</td>
<td></td>
</tr>
<tr>
<td>Mission Assurance</td>
<td></td>
<td>Annual Reports submission</td>
</tr>
</tbody>
</table>
BACKGROUND

In 2002, NASA initiated the Space Shuttle Service Life Extension Program (SLEP) to extend the vehicle’s useful life. When SLEP was initiated, evaluation of the vehicle’s mid-life recertification needs was a foundational activity. On January 14, 2004, the Vision for Space Exploration was announced. The vision shortens the required service life of the Space Shuttle Orbiter and, as a result, the scope of vehicle mid-life certification was changed substantially. Under the vision, the Shuttle will be retired following assembly of the International Space Station planned for the end of this decade.

NASA IMPLEMENTATION

Despite the reduced time frame for the operation of the Shuttle, NASA continues to place a high priority on maintaining the safety and capability of the Orbiters. A key element of this is timely verification that hardware processing and operations are within qualification and certification limits. This activity will revalidate the operational environments (e.g., loads, vibration, acoustic, and thermal environments) used in the original certification. This action is addressed in SSP-13.

NASA has approved funding for work to identify and prioritize additional analyses, testing, or potential redesign of the Shuttle to meet recertification requirements. The findings from these and other efforts will result in specific Shuttle SLEP requirements. The identification of these requirements puts NASA on track for making appropriate choices for resource investments in the context of the Vision for Space Exploration.

STATUS

In May 2003, the Space Flight Leadership Council (SFLC) approved the first SLEP package of work, which included funding for Orbiter mid-life certification and complementary activities on the Orbiter Fleet Leader Project, Orbiter Corrosion Control, and an expanded

Columbia Accident Investigation Board

Recommendation 9.2-1

Prior to operating the Shuttle beyond 2010, develop and conduct a vehicle recertification at the material, component, subsystem, and system levels. Recertification requirements should be included in the Service Life Extension Program.

FORWARD WORK

Following SLEP Summit II, the SFLC issued two key actions to develop options for refocusing the SLEP and revalidating specific projects. First, the Space Shuttle Program (SSP) was asked to provide a description of the current Space Shuttle certification status by April 2004. Second, the manager of the SSP Development Office was asked to define the criteria that will be used for Shuttle certification investments by July 2004. The results of these actions will be presented to the Program Requirements Control Board (PRCB) and then to the SFLC for review.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 04</td>
<td>Present defined Space Shuttle certification criteria to the PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Present status of current Space Shuttle certification to the PRCB</td>
</tr>
</tbody>
</table>
BACKGROUND

Closeout photography is used, in part, to document differences between actual hardware configuration and the engineering drawing system. The Columbia Accident Investigation Board (CAIB) recognized the complexity of the Shuttle drawing system and the inherent potential for error and recommended an upgrade to it (ref. CAIB Recommendation 10.3-2).

Some knowledge of vehicle configuration can be gained by reviewing photographs maintained in the Kennedy Space Center (KSC) Quality Data Center film database or the digital Still Image Management System (SIMS) database. NASA now uses primarily digital photography. Photographs are taken for various reasons, such as to document major modifications, visual discrepancies in flight hardware or flight configuration, and vehicle areas that are closed for flight. SIMS can be accessed by NASA employees and support contractors. Previously, images were difficult to locate as they are typically retrieved by a cross-reference to the work-authorizing document that specifies them.

NASA IMPLEMENTATION

NASA has formed a Photo Closeout Team consisting of members from the engineering, quality, and technical communities to identify and implement necessary upgrades to the processes and equipment involved in vehicle closeout photography. KSC closeout photography includes the Orbiter, Space Shuttle Main Engine, Solid Rocket Boosters, and External Tank based on Element Project requirements.

The Photo Closeout Team has divided the CAIB action into two main elements: (1) to increase the quantity and quality of closeout photographs, and (2) to improve the retrieval process through a user-friendly graphical interface system.

Improvements to photographic closeout requirements are being implemented in the following three ways:

1. NASA is adding a new requirement to the Operation and Maintenance Requirements System (OMRS) File II Volume I, which will mandate that General Closeout Photography be performed at the time of the normal closeout inspection process, and will archive digital photographs. Overlapping photographs will be taken to capture large areas.

2. NASA is changing NSTS 07700 Volume IV and the KSC Material Review Board (MRB) Operating Procedure to mandate that photography of visible MRB conditions be entered into the SIMS closeout photography database. This requirement will ensure that all known critical subsystem configurations that differ from Engineering Drawings are documented and available in the SIMS Closeout Database to aid in engineering evaluation and on-orbit troubleshooting.

3. NASA is obtaining specific photography requirements from the Flight Elements and the Mission Evaluation Room (MER). Element representatives have been assigned to identify specific ground processing closeout photo requirements and to coordinate inputs through the Space Shuttle Engineering and Integration Office. These requirements will be implemented by a mission action request for near-term return to flight requirements and approved OMRS changes for future requirements.

In addition to the three actions listed above, other endeavors to ensure better photography include (1) raising the specifications of the photographic requirements to no less than 6 megapixels, (2) procuring high-quality standard photographic equipment, (3) developing a formal training and certification process for photographers, and (4) adding a formalized photography work step for KSC-generated documentation.

The second element of NASA’s response to the CAIB recommendation deals with user access to closeout photography, a typical example of which is found...
in figure 10.3-1-1. SIMS is being upgraded to include a user-friendly graphical interface. Indexing based on the area of the vehicle will ensure a logical means of retrieving photos. Filters will be available to limit or focus on the items viewed, based on user need.

Appropriate SIMS training is being set up for NASA personnel to ensure that the MER and other appropriate personnel understand the SIMS process and associated tools to help them use the system to its full extent. A SIMS user document will be available on line for all other personnel.

STATUS

The formal Program document changes referred to above are in the review process. NASA has ordered upgraded camera equipment and is awaiting its arrival. NASA has also defined the requirements for user software and begun the development and implementation phases. Training modules and the formal certification process for photographers are currently being developed. A formalized standard work step for photography has been released.

FORWARD WORK

Forward work will consist of developing a feedback system to drive enhancements, updating work authorization documents, adding digital photographs to the database, and developing procedures for identifying and satisfying flight-specific photographic closeout requirements.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Feb 04 (Completed)</td>
<td>Develop SIMS drilldown and graphical requirements</td>
</tr>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>Apr 04</td>
<td>Projects transmit photo requirements to KSC Ground Operations</td>
</tr>
<tr>
<td>KSC</td>
<td>May 04</td>
<td>Complete graphical drilldown software implementation</td>
</tr>
<tr>
<td>KSC</td>
<td>May 04</td>
<td>Develop/complete SIMS training module</td>
</tr>
<tr>
<td>KSC</td>
<td>Jun 04</td>
<td>Provide training to MER. Demonstrate SIMS interface to Johnson Space Center/Marshall Space Flight Center</td>
</tr>
</tbody>
</table>

Figure 10.3-1-1. Typical closeout photograph, OV-102 left-hand wing cavity.
BACKGROUND

This recommendation contains two related but distinct parts. The Shuttle engineering drawings have accumulated a backlog of unincorporated changes. Also, based on today’s technology, there is an advantage in converting drawings to a computer-aided drafting (CAD) system.

The Digital Shuttle Project (DSP) is an activity to determine the feasibility of converting Space Shuttle drawings to a CAD system. The DSP is a joint project between the Space Shuttle Program (SSP) and the Ames Research Center’s Engineering for Complex Systems Program.

NASA IMPLEMENTATION

The SSP created a prioritized schedule for incorporating the outstanding engineering changes on these drawings, based on frequency of use and complexity.

NASA will accelerate the development of options for consideration by the SSP on upgrading the Shuttle engineering drawing system. This will include prioritizing a range of options that addresses cost, schedule, impact on current processing, and risk. At its most complete implementation for a specific system, DSP has the potential to

- Convert vehicle engineering drawings into geometric solid models.
- Facilitate incorporation of engineering changes.
- Reconcile differences between the as-built and as-designed vehicle configurations.
- Put an infrastructure and process in place to maintain and share engineering data throughout the SSP.

STATUS

To date, the DSP has

- Completed the conversion of Avionics Bays 1, 2, and 3A drawings into geometric solid models with metadata.
- Started to loft the wing portions of the master dimension specification to solid surfaces.
- Established a scanning capability at Kennedy Space Center to acquire as-built configuration information.
- Developed professional relationships with software vendors to evolve their standard products to meet SSP needs.
- Developed a prototype infrastructure to manage and share engineering data.
- Interviewed key SSP personnel to identify knowledge management issues.

The SSP will continue to incorporate changes into the engineering drawing system.

FORWARD WORK

NASA will develop detailed plans and costs for upgrading the Shuttle engineering drawing system. Currently in the formulation phase, the work that remains to be completed includes assessing current design documentation and developing drawing conversion standards, a concept of operations, a system architecture, and procurement strategies. At the conclusion of this phase, the DSP will present detailed plans and costs for upgrading the Shuttle engineering drawing system and seek SSP authorization to proceed with implementation. SSP decisions on investments in digitization will be made bearing in mind the planned end of Shuttle operations following the completion of International Space Station assembly.
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Begin engineering order incorporation</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Present drawing conversion concept to the Program Requirements Control Board</td>
</tr>
</tbody>
</table>
NASA recognizes that it must undertake a fundamental reevaluation of its Agency’s culture and processes; this process goes beyond immediate return to flight actions to longer-term work to institutionalize change in the way it transacts business. Much of the work needed for this effort was captured in CAIB observations. Part 1 of this plan addressed the CAIB recommendations. Part 2 addresses other corrective actions, including internally generated actions, the observations contained in Chapter 10 of the CAIB Report, and CAIB Report, Volume II, Appendix D, Recommendations.
NASA continues to receive and evaluate inputs from a variety of sources, including those that have been generated from within the Space Shuttle Program. It is systematically assessing all corrective actions and has incorporated many of these actions in this Implementation Plan. This section contains self-imposed actions and directives of the Space Shuttle Program that are being worked in addition to the constraints to flight recommended by the Columbia Accident Investigation Board.
BACKGROUND

The *Columbia* Accident Investigation Board (CAIB) Report highlighted the Kennedy Space Center (KSC) and Michoud Assembly Facility (MAF) Government Mandatory Inspection Point (GMIP) processes as an area of concern. GMIP inspection and verification requirements are driven by the KSC Ground Operations Quality Planning and Requirements Document (QPRD) and the Marshall Space Flight Center (MSFC) Mandatory Inspection Documents. NASA IMPLEMENTATION

The Space Flight Leadership Council (SFLC) and the Associate Administrator for Safety and Mission Assurance, with concurrence from the Safety and Mission Assurance (SMA) Directors at KSC, Johnson Space Center (JSC), and MSFC, chartered an independent assessment of the Space Shuttle Program (SSP) GMIPs for KSC Orbiter Processing and MAF External Tank manufacturing. The SFLC also approved the establishment of an assessment team consisting of members from various NASA centers, the Federal Aviation Administration, the U.S. Army, and the U.S. Air Force. This Independent Assessment Team (IAT) assessed the KSC QPRD and the MAF Mandatory Inspection Document criteria, their associated quality assurance processes, and the organizations that perform them. The team issued a final report in January 2004, and the report recommendations have become formal SSP actions. The report is also being used as a basis for the SSP to evaluate similar GMIP activity at other Space Shuttle manufacturing and processing locations. The IAT report concluded that the NASA quality assurance programs in place today are relatively good, based on the ground rules that were in effect when the programs were formulated; however, these rules have changed since the programs’ formulation.

The IAT recommended that NASA reassess its quality assurance requirements based on the modified ground rules established as a result of the *Columbia* accident. The modified ground rules for the Space Shuttle include an acknowledgement that the Shuttle is an aging, relatively high-risk development vehicle. As a result, the NASA Safety and Mission Assurance Quality Assurance Program must help to ensure both safe hardware and an effective contractor quality program.

The IAT’s findings echo the observations and recommendations of the CAIB. Among the recommendations the team identified are:

- Strengthen the Agency-level policy and guidance to specify the key components of a comprehensive Quality Assurance Program that includes the appropriate application of GMIPs
- Establish a formal process for periodically reviewing QPRD and GMIP requirements at KSC and the Mandatory Inspection Documents and GMIPs at MAF against updates to risk management documentation (hazard analyses, failure modes and effects analyses/critical item list) and other system changes
- Continue to define and implement formal, flexible processes for changing the QPRD and adding, changing, or deleting GMIPs
- Document and implement a comprehensive Quality Assurance Program at KSC in support of the SSP activities

Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 1

NASA will commission an assessment, independent of the Space Shuttle Program (SSP), of the Quality Planning and Requirements Document (QPRD) to determine the effectiveness of government mandatory inspection point (GMIP) criteria in assuring verification of critical functions before each Shuttle mission. The assessment will determine the adequacy of existing GMIPs to meet the QPRD criteria. Over the long term, NASA will periodically review the effectiveness of the QPRD inspection criteria against ground processing and flight experience to verify that GMIPs are effectively assuring safe flight operations. This action also encompasses an independently led bottom-up review of the Kennedy Space Center Quality Planning Requirements Document (CAIB Observation 10.4-1).
• Develop and implement a well-defined, systematically deployed Quality Assurance Program at MAF

In parallel with the IAT’s review, a new process to make changes to GMIP requirements was developed, approved, and baselined at KSC. This process ensures that anyone can submit a proposed GMIP change, and that the initiator who requests a change receives notification of the disposition of the request and the associated rationale. That effort was completed in September 2003. Since then, several change requests have been processed, and the lessons learned from those requests have been captured in a formal revision A of the change process document, KDP-P-1822, Rev. A. This process will use a database for tracking the change proposal, the review team’s recommendations, and the Change Board’s decisions. The database automatically notifies the requestor of the decision, and the process establishes a means to appeal decisions.

STATUS

In response to the CAIB Report, MSFC and KSC Shuttle Processing Safety and Mission Assurance initiated efforts to address identified Quality Assurance Program shortfalls. The activities under way at KSC include

- A formal process was implemented to revise GMIPs
- A change review board comprised of the Shuttle Processing Chief Engineer, SMA, and, as applicable, contractor engineering representatives has been designated to disposition proposed changes
- A new process is under development to document and to implement temporary GMIPs while permanent GMIP changes are pending, or as deemed necessary for one-time or infrequent activities. The new process will also cover supplemental inspection points
- A pilot project was initiated to trend GMIP accept/reject data to enhance first-time quality determination and identify paths for root cause correction
- Surveillance has been increased through additional random inspections for hardware and compliance audits for processes
- Enhanced Quality Inspector training, based on benchmarking similar processes, is under development
- A QPRD Baseline review began March 22, 2004. This review will cover all systems and be complete in approximately one year

In response to the shortfalls identified at MAF, MSFC initiated the following:

- Applying CAIB observations and the IAT recommendations to all MSFC propulsion elements
- Formalizing and documenting processes that have been in place for Quality Assurance program planning and execution at each manufacturing location
- Increasing the number of inspection points for External Tank assembly
- Increasing the level and scope of vendor audits (process, system, and supplier audits)
- Improving training across the entire MSFC SMA community, with concentration on the staff stationed at manufacturer and vendor resident management offices
- Further strengthening the overall Space Shuttle Quality Assurance Program by establishing a new management position and filling it on the Shuttle SMA Manager’s staff with a specific focus on Quality

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC Shuttle Processing</td>
<td>Sep 03</td>
<td>Develop and implement GMIP change process</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>Oct 03</td>
<td>Report out from IAT</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>Headquarters</td>
<td>Jan 04</td>
<td>Publish the IAT report</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>KSC Shuttle Processing</td>
<td>Mar 04</td>
<td>Develop process for review of QPRD and kick off the baseline review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>KSC Shuttle Processing</td>
<td>Apr 04</td>
<td>Develop and implement temporary GMIP process</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>KSC Shuttle Processing</td>
<td>Mar 05</td>
<td>Complete baseline review of QPRD</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 2

The Space Shuttle Program will evaluate relative risk to all persons and property underlying the entry flight path. This study will encompass all landing opportunities from each inclination to each of the three primary landing sites.

BACKGROUND

The *Columbia* accident highlighted the need for NASA to better understand entry overflight risk. In its report, the *Columbia* Accident Investigation Board (CAIB) observed that NASA should take steps to mitigate the risk to the public from Orbiter entries. Before returning to flight, NASA is dedicated to understanding and diminishing potential risks associated with entry overflight, a topic that is also covered in CAIB Observations 10.1-2 and 10.1-3.

NASA IMPLEMENTATION

The overflight risk from impacting debris is a function of three fundamental factors: (1) the probability of vehicle loss of control (LOC) and subsequent breakup, (2) surviving debris, and (3) the population living under the entry flight path. NASA is identifying phases of entry that present a greater probability of LOC based on elements such as increased load factors, aerodynamic pressures, and reduced flight control margins. Several other factors such as housing, time of day, or debris toxicity can be factored into the evaluation, if they are deemed necessary for a more accurate assessment of risk. The measures undertaken to improve crew safety and vehicle health will result in a lower probability of LOC, thereby improving the public safety during entry overflight.

NASA is currently studying the relative public risks associated with entry to its three primary landing sites: Kennedy Space Center (KSC) in Florida; Edwards Air Force Base (EDW) in California; and White Sands Space Harbor/Northrup (NOR) in New Mexico. NASA will evaluate the full range of potential ground tracks for each site and each inclination and conduct sensitivity studies to assess the overflight risk. The results of these analyses will determine if some ground tracks must be removed from consideration as normal, preplanned, end-of-mission landing opportunities. In addition, NASA will incorporate population overflight, as well as crew considerations, into the entry flight rules that guide the flight control team’s selection from the remaining landing opportunities. NASA will work with the U.S. Department of State, if any coordination with other countries is necessary to evaluate and mitigate public risk.

STATUS

The current assessment is aimed at determining which landing opportunities present the most risk. For this preliminary relative risk assessment, more than 1200 entry trajectories were simulated for all three primary landing sites from all of the previously used Shuttle orbit inclinations: 28.5° (Hubble Space Telescope), 39.0° (STS-107), and 51.6° (International Space Station). The full range of entry crossrange* possibilities to each site was studied in increments of 25 nautical miles for all ascending (south to north) and descending (north to south) approaches. Figure SSP 2-1 displays the ground tracks simulated for the 51.6° inclination orbit. Although these preliminary results indicate that some landing opportunities have an increased public risk compared to others, the uncertainty of the input factors must be further reduced in order to make reliable decisions regarding public risk.

NASA Headquarters released a draft policy on ensuring public safety during all phases of space flight missions. The policy is currently under review by all stakeholders.

FORWARD WORK

The Space Shuttle Program (SSP) has generated preliminary data to compare public risk among various landing opportunities. These preliminary data will be updated and validated prior to return to flight (RTF). The Johnson Space Center, the Office of Safety and Mission Assurance at NASA Headquarters, and the Agency Range Safety Program will coordinate activities and share all analyses, research, and data obtained as part of this RTF effort. This shared work is being applied to the development of an Agency public safety policy for all phases of space flight missions.

Entry crossrange is defined as the distance between the landing site and the point of closest approach on the orbit ground track. This number is operationally useful to determine whether or not the landing site is within the Shuttle’s entry flight capability for a particular orbit.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 03 (Completed)</td>
<td>Preliminary results to RTF Planning Team and SSP Program Requirements Control Board (PRCB)</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 03 (Completed)</td>
<td>Update to RTF Planning Team and SSP PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Jan 04 (Completed)</td>
<td>Update to RTF Planning Team and SSP PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Update to SSP PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Report to SSP PRCB</td>
</tr>
</tbody>
</table>

Figure SSP 2-1. Possible entry ground tracks from 51.6° orbit inclination. Blue lines are landing at KSC, green at NOR, red at EDW.
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 3

NASA will evaluate the feasibility of providing contingency life support on board the International Space Station (ISS) to stranded Shuttle crewmembers until repair or rescue can be affected.

BACKGROUND

It is prudent for NASA to examine options for providing an emergency capability to sustain Shuttle crews on the International Space Station (ISS), should the Orbiter become unfit for entry. This Contingency Shuttle Crew Support (CSCS) capability could, in an emergency, sustain a Shuttle crew on board the ISS for a limited time to enable a repair to the Orbiter or allow the crew to be returned to Earth via a rescue mission. CSCS is not intended to mitigate known but unacceptable risks; rather, it is a contingency plan of last resort with limited capability to sustain the crew on the ISS. CSCS is not a certified capability with redundancy.

NASA IMPLEMENTATION

The ISS Program Office is pursuing additional logistics to enable a more robust CSCS capability. NASA has begun coordination with the ISS International Partners to discuss the concept. NASA will evaluate current Shuttle and ISS support capabilities for crew rescue during CSCS and explore ways of using all available resources to extend CSCS to its maximum duration. This will involve making recommendations on operational techniques, such as undocking the Orbiter after depletion of usable consumables and having another Shuttle available for launch to rescue the crew within the projected CSCS duration.

These actions are outside of the current flight rules and Orbiter performance capabilities and will need to be fully assessed. Currently NASA is assuming that STS-114 will require no newly developed Shuttle or ISS performance capabilities to enable CSCS. NASA will also evaluate CSCS options to maximize Shuttle/ISS docked capabilities. These options, such as power-downs and resource-saving measures, will be used to extend the time available for contingency operations including Thermal Protection System inspection and repair.

In addition to CSCS capability, NASA is evaluating the capability to launch on need to provide crew rescue. Using this capability, NASA could have a second Shuttle, designated STS-300, ready for launch on short notice during all missions.

STATUS

On February 19, 2004, the Space Flight Leadership Council instructed the Space Shuttle Program to take actions necessary to further develop a limited contingency capability for CSCS on STS-114. In response, NASA has completed a preliminary feasibility assessment of CSCS duration. The assessment results indicated that for the STS-114 mission, the combined ISS and Shuttle crew could be sustained on the ISS for a period of approximately 68 days. This assessment was based on the availability of water and oxygen consumables only; other consumables are still being assessed. During CSCS operations, NASA would be required to accelerate the preparation and launch of a rescue Shuttle vehicle.

The major assumptions of the assessment included an STS-114 launch date of September 12, 2004; a revised assessment based on a no-earlier-than March 2005 launch date will be developed in the near future. The assessment also assumed a crew total of nine on ISS (two ISS crew and seven Shuttle crew) and that all ISS systems would be operating nominally with no degradation/failures.

Additional assumptions of the assessment included that 1,118 liters of Shuttle fuel cell water could be successfully transferred to the ISS and that Progress resupply vehicles would not provide additional consumables during the contingency period. NASA is continuing to evaluate additional CSCS options, such as the feasibility of a more robust, one-fault-tolerant CSCS capability. The ISS Program has accelerated its efforts to work with the ISS Partners to coordinate the necessary resources and validate environmental system performance expectations.

NASA is baselining the configuration, mission time line, and launch requirements for a generic rescue mission that will be designated STS-300. This work will document the means by which NASA can accelerate the processing of the next vehicle scheduled for launch to make it available in the event a rescue mission is required. This work will be completed before STS-114 and will make the rescue mission available for return to flight and all subsequent flights.
FORWARD WORK

NASA will pursue the CSCS capability to a limited contingency level in support of the full joint crew. CSCS will be designed to rely on a Shuttle for crew rescue or to provide capability to sustain the Shuttle crew while on-orbit repairs are made to the damaged Orbiter.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS Program Office</td>
<td>Aug 03</td>
<td>Status International Partners at Multilateral Mission Control Boards (Completed)</td>
</tr>
<tr>
<td>ISS Program Office</td>
<td>Nov 03</td>
<td>Assess ISS systems capabilities and spares plan and provide recommendations to ISS and Space Shuttle Program (SSP) (Completed)</td>
</tr>
<tr>
<td>ISS Program Office</td>
<td>Jun 04</td>
<td>Obtain concurrence on use of Russian systems; status provided to Stafford/Anfimov Task Force (Mar 04)</td>
</tr>
<tr>
<td>ISS Program Office</td>
<td>Jun 04</td>
<td>Develop CSCS Integrated Logistics Plan</td>
</tr>
<tr>
<td>ISS Program Office and SSP</td>
<td>Jun 04</td>
<td>Develop waste management and water balance plans</td>
</tr>
<tr>
<td>ISS Program Office and SSP</td>
<td>Jun 04</td>
<td>Develop ISS Prelaunch Assessment Criteria</td>
</tr>
<tr>
<td>ISS Program Office</td>
<td>Jun 04</td>
<td>Develop food management plan</td>
</tr>
<tr>
<td>ISS Program Office and SSP</td>
<td>Jun 04</td>
<td>Develop crew health and exercise protocols</td>
</tr>
<tr>
<td>ISS Program Office</td>
<td>Jun 04</td>
<td>Recommend to Space Flight Leadership Council what capabilities are needed to provide a one-fault-tolerant CSCS capability (e.g., hardware, software, procedures, plans, etc.)</td>
</tr>
</tbody>
</table>
BACKGROUND

Hazard analysis is the determination of potential sources of danger that could cause loss of life, personnel capability, system, or injury to the public. Hazard analysis is accomplished through (1) performing analyses, (2) establishing controls, and (3) establishing a maintenance program to implement the controls. Controls and verifications for the controls are identified for each hazard cause.

Accepted risk hazards are those hazards that, based on analysis, have a critical or catastrophic consequence and the controls of which are such that the likelihood of occurrence is considered higher than improbable and might occur during the life of the Program. Examples include critical single failure points, limited controls or controls that are subject to human error or interpretation, system designs or operations that do not meet industry or Government standards, complex fluid system leaks, inadequate safety detection and suppression devices, and uncontrollable random events that could occur even with established precautions and controls in place.

All hazards, regardless of classification, will be reviewed if working group observations or fault-tree analysis calls into question the classification of the risk or the efficacy of the mitigation controls.

NASA IMPLEMENTATION

Each Space Shuttle Program (SSP) project will perform the following assessment for each accepted risk hazard report and any additional hazard reports indicated by the STS-107 accident investigation findings:

1. Verify proper use of hazard reduction precedence sequence per NSTS 22254, Methodology for Conduct of Space Shuttle Program Hazard Analyses.
2. Review the basis and assumptions used in setting the controls for each hazard, and determine whether they are still valid.
4. Verify proper application of severity and likelihood per NSTS 22254, Methodology for Conduct of Space Shuttle Program Hazard Analyses, for each hazard cause.
5. Verify proper implementation of hazard controls by confirming existence and proper use of the control in current SSP documentation.
6. Identify any additional feasible controls that can be implemented that were not originally identified and verified.
7. Assure that all causes have been identified and controls documented.

The System Safety Review Panel (SSRP) will serve as the forum to review the project’s assessment of the validity and applicability of controls. The SSRP will assess the existence and effectiveness of controls documented in the hazard reports. In accordance with SSP requirements, the SSRP will review, process, and disposition updates to baseline hazard reports.

Although the scope of the return to flight (RTF) action encompasses only the accepted risk hazards, the STS-107 accident has brought into question the implementation and effectiveness of controls in general. As such, the controlled hazards are also suspect. The further evaluation of all hazards, including the controlled hazards, will be included in the RTF plan if the results of the accepted risk hazards review indicate significant problems, such as a recurring lack of effective controls, insufficient technical rationale, or improper classification. Following the completion of the RTF action, all hazard reports (accepted risk and controlled) will be reviewed by the end of calendar year 2004.

In summary, the goal of this review is to reconfirm that the likelihood and severity of each accepted risk hazard
are thoroughly and correctly understood and that mitigation controls are properly implemented.

STATUS

Each project and element is currently in the process of reviewing its accepted risk hazard reports per the Program Requirements Control Board approved schedules. The Reusable Solid Rocket Motor and Extravehicular Activity Projects have completed their reviews. Their results have been presented to the Program Requirements Control Board and accepted by the Program. All Program elements have plans to complete accepted risk reviews by late summer 2004. Additionally, all elements intend to complete reviews of controlled hazard reports by the end of 2004.

NASA is undertaking an extensive rewrite of the External Tank (ET) and integration hazards for the Shuttle. As a result of this more rigorous hazard documentation process, risk will be more fully understood and mitigated before RTF. A special RTF panel of the SSRP is participating in the review and design process of those items requiring redesign or new hardware for flight; this includes ET bipod and Solid Rocket Booster bolt catcher among other items. NASA is committed to continuous, thorough reviews and updates of all hazards for the remaining life of the Shuttle Program.

FORWARD WORK

Analysis results could drive additional hardware or operational changes. As noted previously, review of controlled risks hazards may be necessary after the results of the accepted risk reviews are reported.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSRP</td>
<td>Oct 03</td>
<td>SSRP review element hazards and critical items list review processes (Completed)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kennedy Space Center Sep 9, 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reusable Solid Rocket Motor Sep 24, 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Integration Oct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Solid Rocket Booster Sep 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Space Shuttle Main Engine Oct 7, 8</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Identify and review “Accepted Risk” hazard report causes and process impacts (Ongoing)</td>
</tr>
<tr>
<td></td>
<td>Sep 04</td>
<td>Analyze implementation data (Ongoing)</td>
</tr>
<tr>
<td></td>
<td>Sep 04</td>
<td>Validate and verify controls and verification methods</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Develop, coordinate, and present results and recommendation</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 04</td>
<td>Review all hazard reports</td>
</tr>
</tbody>
</table>
BACKGROUND
A review of critical debris potential is necessary to prevent the recurrence of an STS-107 type of failure. NASA is improving the end-to-end process of predicting debris impacts and the resulting damage.

NASA IMPLEMENTATION
NASA will analyze credible debris sources from a wide range of release locations to predict the impact location and conditions. It will develop critical debris source zones to provide maximum allowable debris sizes for various locations on the vehicle. Debris sources that can cause significant damage may be redesigned. Critical impact locations may also be redesigned or debris protection added.

A list of credible ascent debris sources has been compiled for each Shuttle Program hardware element—Solid Rocket Booster, Reusable Solid Rocket Motor, Space Shuttle Main Engine, External Tank, and Orbiter. Potential debris sources have been identified by their location, size, shape, material properties, and, if applicable, likely time of debris release. This information will be used to conduct a debris transport analysis to predict impact location and conditions, such as velocities and relative impact angles.

NASA will analyze over two hundred million debris transport cases. These will include debris type, location, size, and release conditions (freestream Mach number, initial velocity of debris piece, etc.).

STATUS
All hardware project and element teams have completed the first step of the analysis to identify known and suspected debris sources originating from the flight hardware.

To support the very large number of debris transport cases required to complete this action, NASA significantly modified the debris transport tools. These modifications have improved the efficiency of the debris transport process.

FORWARD WORK
As debris sources are analyzed, the resulting damage will be assessed, and critical debris sources will be identified. The Integration Control Board and Program Requirements Control Board (PRCB) will periodically review status. The following actions are in work:

- Systems engineering and integration to deliver impact conditions map to all hardware elements.
- Hardware elements to identify potentially unacceptable damage locations.
- Systems engineering and integration to recommend hardware modifications that will eliminate and/or reduce debris sources, or hardening modifications to increase impact survivability.

The tools, along with their underlying limitations, were reviewed by an independent peer review team in September 2003 and February 2004. In addition, comprehensive “Debris Summits” were held in November 2003 and February 2004 to review all Space Shuttle Program (SSP)-wide activities related to debris generation, debris transport, and impact analyses.

Interim results of these analyses have already helped the Shuttle Program to respond to the Columbia Accident Investigation Board recommendations such as those on External Tank modifications (R3.2-1), Orbiter hardening modification (R3.3-2), and ascent and on-orbit imagery requirements (R3.4-1 and R3.4-3).
SCHEDULE

This is an extensive action that will take a year or more to fully complete. The preliminary schedule, included below, is dependent on use of current damage assessment tools. If additional testing and tool development are required, it may increase the total time required to complete the action.

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 03</td>
<td>Elements provide debris history/sources</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Nov 03</td>
<td>Begin RTF [Return to Flight] Debris Transport analyses</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Summary Report/Recommendation to PRCB-RTF cases only</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Begin next set of Debris Transport analyses (approximately 30–40 cases)</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Summary report/recommendation to PRCB</td>
</tr>
</tbody>
</table>
BACKGROUND

Requirements are the fundamental mechanism by which the Space Shuttle Program (SSP) directs the production of hardware, software, and training for ground and flight personnel to meet performance needs. The rationale for waivers, deviations, and exceptions to these requirements must include compelling proof that the associated risks are mitigated through design, redundancy, processing precautions, and operational safeguards. The Program manager has approval authority for waivers, deviations, and exceptions.

NASA IMPLEMENTATION

Because waivers and deviations to SSP requirements and exceptions to the Operations and Maintenance Requirements and Specification contain the potential for unintended risk, the Program has directed all elements to review these exemptions to Program requirements to determine whether the exemptions should be retained.

Each project and element will be alert for items that require mitigation before return to flight. The projects and elements will also identify improvements that should be accomplished as part of the Space Shuttle Service Life Extension Program.

The following instructions were provided to each project and element:

1. Any item that has demonstrated periodic, recurrent, or increasingly severe deviation from the original design intention must be technically evaluated and justified. If there is clear engineering rationale for multiple waivers for a Program requirement, it could mean that a revision to the requirement is needed. The potential expansion of documented requirements should be identified for Program consideration.

2. The review should include the engineering basis for each waiver, deviation, or exception to ensure that the technical rationale for acceptance is complete, thorough, and well considered.

3. Each waiver, deviation, or exception should have a complete engineering review to ensure that incremental risk increase has not crept into the process over the Shuttle lifetime and that the level of risk is appropriate.

The projects and elements were encouraged to retire out-of-date waivers, deviations, and exceptions.

In addition to reviewing all SSP waivers, deviations, and exceptions, each element is reviewing all NASA Accident Investigation Team working group observations and findings and Critical Item List (CIL) waivers associated with ascent debris.

STATUS

Each project and element presented a plan and schedule for completion to the daily Program Requirements Change Board (PRCB) on June 25, 2003. Each project and element is identifying and reviewing the CIL waivers associated with ascent debris generation.

FORWARD WORK

The SSP continues to review the waivers, deviations, and exceptions at the daily PRCB.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Review of all waivers, deviations, and exceptions</td>
</tr>
</tbody>
</table>
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 7

The Space Shuttle Program (SSP) should consider NASA Accident Investigation Team (NAIT) working group findings, observations, and recommendations.

BACKGROUND

As part of their support of the *Columbia* Accident Investigation Board (CAIB), each NASA Accident Investigation Team (NAIT) technical working group compiled assessments and critiques of Program functions. These assessments offer a valuable internal review and will be considered by the Space Shuttle Program (SSP) for conversion into directives for corrective actions.

NASA IMPLEMENTATION

All NAIT technical working groups have an action to present their findings, observations, and recommendations to the SSP Program Requirements Control Board (PRCB). Each project and element will disposition recommendations within its project to determine which should be return to flight actions. They will forward actions that require SSP or Agency implementation to the SSP PRCB for disposition.

STATUS

The following NAIT working groups have reported their findings and recommendations to the SSP: the Space Shuttle Main Engine Project Office, the Reusable Solid Rocket Motor Project Office, the Mishap Investigation Team, the External Tank Project, the Solid Rocket Booster Project Office, Space Shuttle Systems Integration, the Early Sightings Assessment Team, the Certification of Flight Readiness Process Team, the Unexplained Anomaly Closure Team, the Previous Debris Assessment Team, the Hardware Forensics Team, and the Materials Processes and Failure Analysis Team.

Project and PRCB recommendations currently being implemented include revision of the SSP contingency action plan, modifications to the External Tank, and evaluation of hardware qualification and certification concerns. Numerous changes to Orbiter engineering, vehicle maintenance and inspection processes, and analytical models are also being made as a result of the recommendations of the various accident investigation working groups. In addition, extensive changes are being made to the integrated effort to gather, review, and disposition prelaunch, ascent, on-orbit, and entry imagery of the vehicle, and to evaluate and repair any potential vehicle damage observed. All of this work complements and builds upon the extensive recommendations, findings, and observations contained in the CAIB Report.

FORWARD WORK

The Orbiter Project Office will report the findings and recommendations of the following working groups to upcoming SSP PRCBs: Starfire Team, Integrated Entry Environment Team, Image Analysis Team, Palmdale Orbiter Maintenance Down Period Team, Space/Atmospheric Scientist Panel, *Columbia* Accident Investigation Fault Tree Team, *Columbia* Reconstruction Team, Hazard Controls Analysis Team, and the *Columbia* Early Sighting Team.

SCHEDULE

Following PRCB approval of recommendations, the responsible project office will develop implementation schedules.
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 8

NASA will identify certification of flight readiness (CoFR) process changes, including program milestone reviews, flight readiness review (FRR), and prelaunch Mission Management Team (MMT) processes to improve the system.

BACKGROUND

The certification of flight readiness (CoFR) is the fundamental process for ensuring compliance with Program requirements and assessing readiness for proceeding to launch. The CoFR process includes multiple reviews at increasing management levels that culminate with the Flight Readiness Review (FRR), chaired by the Associate Administrator of Space Flight, approximately two weeks before launch. After successful completion of the FRR, all responsible parties, both Government and contractor, sign a CoFR.

NASA IMPLEMENTATION

To ensure a thorough review of the CoFR process, the Shuttle Program Requirements Control Board (PRCB) has assigned an action to each organization to review NSTS 08117, Certification of Flight Readiness, to ensure that its internal documentation complies and responsibilities are properly described. This action was assigned to each Space Shuttle Program (SSP) supporting organization that endorses or concurs on the CoFR and to each organization that prepares or presents material in the CoFR review process.

Each organization is reviewing the CoFR process in place during STS-112, STS-113, and STS-107 to identify any weaknesses or deficiencies in its organizational plan.

STATUS

NASA has revised NSTS 08117, including editorial changes such as updating applicable documents lists, combining previously separate roles and responsibilities within project and Program elements, and increasing the rigor of project-level reviews. The revised document was released in February 2004. Supporting SSP organizations are reviewing internal subordinate documents to ensure agreement with the revised NSTS 08117.

FORWARD WORK

None.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Aug 03 (Completed)</td>
<td>Report results of CoFR reviews to PRCB</td>
</tr>
<tr>
<td>SSP Kennedy Space Center</td>
<td>Feb 04 (Completed)</td>
<td>Revise NSTS 08117, Certification of Flight Readiness</td>
</tr>
</tbody>
</table>

NASA’s Implementation Plan for Space Shuttle Return to Flight and Beyond

April 26, 2004
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 9

NASA will verify the validity and acceptability of failure mode and effects analyses (FMEAs) and critical items lists (CILs) that warrant review based on fault tree analysis or working group observations.

BACKGROUND

The purpose of failure mode and effects analyses (FMEAs) and critical items lists (CILs) is to identify potential failure modes of hardware and systems and their causes, and to assess their worst-case effect on flight. A subset of the hardware analyzed in the FMEA becomes classified as critical, based on the risks and identified undesirable effects and the corresponding criticality classification assigned. These critical items, along with supporting acceptance rationale, are documented in a CIL that accepts the design.

The analysis process involves the following phases:

1. Perform the design analysis.

2. For critical items, assess the feasibility of design options to eliminate or further reduce the risk. Consideration is given to enhancing hardware specifications, qualification requirements, manufacturing, and inspection and test planning.

3. Formulate operating and maintenance procedures, launch commit criteria, and flight rules to eliminate or minimize the likelihood of occurrence and the effect associated with each failure mode. Formally document the various controls identified for each failure mode in the retention rationale of the associated CIL, and provide assurance that controls are effectively implemented for all flights.

NASA IMPLEMENTATION

In preparation for return to flight (RTF), NASA will develop a plan to selectively evaluate the effectiveness of the Space Shuttle Program (SSP) FMEA/CIL process and assess the validity of the documented controls associated with the SSP CIL. Initially, each project and element will participate in this effort by identifying those FMEAs/CILs that warrant revalidation based on their respective criticality and overall contribution to design element risk. In addition, STS-107 investigation findings and working group observations affecting FMEA/CIL documentation and risk mitigation controls will be assessed, properly documented, and submitted for SSP approval. If the revalidation assessment identifies a concern regarding effective implementation of controls, the scope of the initial review will be expanded to include a broader selection of components.

This plan will vary according to the specific requirements of each project, but all plans will concentrate revalidation efforts on FMEA/CILs that have been called into question by investigation results or that contribute the most significant risks for that Program element. Revalidation efforts include:

1. Reviewing existing STS-107 investigation fault trees and working group observations to identify areas inconsistent with or not addressed in existing FMEA/CIL risk documentation.
 a. Verifying the validity of the associated design information, and assessing the acceptability of the retention rationale to ensure that the associated risks are being effectively mitigated consistent with SSP requirements.
 b. Establishing or modifying SSP controls as required.
 c. Developing and revising FMEA/CIL risk documentation accordingly.
 d. Submitting revised documentation to the SSP for approval as required.

2. Assessing most significant SSP element risk contributors.
 a. Identifying a statistically significant sample of the most critical CILs from each element project. Including those CILs where ascent debris generation is a consequence of the failure mode experienced.
 b. Verifying that criticality assignments are accurate and consistent with current use and environment.
c. Validating the SSP controls associated with each item to ensure that the level of risk initially accepted by the SSP has not changed.

1. Establishing or modifying Program controls as required.

2. Developing and revising FMEA/CIL risk documentation accordingly.

3. Submitting revised documentation to the SSP for approval as required.

d. Determining if the scope of the initial review should be expanded based on initial results and findings. Reassessing requirements for performance of FMEAs on systems previously exempted from SSP requirements, such as the Thermal Protection System, select pressure and thermal seals, and certain primary structures.

The System Safety Review Panel (SSRP) will serve as the forum to review the project assessment of the validity and applicability of the CIL retention rationale. The SSRP will review any updates to baselined CILs.

STATUS

Each project and element is in the process of reviewing its fault-tree-related FMEAs/CILs according to the Program Requirements Control Board (PRCB) approved schedules. Several projects have made status reports to the PRCB as a step toward formal completion of their reviews.

FORWARD WORK

Should some of the FMEA/CIL waivers not pass this review, NASA may have to address hardware or process changes.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Projects status reports to PRCB</td>
</tr>
<tr>
<td>SSP</td>
<td>Oct 04</td>
<td>Completion of review</td>
</tr>
</tbody>
</table>
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 10

NASA will review Program, project, and element contingency action plans and update them based on Columbia mishap lessons learned.

BACKGROUND

The Space Shuttle Program (SSP) Program Requirements Control Board has directed all of its projects and elements to review their internal contingency action plans for ways to improve processes.

NASA IMPLEMENTATION

The SSP will update its Program-level Contingency Action Plan to reflect the lessons learned from the Columbia accident. SSP projects and elements will prepare their internal contingency action plans in accordance with Program guidelines. In addition, the SSP will recommend changes to the Agency Contingency Action Plan for Space Flight Operations.

The Contingency Action Plan worked well for the Columbia accident, but areas that need improvement were identified during the post-accident review. These areas are

1. International roles, responsibilities, and relationships in the event of a Shuttle mishap are not well defined. Agreements associated with landing site support are in place, but lines of responsibility for accident response are vague or absent.

2. A particular success of the Columbia accident response was the integration of NASA's contingency action plan with a wide variety of Federal, state, and local organizations. To improve the immediate response to any future accident or incident, NASA should capture these lessons in revisions to its plans and formalize them in standing agreements with other agencies (e.g., Federal Emergency Management Agency (FEMA), Environmental Protection Agency).

3. FEMA provided immediate and indispensable access to communication, computer, and field equipment for the Columbia accident response and recovery effort. They also provided transportation, search assets, people, and money for goods and services. NASA should plan on providing these assets for any future incidents that are not of a magnitude significant enough to trigger FEMA participation.

4. NASA will consider developing or acquiring a generic database to document vehicle debris and handling.

5. NASA and the Department of Defense manager for Shuttle contingency support will review their agreement to ensure understanding of relative roles and responsibilities in accident response.

6. NASA will ensure that a geographic information system (GIS) is available and ready to provide support in the event of a contingency. The GIS capabilities provided during the Columbia recovery were of great importance.

7. The Mishap Investigation Team (MIT) is a small group of people from various disciplines. NASA will review MIT membership and supplemental support, and include procedures in its contingency plan for quickly supplementing MIT activities with administrative, computer, and database support and debris management.

8. Since replacing initial responders with volunteers is important, NASA will consider developing a volunteer management plan. For the Columbia recovery, an impromptu system was implemented that worked well.

9. NASA will review the frequency and content of contingency simulations for adequacy. The SSP holds useful contingency simulations that include senior NASA managers. An on-orbit contingency simulation will be considered, and attendance by Accident Investigation Board standing members will be strongly encouraged.

10. NASA will include additional contingency scenarios in the contingency action plan. The current plan, which is primarily oriented toward ascent accidents, will be revised to include more orbit and entry scenarios with appropriate responses.
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Review and baseline revisions to the SSP Contingency Action Plan, NSTS 07700, Vol. VIII, App. R</td>
</tr>
</tbody>
</table>
BACKGROUND

Internal corrosion was found in Orbiter Vehicle (OV)-104 body flap (BF) actuators in Fall 2002, and subsequently in the OV-103 BF actuators. In addition, corrosion pits were discovered on critical working surfaces of two BF actuators (e.g., planetary gears and housing ring gears), and general surface corrosion was found inside other BF actuators.

Since the rudder speed brake (RSB) actuator design and materials are similar to BF actuators, similar internal corrosion in RSB actuators could adversely affect performance of Criticality 1/1 hardware. Any existing corrosion will continue to degrade the actuators. The loss of RSB functionality due to “freezing up” of the bearing or jamming caused by broken gear teeth would cause Orbiter loss of control during entry. The operational life of the installed RSB actuators is outside of Orbiter and industry experience. The Space Shuttle Program (SSP) and the Space Flight Leadership Council (SFLC) approved removal of all RSB actuators to investigate corrosion, wear, and hardware configuration.

NASA IMPLEMENTATION

The SSP directed the removal and refurbishment of all four OV-103 RSB actuators. The SSP spares inventory included four RSB actuators. All spare RSB actuators were returned to the vendor for acceptance test procedure (ATP) revalidation. All passed ATP and were returned to logistics. The removed (original) OV-103 RSB actuators were disassembled, and one of the actuators, actuator 4, was found to have the planetary gear set installed in reverse. Analysis showed that this condition presented negative margins of safety for the most severe load cases. In addition to the reversed planetary gears and corrosion, fretting and wear were documented on some of the gears from OV-103 RSB actuators. Surface pits resulting from the fretting have led to microcracks in some of the gears. As a result of the reversed planetary gear set discovery, the spare actuators, installed in OV-103, were X-rayed, and actuator 2 also was found to have the planetary gear set installed in reverse. Spare actuator 2 has been returned to the vendor to have the discrepancy corrected.

Once spare actuator 2 is repaired, the spare actuators will be reinstalled on OV-103. The plan for OV-104 and OV-105 is to remove the current RSB actuators and return them to the vendor for disassembly and inspection. OV-104 will have new or refurbished actuators installed before its next flight. OV-105 will receive new actuators before its next flight.

STATUS

The ground support equipment needed for the removal and refurbishment of the RSB actuators has been procured and made ready for use at the Kennedy Space Center. The RSB actuators were removed from OV-103 and shipped to the vendor, where they are being disassembled and inspected. The spare actuators will be reinstalled on OV-103. RSB actuators will be removed from OV-105 and OV-104 beginning in April 2004 and shipped to the vendor for disassembly and inspection.
FORWARD WORK

For OV-104, the vendor will provide new actuators for positions 1 and 3. Actuators for positions 2 and 4 will be assembled from existing new parts and refurbished parts, all within specification. All actuators for OV-104 will be made available by late Summer 2004. A new ship-set of actuators is being procured for OV-105.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jul 03 (Completed)</td>
<td>Initial plan reported to SFLC</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 03 (Completed)</td>
<td>ATP Spare RSB actuators at vendor and returned to Logistics</td>
</tr>
<tr>
<td>SSP</td>
<td>Sep 03 (Completed)</td>
<td>OV-103 RSB actuators removed and replaced with spares</td>
</tr>
<tr>
<td>SSP</td>
<td>Mar 04 (Completed)</td>
<td>RSB findings and analysis completed</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>New actuator 3 for OV-104 delivered</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>New actuator 1 for OV-104 delivered</td>
</tr>
<tr>
<td>SSP</td>
<td>Aug 04</td>
<td>Actuators 2 and 4 for OV-104 delivered</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>New ship-set of RSB actuators for OV-105 delivered</td>
</tr>
</tbody>
</table>
BACKGROUND

In addition to Shuttle vehicle ascent imaging by photo and visual means, NASA uses radar systems of the Air Force Eastern Range to monitor Space Shuttle launches. There are several C-Band radars and a Multiple Object Tracking Radar (MOTR) used to monitor the ascent trajectory. Although not specifically designed to track debris, these radars have some limited ability to resolve debris separating from the ascending vehicle, particularly between T+30 to T+250 seconds.

During the STS-107 launch, the MOTR, which is specifically intended for the purpose of tracking several objects simultaneously, was unavailable.

NASA IMPLEMENTATION

The Space Shuttle Systems Engineering and Integration Office has commissioned the Ascent Debris Radar Working Group (ADRWG) to characterize the debris environment during a Space Shuttle launch and to identify/define the return signals seen by the radars. Once the capabilities and limitations of the existing radars for debris tracking are understood, this team will research proposed upgrades to the location, characteristics, and post-processing techniques needed to provide improved radar imaging of Shuttle debris.

Specific technical goals are to improve the radars’ ability to resolve, identify, and track potential debris sources. Another goal is to decrease the postlaunch data processing time such that a preliminary radar assessment is available more rapidly, and to more easily correlate the timing of the ascent radar data to optical tracking systems. Successful implementation of a radar debris tracking system will have an advantage over optical systems as it is not constrained by ambient lighting or cloud interference. It further has the potential to maintain insight into the debris shedding environment beyond the effective range of optical tracking systems.

STATUS

The ADRWG was initiated in August 2003. After a review of existing debris documentation and consultation with radar experts within and outside of NASA, a planning presentation outlining the approach and process to be used was provided to the Space Shuttle Program (SSP) office in September 2003. A number of workshops were held at NASA centers and at Wright-Patterson Air Force Base to characterize the debris sources and how they appeared on radar, and to analyze the potential debris threat to the Shuttle represented by the radar data.

The ADRWG constructed a composite list of potential debris sources. This list has been coordinated with all of the Shuttle elements and will be the basis for analysis of radar identification capabilities such as radar cross section (RCS) signatures. A series of critical radar system attributes was compiled, and a number of existing radar systems has been evaluated against those criteria. Data analysis includes comparisons of radar data with known RCS signatures and ballistic trajectories.

A subsequent presentation to the SSP with initial findings and draft recommendations was provided on January 13, 2004. This presentation showed that the siting and configuration of the current range radars was not well suited to performing the Shuttle debris assessment task. It has been determined that only a properly sited and configured radar system can be expected to provide the insight needed to assess the debris threat during a Shuttle launch. A candidate architecture, using several elements of the Navy Mobile Instrumentation System, will form the basis of the final SSP recommendations for return to flight (RTF). A long-term, highly capable architecture will also be proposed for an on-board debris radar detection capability, but it will not be available for RTF.

Field testing has included a series of six Booster Separation Motor firings to characterize how the plume contributed to the existing radar data. These tests were completed at the U.S. Navy’s China Lake facility in...
February 2004. A comprehensive set of RCS measurements of candidate Shuttle debris material has been completed at Wright-Patterson Air Force Base and will be correlated to dynamic field results at the Naval Air Station at Patuxent (PAX) River in April 2004.

The final SSP presentation, including field results, prior mission analysis, and final recommendations, is planned for April 2004.

FORWARD WORK

The research findings and recommendations will be finalized. The dynamic debris signature test at PAX River will be executed in April 2004.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRWG</td>
<td>Nov 03 (Completed)</td>
<td>Complete Radar Study</td>
</tr>
<tr>
<td>ADRWG</td>
<td>Nov 03 (Completed)</td>
<td>Finalize finding and recommendations</td>
</tr>
<tr>
<td>ADRWG</td>
<td>Apr 04 (Completed)</td>
<td>Provide final list of debris sources</td>
</tr>
<tr>
<td>SSP</td>
<td>Apr 04</td>
<td>Baseline requirements and initiate implementation –</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Present to SSP Program</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Requirements Control Board</td>
</tr>
</tbody>
</table>
Space Shuttle Program Return to Flight Actions

Space Shuttle Program Action 13

NASA will verify that hardware processing and operations are within the hardware qualification and certification limits.

BACKGROUND

An Orbiter Project Office investigation into several Orbiter hardware failures identified certification environments that were not anticipated or defined during original qualifications. Some examples of these include drag chute door pin failure, main propulsion system flow liner cracks, and environmental control and life support system secondary O2/N2 flex hose bellows failure.

Because of these findings by the Orbiter Project Office, all projects and elements are assessing all Space Shuttle hardware operations according to requirements for certification/qualifications. If a finding is determined to be a constraint to flight, the project or element will immediately report the finding to the Program Requirements Control Board (PRCB) for disposition.

NASA IMPLEMENTATION

On December 17, 2002, prior to the Columbia accident, the Space Shuttle Program (SSP) Council levied an action to all SSP projects and elements to review their hardware qualification and verification requirements and to verify that processing and operating conditions are consistent with the original hardware certification (memorandum MA-02-086). At the SSP Council meeting April 10-11, 2003, each Program project and element identified that its plan for validating that hardware operating and processing conditions, along with environments or combined environments, is consistent with the original certification (memorandum MA-03-024). The PRCB has reissued this action as a return to flight action.

STATUS

Interim status reports from the SSP project and element organizations have been presented to the SSP PRCB and will continue throughout the year 2004. As a result of this proactive review, NASA has identified some areas for additional scrutiny, such as the Solid Rocket Booster Separation Motor debris generation and Orbiter nose-wheel steering failure modes. This attitude of critical review, even of systems that have consistently functioned within normal specifications, has significantly improved the safety and reliability of the Shuttles and reduced the risk of future problems.

FORWARD WORK

The SSP projects and elements will continue assessing the hardware qualification and verification with concentration on the Criticality 1 hardware. Some SSP projects and elements have completed work, and other SSP projects and elements have work that is ongoing. In all cases qualification and verification assessment commitments for return to flight will be completed by January 2005. A preliminary assessment has been completed and shows no constraints to the hardware certification limits. Actions to mitigate any certification findings are being directed by the PRCB. Certification assessments for certain lower criticality hardware will continue through 2006.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>All SSP project and element organizations</td>
<td>Jan 05</td>
<td>Present certification assessment results to SSP PRCB for return to flight commitments</td>
</tr>
<tr>
<td>All SSP project and element organizations</td>
<td>Dec 06</td>
<td>Present certification assessment results to SSP PRCB for any remaining post-return to flight commitments</td>
</tr>
</tbody>
</table>
BACKGROUND

The Shuttle Thermal Protection System (TPS) consists of various materials applied externally to the outer structural skin of the Orbiter. These materials allow the skin temperatures to remain within acceptable limits during the extreme temperatures encountered during entry. As in the case of the Columbia accident, failure of the TPS can result in the catastrophic loss of the crew and vehicle. The TPS is composed of an assortment of materials that includes Reinforced Carbon-Carbon (RCC), ceramic tiles, Nomex-coated blankets, thermal panes, metals, silica cloths, and vulcanizing material.

Failure of the TPS can be caused by debris impact. The debris impact location, energy, impact angle, material, density, and shape are all critical factors in determining the effects of the debris impact on the TPS.

NASA IMPLEMENTATION

NASA is developing models to accurately predict the damage resulting from a debris impact, and a damage-tolerance test plan is in work. NASA is also developing more mature models to determine if damage is survivable or must be repaired before safe entry.

The Space Shuttle Program Requirements Control Board (PRCB) issued an action that encompasses all efforts related to the testing and analysis necessary to determine the thresholds between damage and no-damage cases, and between damage that is safe for entry versus damage that must be repaired. This action also addresses the development of models to improve tile and RCC damage prediction, and to determine the maximum possible repair capability while in flight. To fulfill this PRCB action, the Orbiter Debris Impact Assessment Team (ODIAT) was created to integrate all NASA, United Space Alliance, Boeing, and Lockheed-Martin efforts necessary to determine the different debris damage thresholds for both tile and RCC and to develop predictive debris damage models. Figure SSP 14-1 shows the interfaces between the ODIAT and various new or existing teams that are working return to flight (RTF) activities.

The ODIAT effort is comprised of four main activities:

- Impact testing on tile, RCC flat plates, and full RCC panels;
- Material property testing of RCC coupons and potential debris types;
- Analysis and integration of test results into predictive models; and
- Damage tolerance testing and analysis to determine the threshold for damage that must be repaired.

STATUS

Efforts are under way for each of the major focus areas.

- Foam impact tile testing is ongoing at Southwest Research Institute (SwRI) in San Antonio, Texas. Ice impact tests at the White Sands Test Facility and ablator impact tests at Kennedy Space Center will begin shortly. The first set of full-scale RCC panel impact tests is complete. RCC panel 9L from OV-103 was shot three times. The first test used a 0.1-lb. foam projectile at a velocity of 701 ft/sec; no damage resulted from the impact. A second foam impact of 0.2 lb. at 688 ft/sec also produced no damage. The final test used a 0.167-lb. piece of foam shot at 1167 ft/sec, and caused severe cracking of the panel, but did not actually create a hole in the panel.

- Coupon testing for RCC material properties is under way at Southern Research Institute in Birmingham, Alabama. Data from testing thus far indicate that flown material (panel 8L from OV-104 with 26 flights) has material properties slightly degraded from new material, but significantly higher than the allowables used in the mission life models for RCC. Data from these tests are being used to verify and modify new models. The production of additional RCC coupon material for testing is under way at Lockheed-Martin in Dallas.

- Analysis and modeling work is continuing for both the RCC and the tile. The data collected will be used to develop and verify two types of RCC and tile models. One model will be
Damage tolerance testing is under way at Langley Research Center and Johnson Space Center. Through structural and thermal testing of damaged RCC and tile samples, we can determine exactly how much damage can be allowed while still ensuring a safe return for the crew and vehicle. Testing thus far has shown that RCC cannot tolerate a loss of coating from both the front and back surfaces, and that a hole in a panel on the order of 0.02 in² may be survivable, depending on the amount of associated coating damage and cracking.

FORWARD WORK

NASA will continue to conduct tests that provide insights into the material and physical properties of the TPS. NASA is also developing minor and critical damage criteria for the TPS by performing RCC foam impact tests, arc jet tests, and wind tunnel tests. Results from these tests will also help to determine the location dependencies of the impacting debris. Techniques for repairing tile and RCC are under development. The ability of the International Space Station crew to provide support to an Orbiter crew during a Shuttle TPS repair scenario or during a crew rescue operation is under investigation. The combination of these capabilities will help to ensure a lower probability that critical damage will be sustained, while increasing the probability that any damage that does occur can be detected and the consequences mitigated during flight.

Additional information related to this action can be found in other sections of this Implementation Plan. Information on the damage that the TPS can sustain, and still allow for successful entry of the Orbiter into Earth’s atmosphere, is further explained in NASA’s response to Recommendation R3.3-3. Information regarding the TPS inspection and repair capabilities being investigated is further explained in NASA’s answer to Recommendations R6.4-1 and R3.3-2.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODIAT</td>
<td>Oct 03</td>
<td>Panel 9 Testing</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>ODIAT</td>
<td>May 04</td>
<td>RCC Materials Testing Complete</td>
</tr>
<tr>
<td>ODIAT</td>
<td>Dec 04</td>
<td>Tile Impact Testing Complete; RCC Model Correlation Complete; Tile Model Verification Complete</td>
</tr>
<tr>
<td>ODIAT</td>
<td>Feb 05</td>
<td>Final RCC Model Verification (Contingency RTF)</td>
</tr>
<tr>
<td>ODIAT</td>
<td>TBD</td>
<td>Damage Tolerance Test and Analysis Complete</td>
</tr>
</tbody>
</table>
BACKGROUND

Bipod ramp foam was released during the launch of STS-112 in October 2002. After the mission, the Space Shuttle Program (SSP) considered this anomaly and directed the External Tank Project to conduct the testing and analysis necessary to understand the cause of bipod foam release and present options to the SSP for resolution. The Program did not hold completion of these activities as a constraint to subsequent Shuttle launches because the interim risk was not judged significant. The Columbia accident investigation results clearly disclose the errors in that engineering judgment.

NASA IMPLEMENTATION

NASA will conduct a full review of its anomaly resolution processes with the goal of ensuring appropriate disposition of precursor events in the future.

In support of the return to flight activity, the SSP, supported by all projects and elements, began to identify and implement improvements to the problem tracking, in-flight anomaly disposition, and anomaly resolution processes. A team is reviewing SSP and other documentation and processes, as well as audited performance for the past three Shuttle missions. The conclusion is that, while clarification of the requirements identified in NSTS 08126, Problem Reporting and Corrective Action (PRACA) System Requirements, is needed, the implementation of those requirements appears to be the area that has the largest opportunity for improvement. Issues identified indicate misinterpretations of definitions, resulting in misidentification of problems, and noncompliance with tracking and reporting requirements.

The recommended actions are to

1. Train all SSP elements and support organizations on PRACA requirements and processes. The SSP community is not as aware of the PRACA requirements and processes as they should be to avoid repeating past mistakes.

2. Update NSTS 08126 to clarify the in-flight anomaly (IFA) definition, delete “program” IFA terminology, and add payload IFAs and Mission Operations Directorate (MOD) anomalies to the scope of the document.

3. Update the PRACA nonconformance system (Web PCASS) to include flight software, payload IFAs, and MOD anomalies. These changes will be incorporated in a phased approach. The goal is to have a single nonconformance tracking system.

STATUS

A Change Request (CR) is in work to update NSTS 08126, PRACA System Requirements. In addition, United Space Alliance (USA) is consolidating its PRACA databases and updating the cause codes. After this effort is completed for the USA databases, it will be expanded to include Lockheed-Martin and ATK Thiokol. NASA and its contractors will provide training as part of this activity to ensure that all SSP elements and support organizations understand the PRACA system and are trained in entering data into PRACA.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson Space Center (JSC)</td>
<td>Apr 04</td>
<td>Approve CR to update NSTS 08126, PRACA Systems Requirements.</td>
</tr>
<tr>
<td>Kennedy Space Center (KSC)-USA</td>
<td>Jun 05</td>
<td>Consolidate the USA PRACA databases and update the cause codes.</td>
</tr>
<tr>
<td>KSC</td>
<td>Jun 05</td>
<td>Train USA/KSC/JSC personnel on PRACA database changes and cause code usage.</td>
</tr>
<tr>
<td>Marshall Space Flight Center (MSFC)/Michoud Assembly Facility (MAF)</td>
<td>Dec 05</td>
<td>Consolidate changes into the non-USA PRACA databases from the USA PRACA databases.</td>
</tr>
<tr>
<td>MSFC/MAF</td>
<td>Jan 06</td>
<td>Train Lockheed-Martin/ATK Thiokol/MSFC/MAF personnel on PRACA database changes and cause code usage.</td>
</tr>
</tbody>
</table>
The observations contained in Chapter 10 of the CAIB Report expand upon the CAIB recommendations, touching on the critical areas of public safety, crew escape, Orbiter aging and maintenance, quality assurance, test equipment, and the need for a robust training program for NASA managers. NASA is committed to examining these observations and has already made significant progress in determining appropriate corrective measures. Future versions of the Implementation Plan will expand to include additional suggestions from various sources. This will ensure that beyond returning safely to flight, we are institutionalizing sustainable improvements to our culture and programs that will ensure we can meet the challenges of continuing to expand the bounds of human exploration.
BACKGROUND

NASA has a more general risk management requirement, codified in NASA Policy Directive (NPD) 8700.1A. However, it does not currently have an Agency risk policy that specifically addresses range flight operations, such as launch and entry of space vehicles and operation of uncrewed aircraft. NPD 8700.1A calls for NASA to implement structured risk management processes using qualitative and quantitative risk-assessment techniques to make optimal decisions regarding safety and the likelihood of mission success. The NPD also requires program managers to implement risk management policies, guidelines, and standards and establish safety requirements within their programs. These and other related policies are designed to protect the public as well as NASA personnel and property.

Individual NASA range safety organizations, such as those at Wallops Flight Facility (WFF) and Dryden Flight Research Center (DFRC), have established public and workforce risk management requirements and processes at the local level. These NASA organizations often work in collaboration with the Air Force and other government range safety organizations. They have extensive experience applying risk assessment to the operation of Expendable Launch Vehicles and uncrewed aircraft and are currently developing range safety approaches for the operation of future Reusable Launch Vehicles, which include launch and entry risk assessment.

NASA IMPLEMENTATION

Development of any Agency policy requires significant coordination with the NASA Centers and programs that will be responsible for its implementation. The NASA Headquarters Office of Safety and Mission Assurance has established a risk policy working group to perform the initial development and coordination on the risk acceptability policy for launch and entry of space vehicles and uncrewed aircraft. This working group hosted a range safety risk management workshop July 24 - 25, 2003, at NASA Headquarters. Working group members in attendance included NASA personnel from Kennedy Space Center (KSC), DFRC, WFF, Johnson Space Center (JSC), and Headquarters. Also in attendance were representatives from the Columbia Accident Investigation Board (CAIB).

Thus far, the working group has received a comprehensive technical briefing on the CAIB-initiated entry risk study that was performed by ACTA Inc., and obtained perspective on the CAIB investigation and recommendations related to assessing public risk from a CAIB Staff Investigator. They have also obtained Agencywide perspective on application of risk assessment to range operations for all current and planned programs (e.g., Shuttle, Expendable Launch Vehicles, Reusable Launch Vehicles, Unmanned Aerial Vehicles, and high-altitude balloons). Building on this information, they have coordinated plans for addressing risk to the public for return to flight (RTF) and for development of NASA range safety risk policy and have begun to draft a proposed NASA risk policy.

The draft policy will be applicable to all range flight operations, including launch and entry of space vehicles and operation of uncrewed aircraft and will include requirements for risk assessment, mitigation, and acceptance/disposition of residual risk to the public and operational personnel. It will incorporate performance standards that provide for safety while allowing appropriate flexibility needed to accomplish mission objectives and include acceptable risk criteria that are consistent with those used throughout the government, the commercial range community, and with other industries whose activities are potentially hazardous to the public. Finally, the policy will provide a risk management process within which the required level of management approval increases as the level of assessed risk to public and the workforce increases and will be flexible enough to allow the fidelity of Program risk assessments to improve over time as knowledge of the vehicle’s operational characteristics increases and models used to calculate risk are refined.

The policy document being developed will be a part of a NASA Procedural Requirement (NPR) 8715.XX, NASA Headquarters. Observation 10.1-1

Columbia Accident Investigation Board
Observation 10.1-1

NASA should develop and implement a public risk acceptability policy for launch and re-entry of space vehicles and unmanned aircraft.
Range Safety Program, which will describe NASA’s range safety policy, roles and responsibilities, requirements, and procedures for protecting the safety and health of the public, the workforce, and property during range operations. Chapter 3 of this NPR will contain the NASA risk management policy for all range operations including launch and entry of space vehicles and operation of uncrewed vehicles.

STATUS

The draft NPR, including the risk policy, is nearing completion. The NASA Safety and Mission Assurance (SMA) Directors were briefed on the draft NPR on October 15, 2003, with particular focus on the range safety risk policy. The SMA Directors and other members of the NASA SMA community completed a review of the draft NPR in November 2003. The resulting draft was entered into the Agency’s formal approval process at the end of January 2004 using the NASA Online Directives Information System (NODIS). Due to issues raised during the Agency comment period, the NASA Executive Council will conduct a special review of the proposed policy before completion of the approval process.

FORWARD WORK

The draft risk policy requires that each program documents its safety risk management process in a written plan approved by the responsible NASA official(s). Before RTF, the Space Shuttle Program (SSP) will draft its plan and obtain the required Agency approvals. The SSP will also perform launch and entry risk assessments for the initial and subsequent planned Shuttle missions. Launch risk assessment will continue to be performed by the 45th Space Wing in coordination with the Shuttle Program and KSC. SSP efforts to assess entry risk are addressed by the Space Shuttle Program Action 2.

In accordance with the risk policy and the Space Shuttle safety risk management plan, the appropriate level of NASA management will review and address the assessed risk to the public and the workforce before RTF.

SCHEDULE

Brief the NASA Executive Council, resolve any concerns, and complete the approval process. The dates of the NODIS review cycle and expected final signature are dependent on the results of the Executive Council review.

<table>
<thead>
<tr>
<th>Action</th>
<th>January NODIS Review Cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin SMA Discipline Review</td>
<td>Oct 03 (Completed)</td>
</tr>
<tr>
<td>SMA Review Comments Due</td>
<td>Nov 03 (Completed)</td>
</tr>
<tr>
<td>Disposition SMA Comments</td>
<td>Nov/Dec 03 (Completed)</td>
</tr>
<tr>
<td>Final Proofread, prepare NODIS Package, route for OSMA Management Signature, provide feedback to SMA Directors</td>
<td>Dec 03 / Jan 04 (Completed)</td>
</tr>
<tr>
<td>Published Deadline for Submission to NODIS</td>
<td>Jan 04 (Completed)</td>
</tr>
<tr>
<td>Briefing to the NASA Executive Council</td>
<td>Apr 04</td>
</tr>
<tr>
<td>NODIS Review and Final Signature</td>
<td>(Pending)</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Observations 10.1-2 and 10.1-3

O10.1-2 NASA should develop and implement a plan to mitigate the risk that Shuttle flights pose to the general public.

O10.1-3 NASA should study the debris recovered from Columbia to facilitate realistic estimates of the risk to the public during Orbiter re-entry.

BACKGROUND

The Columbia accident raised important questions about public safety, since Columbia’s debris was scattered over a ground impact footprint approximately 275 miles long and 30 miles wide. Although there were no injuries to the public due to the falling debris, the accident demonstrates that Orbiter breakup during entry may pose a risk to the general public.

NASA IMPLEMENTATION

NASA is currently studying the relative risks to persons and property associated with entry to the three primary Shuttle landing sites, and is developing plans and policies to mitigate the public risk. The results of these analyses will also determine if some ground tracks must be removed from consideration as normal, preplanned, end-of-mission landing opportunities. For a complete discussion of this topic and Observation 10.1-2, see the related actions in Space Shuttle Program Action 2.

NASA is also leading efforts to study the debris recovered from Columbia to address Observation 10.1-3. This is a multiyear project involving experts from NASA, the Federal Aviation Administration, and the U.S. Air Force. Due to the large number of pieces to be studied and the desire to get the best engineering data possible, the results of this effort are not expected until 2006. Therefore, integrating results of this effort into the public risk assessments will not be possible until that time. However, this will not impede NASA's ability to develop and implement a plan that mitigates the risk that Shuttle flights may pose to the general public prior to return to flight.

STATUS

The Space Shuttle Program (SSP) issued a Program Requirements Control Board Directive to the Johnson Space Center Mission Operations Directorate to develop and implement a plan to mitigate the risk to the general public, thus addressing Observation 10.1-2. See Space Shuttle Program Action 2 for a status of this effort.

NASA is currently leading efforts to study the debris recovered from Columbia, to address Observation 10.1-3. The interagency team is in the final stages of defining requirements for data collection, and has performed a measurement-taking trial run to refine those requirements. The schedule for this activity is described below.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Finalize Responsibilities and Requirements for Data Collection</td>
</tr>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>Begin Data Collection Phase</td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 05</td>
<td>End Data Collection Phase (depending on requirements)</td>
</tr>
<tr>
<td>SSP</td>
<td>Mar 06</td>
<td>Refined public risk assessments and mitigation plans</td>
</tr>
</tbody>
</table>

For the schedule to develop and implement a plan to mitigate the risk to the general public, see Space Shuttle Program Action 2.
NASA Implementation

In July 2003, NASA published a Human-Rating Requirements and Guidelines for Space Flight Systems policy document, NASA Procedural Requirement (NPR) 8705.2. This document includes a requirement for flight crew survivability achieved through a combination of abort and crew escape capabilities. The requirements in NPR 8705.2 evolved from NASA lessons learned from the Space Shuttle, Space Station, and other human space flight programs, including the lessons from the Challenger and Columbia accidents. This will be the guiding document for the development of the planned Crew Exploration Vehicle (CEV).

A multidisciplinary team at the NASA Johnson Space Center (JSC), called the Crew Survival Working Group (CSWG), has been formed to develop a report incorporating lessons learned from both the Challenger and Columbia accidents. The CSWG has participation from the Flight Crew Operations, Engineering, and Space and Life Sciences Directorates. In recent months, the CSWG has developed a plan to complete a comprehensive, crew-centric analysis of the two Shuttle accidents. After completion of the analysis, the CSWG will issue a formal report documenting lessons learned for enhancing crew survivability in future human space flight vehicles, such as the CEV. This information will be even more critical as NASA prepares to implement the Vision for Space Exploration.

Status

Phase one of the CSWG work, an analysis of the Columbia accident, has begun. The JSC Space and Life Sciences Directorate has contracted with the University Space Research Association and the Biodynamics Research Corporation to perform additional assessments.

Forward Work

The Vision for Space Exploration includes a redefinition of the requirements for space transportation vehicles to support human space flight. The NASA Headquarters Office of Exploration Systems (Code T) will be the lead organization for this requirements definition. NPR 8705.2, Human-Rating Requirements and Guidelines for Space Flight Systems, and the work of the CSWG will form principle inputs into that process.

Schedule

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSWG</td>
<td>Nov 03</td>
<td>Draft report and recommendations (Completed)</td>
</tr>
<tr>
<td>CSWG</td>
<td>Apr 04</td>
<td>Plan of work for detailed analysis of human space flight vehicle accidents and lessons learned (Completed)</td>
</tr>
<tr>
<td>CSWG</td>
<td>Apr 05</td>
<td>Final report on STS-107 accident with recommendations and lessons learned for future vehicle design to improve crew survivability</td>
</tr>
<tr>
<td>CSWG</td>
<td>Apr 06</td>
<td>Final report on STS-51L accident</td>
</tr>
<tr>
<td>CSWG</td>
<td>Apr 07</td>
<td>Integrated report on human space flight accidents with engineering syllabus</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board

Observation 10.2-1

Future crewed-vehicle requirements should incorporate the knowledge gained from the Challenger and Columbia accidents in assessing the feasibility of vehicles that could ensure crew survival even if the vehicle is destroyed.
Columbia Accident Investigation Board

Observation 10.4-1

Perform an independently led, bottom-up review of the Kennedy Space Center Quality Planning Requirements Document to address the entire quality assurance program and its administration. This review should include development of a responsive system to add or delete government mandatory inspections.

- This Observation is addressed in Section 2.1, Space Shuttle Program Action 1.
BACKGROUND
As part of a reorganization effort in 2000, separate safety and mission assurance (SMA) offices were formed in each appropriate operational directorate at Kennedy Space Center (KSC). This was done to provide direct SMA support to each of the directorates. An independent office called the Safety, Health, and Independent Assessment (SHIA) Directorate was also created to maintain a level of institutional SMA support at the center.

NASA IMPLEMENTATION
In close coordination with the effort led by the Associate Administrator for Safety and Mission Assurance (AA, OSMA) in responding to Columbia Accident Investigation Board Recommendation 7.5-2, KSC has established a center-level team to assess the KSC SMA organizational structure.

STATUS
KSC formed an SMA Organization Implementation Team (OIT) that included a member from each KSC directorate with an SMA organization. With analysis and input from this team, KSC’s SHIA Directorate is working with the AA, OSMA to determine the optimal organizational structure, appropriate staffing levels, and required resources to support the Space Shuttle and other programs at KSC.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC SMA OIT</td>
<td>Completed</td>
<td>Recommendations to KSC Center Director</td>
</tr>
<tr>
<td>KSC SMA OIT</td>
<td>Apr 04</td>
<td>Reorganization definition complete</td>
</tr>
<tr>
<td>KSC SMA OIT</td>
<td>May 04</td>
<td>Implementation complete</td>
</tr>
</tbody>
</table>
BACKGROUND

The *Columbia* Accident Investigation Board reported most of the training for quality engineers, process analysts, and quality assurance specialists was on-the-job training rather than formal training. In general, Kennedy Space Center (KSC) training is extensive for the specific hardware tasks (e.g., crimping, wire bonding, etc.), and includes approximately 160 hours of formal, on-the-job, and safety/area access training for each quality assurance specialist. However, there are deficiencies in basic quality assurance philosophy and skills.

NASA IMPLEMENTATION

NASA is benchmarking quality assurance training programs as implemented by the Department of Defense (DoD) and Defense Contract Management Agency (DCMA). NASA’s goal is to develop a comparable training program for the quality engineers, process analysts, and quality assurance specialists. The training requirements will be documented in our training records template.

STATUS

KSC is working with DCMA to benchmark its training program and to determine where we can directly use its training. A team recently completed a DCMA quality assurance skills course.

FORWARD WORK

KSC will benchmark with DoD and the companies used to provide their quality assurance training. Then, KSC will document a comparable training program and update the training templates. Personnel will be given a reasonable timeframe in which to complete the training.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Apr 04</td>
<td>Benchmark DoD and DCMA training programs</td>
</tr>
<tr>
<td>KSC</td>
<td>Aug 04</td>
<td>Develop and document improved training requirements</td>
</tr>
<tr>
<td>KSC</td>
<td>Aug 05</td>
<td>Complete personnel training</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board
Observation 10.4-3
Kennedy Space Center quality assurance management must work with NASA and perhaps the Department of Defense to develop training programs for its personnel.
BACKGROUND

The Columbia Accident Investigation Board Report highlighted Kennedy Space Center’s (KSC’s) reliance on the International Organization for Standardization (ISO) 9000/9001 certification. The report stated, “While ISO 9000/9001 expresses strong principles, they are more applicable to manufacturing and repetitive-procedure industries, such as running a major airline, than to a research-and-development, flight test environment like that of the Space Shuttle. Indeed, many perceive International Standardization as emphasizing process over product.” ISO 9000/9001 is currently a contract requirement for United Space Alliance (USA).

NASA IMPLEMENTATION

NASA has assembled a team of Agency and industry experts to examine the ISO 9000/9001 standard and its applicability to the Space Shuttle Program. Specifically, this examination will address the following: 1) ISO 9000/9001 applicability to USA KSC operations; 2) how NASA should use USA’s ISO 9000/9001 applicable elements in evaluating USA performance; 3) how NASA currently uses USA’s ISO certification in evaluating its performance; and, 4) how NASA will use the ISO certification in the future.

STATUS

NASA has assembled an ISO 9000/9001 review team. The team has established a review methodology and has partially completed the first step, determining the applicability of the standard to USA KSC operations.

FORWARD WORK

The team is working to the schedule listed below. The KSC surveillance plan will be updated after completion of all planned activities.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Apr 04</td>
<td>Identify applicability to USA KSC Operations</td>
</tr>
<tr>
<td>KSC</td>
<td>Jul 04</td>
<td>Proper usage of standard in evaluating contractor performance</td>
</tr>
<tr>
<td>KSC</td>
<td>Jul 04</td>
<td>Current usage of standard in evaluating contractor performance</td>
</tr>
<tr>
<td>KSC</td>
<td>Aug 04</td>
<td>Future usage of standard and changes to surveillance or evaluation of contractor</td>
</tr>
<tr>
<td>KSC</td>
<td>Aug 04</td>
<td>Presentation of Review</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board
Observation 10.4-4
Kennedy Space Center should examine which areas of International Organization for Standardization 9000/9001 truly apply to a 20-year-old research and development system like the Space Shuttle.
BACKGROUND

The Kennedy Space Center (KSC) Processing Review Team conducted a review of the ground processing activities and work documents from all systems for STS-107 and STS-109, and from some systems for Orbiter Major Modification. This review examined approximately 3.9 million work steps and identified 9672 processing and documentation discrepancies resulting in a work step accuracy rate of 99.75%. While this is comparable to our performance in recent years, our goal is to further reduce processing discrepancies; therefore, we initiated a review of STS-114 documentation.

NASA IMPLEMENTATION

NASA has performed a review and systemic analysis of STS-114 work documents from the time of Orbiter Processing Facility roll-in through system integration test of the flight elements in the Vehicle Assembly Building. Pareto analysis of the discrepancies revealed areas where root cause analysis is required.

STATUS

The STS-114 Problem Resolution Team systemic analysis revealed six Corrective Action recommendations consistent with the technical observations noted in the STS-107/109 review. Teams were formed to determine the root cause and long-term corrective actions. These recommendations were assigned Corrective Action Requests that will be used to track the implementation and effectiveness of the corrective actions. In addition to the remedial actions from the previous review, there were nine new system-specific remedial recommendations. These remedial actions primarily addressed documentation errors, and have been implemented. Quality and Engineering will continue to statistically sample and analyze work documents for all future flows.

The root cause analysis results and Corrective Actions were presented to the Space Shuttle Program in February 2004.

FORWARD WORK

None.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Feb 04</td>
<td>Program Requirements</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td>Control Board</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board

Observation 10.5-1

Quality and Engineering review of work documents for STS-114 should be accomplished using statistical sampling to ensure that a representative sample is evaluated and adequate feedback is communicated to resolve documentation problems.
BACKGROUND
The Kennedy Space Center (KSC) Processing Review Team (PRT) conducted a review of the ground processing activities and work documents from all systems for STS-107 and STS-109, and from some systems for the Orbiter Major Modifications. This review examined approximately 3.9 million work steps and identified 9672 processing and documentation discrepancies resulting in a work step accuracy rate of 99.75%. These results were validated with the review of STS-114 work documents (ref. Observation 10.5-1). Pareto analysis of the discrepancies revealed areas where corrective action is required and where NASA Shuttle Processing surveillance needs augmentation.

NASA IMPLEMENTATION
NASA will refocus the KSC Shuttle Processing Engineering and Safety and Mission Assurance (SMA) surveillance efforts and enhance the communication of surveillance results between the two organizations. KSC Shuttle Processing Engineering will increase surveillance of processing tasks and of the design process for government-supplied equipment and ground systems. This will include expanding the list of contractor products requiring NASA engineering approval. SMA surveillance will be expanded to include sampling of closed paper and hardware surveillance (ref. Observation 10.5-3). The initial focus for sampling of closed paper will be to determine the effectiveness of corrective action taken by the contractor as a result of the PRT’s work.

NASA will improve communication between the Engineering Office and SMA through the activation of a Web-based log and the use of a new Quality Planning and Requirements Document change process for government inspection requirements.

STATUS
Engineering and SMA organizations are evaluating and revising their surveillance plans. Required changes to the Ground Operations Operating Procedures are being identified.

FORWARD WORK
NASA will implement periodic reviews of surveillance plans and adjust the tasks as necessary to target problem areas identified by data trends and audits.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Nov 03</td>
<td>Surveillance task identification</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>KSC-Engineering</td>
<td>Aug 04</td>
<td>Surveillance plan documentation update</td>
</tr>
<tr>
<td>KSC-SMA</td>
<td>Jul 04</td>
<td>Surveillance plan documentation update</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board
Observation 10.5-2
NASA should implement United Space Alliance’s suggestions for process improvement, which recommend including a statistical sampling of all future paperwork to identify recurring problems and implement corrective actions.
BACKGROUND

The *Columbia* Accident Investigation Board noted the need for a statistically valid sampling program to evaluate contractor operations. Kennedy Space Center (KSC) currently samples contractor operations within the Space Shuttle Main Engine Processing Facility; however, the sample size is not statistically significant and does not represent all processing activities.

NASA IMPLEMENTATION

NASA will assess the implementation, required resources, and potential benefits of developing a statistical sampling program to provide oversight to the work performed and documented by United Space Alliance (USA) technicians. The USA In-Process Sampling Group is developing a sampling program. NASA Process Analysts will assess the USA sampling program by collecting additional data to independently evaluate USA’s statistics. Initially, NASA will use USA’s Web-based data maintenance and metric capabilities for tracking active work authorization documents (WADs). However, NASA has already begun initial development of an independent statistical sampling program for both active and closed WADs. This will provide additional verification of the quality of USA’s work.

STATUS

NASA and USA have worked together over the past several months to collect data on work in process and closed vehicle problem report sample data. We have begun to compare data with overall favorable results. We will continue to gather and compare data to ensure continued consistency in results and to refine sampling techniques to achieve the required level of quality assurance.

FORWARD WORK

NASA will continue improving its ability to assure the quality of USA work. NASA will enhance our insight through sampling of the Problem Reporting and Corrective Action system, Test Preparation Sheets (TPSs), and completed Orbiter Maintenance Instructions (OMIs) for accuracy in preparation and completeness in execution. NASA will determine the resources required to provide a statistically significant sampling program along with developing metrics for further trending that will include goals.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Nov 03 (Completed)</td>
<td>Provide resource estimate</td>
</tr>
<tr>
<td>KSC</td>
<td>Nov 03 (Completed)</td>
<td>Implement in-process sampling program</td>
</tr>
<tr>
<td>KSC</td>
<td>Nov 03 (Completed)</td>
<td>Implement Closed WAD sampling program – vehicle problem reports only</td>
</tr>
<tr>
<td>KSC</td>
<td>Mar 04 (Completed)</td>
<td>Define/develop in-process metrics</td>
</tr>
<tr>
<td>KSC</td>
<td>Apr 04</td>
<td>Closed WAD sampling program – addition of Space Shuttle Main Engine and ground support equipment problem reports</td>
</tr>
<tr>
<td>KSC</td>
<td>May 04</td>
<td>Define/develop closed WAD sampling standard metrics</td>
</tr>
<tr>
<td>KSC</td>
<td>Jun 04</td>
<td>Closed WAD sampling program – addition of discrepancy reports</td>
</tr>
<tr>
<td>KSC</td>
<td>Nov 04</td>
<td>Closed WAD sampling program – addition of TPSs and OMIs</td>
</tr>
</tbody>
</table>
NASA's Implementation Plan for Space Shuttle Return to Flight and Beyond

BACKGROUND

NASA agrees that greater stability in Orbiter Maintenance Down Period (OMDP) processes will reduce risk.

NASA IMPLEMENTATION AND STATUS

The next OMDP, for OV-105, began in December 2003 and is ongoing. In planning for this OMDP, NASA emphasized stability in the work plan to ensure that quality and safety are maintained at the highest possible levels.

FORWARD WORK

The Space Shuttle Program (SSP) will continue to assess and periodically review the status of all required modifications.

NASA will continue to integrate lessons learned from each OMDP and will emphasize factors that could destabilize plans and schedules. NASA will also conduct delta OMDP Flow Reviews for each Orbiter on an ongoing basis.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>OV-105 OMDP Modification Site Flow Review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Ongoing</td>
<td>Delta OMDP Flow Reviews</td>
</tr>
</tbody>
</table>

Columbia Accident Investigation Board

Observation 10.6-1

The Space Shuttle Program Office must make every effort to achieve greater stability, consistency, and predictability in Orbiter Major Modification planning, scheduling, and work standards (particularly in the number of modifications). Endless changes create unnecessary turmoil and can adversely impact quality and safety.
BACKGROUND

The transfer of Orbiter Maintenance Down Periods (OMDPs) from Palmdale to Kennedy Space Center placed additional demands on the existing infrastructure, ground support equipment, and personnel. NASA made significant efforts to anticipate these demands, to transfer the needed equipment from Palmdale, and to hire additional personnel required to accomplish the OMDP-related tasks independent of normal Orbiter flow processing. Because of the fluctuating demands on the Orbiters supporting the flight manifest, some workers with unique critical skills were frequently shared among the Orbiter in OMDP and the Orbiters being processed for flight. Additional inspection and modification requirements, and unanticipated rework for structural corrosion and Thermal Protection Systems, created demands on limited critical skill sets not previously anticipated.

NASA IMPLEMENTATION

NASA has applied the lessons learned from the just completed Orbiter Vehicle (OV)-103 OMDP to the OV-105 OMDP. These lessons have allowed NASA and United Space Alliance managers to better integrate infrastructure, equipment, and personnel from a more complete set of work tasks, unlike the piecemeal approach used during OV-103’s OMDP. The requirements for the second OV-105 OMDP were approved, with the exception of two modifications. The Program Requirements Control Board approved 72 modifications at the Modification Site Requirements Review in early July 2003, and reviewed the overall modification plan again in mid-October 2003 at the Modification Site Flow Review. The OV-105 OMDP began in December 2003.

Many “out of family” discrepancies identified as the result of scheduled structural and wiring inspections require design center coordination and disposition. The incorporation of new Orbiter modifications also requires close coordination for design issue resolution. Timely design response can reduce the degree of rescheduling and critical skill rebalancing required. During the OV-103 OMDP, design center engineers were available on the floor in the Orbiter Processing Facility where the work was being accomplished to efficiently and effectively disposition discrepancies when identified. This approach reduced the need to reschedule work until a disposition was made, thus reducing the need for workload or resource rebalancing.

STATUS

• Lesson Learned from the third OV-103 OMDP have been incorporated into the current OV-105 OMDP. More accurate estimates of structural inspection and wiring discrepancies are anticipated as the review of OV-103 discrepancy data continues.
• Additional personnel hiring focusing on critical skill sets has been coordinated with the NASA Shuttle Processing Directorate and the NASA Orbiter Project Office.
• The additional emphasis on “on floor” design response, which helped to reduce rescheduling and resource rebalancing during OV-103’s third OMDP, is being expanded for OV-105’s first OMDP.

FORWARD WORK

The Space Shuttle Program (SSP) will follow the practice of approving most or all of the known modifications for incorporation at the beginning of an Orbiter Vehicle’s OMDP, typically at the Modification Site Requirements Review. Lessons learned will be captured for each ensuing OMDP and will be used to improve future OMDP processing.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Oct 03</td>
<td>Mod Site Flow Review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>Complete OV-103</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td>Lessons Learned</td>
</tr>
<tr>
<td>SSP</td>
<td>Ongoing</td>
<td>Incorporate lessons</td>
</tr>
<tr>
<td></td>
<td></td>
<td>learned for OMDP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>processing</td>
</tr>
</tbody>
</table>
BACKGROUND

In June 2003, NASA requested that the U.S. Air Force conduct an assessment of the Orbiter Maintenance Down Period/Orbiter Major Modification (OMDP/OMM) being performed at Kennedy Space Center (KSC). The U.S. Air Force team provided similarities, compared best practices, identified differences between NASA and the U.S. Air Force practices, identified potential deficiencies, and provided recommendations and areas for potential improvements. NASA is using this information to improve our practices and processes in evaluating the Orbiter fleet, and to formulate our approach for continued benchmarking.

NASA has also initiated a number of aging vehicle assessment activities as part of the integrated Space Shuttle Service Life Extension Program (SLEP) activities. Each of the Space Shuttle element organizations is pursuing appropriate vehicle assessments to ensure that Shuttle Program operations remain safe and viable throughout the Shuttle’s operational life.

NASA IMPLEMENTATION

Personnel from Wright-Patterson Air Force Base have provided direct support to SLEP and have contributed to management decisions on needed investments through membership on SLEP panels. NASA will continue to work with the U.S. Air Force in its development of aging vehicle assessment plans. Planned assessments for the Space Shuttle Orbiters, for example, include expanded fleet leader hardware programs and corrosion control programs.

In addition to working with the U.S. Air Force on these assessments, NASA is actively drawing upon resources external to the Space Shuttle Program that have valuable experience in managing the operations of aging aircraft and defense systems. NASA is identifying contacts across government agencies and within the aerospace and defense industries to bring relevant expertise from outside the Shuttle Program to assist the team. The Orbiter Project has already augmented its aging Orbiter assessment team with systems experts from Boeing Integrated Defense Systems.

In 1999, NASA began a partnership with the U.S. Air Force Research Laboratory, Materials and Manufacturing Directorate, at Wright-Patterson Air Force Base to characterize and investigate wire anomalies. The Joint NASA/Federal Aviation Administration/Department of Defense Conference on Aging Aircraft focused on studies and technology to identify and characterize these aging systems. NASA will continue this partnership with constant communication, research collaboration, and technical interchange.

Following the June 2003 Air Force assessment of the OMDP/OMM being performed at KSC, a group of engineers went on a fact-finding trip in July 2003 to Warner-Robins Air Force Base to learn more about Air Force maintenance on C-130s, C-141s, and C-5s. They met with Air Force personnel who had performed the previous assessment. All agreed that a joint working group, including United Space Alliance, needed to be formed. The next targeted visit will most likely be to Tinker Air Force Base to review maintenance on KC-135 aircraft and possibly to Hill Air Force Base to review B-2 aircraft maintenance.

STATUS

NASA will continue to solicit participation of government and industry aging system experts from across the aerospace and defense sectors in the Space Shuttle aging vehicle assessment activities. NASA is particularly interested in benchmarking the aging system management practices of relevant programs within the U.S. Air Force and other agencies and will work to establish opportunities for meetings and ongoing interchange on this subject.
FORWARD WORK

NASA will continue to work with the U.S. Air Force to benefit from its knowledge of operating and maintaining long-life aircraft systems.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>TBD</td>
<td>Benchmark additional U.S. Air Force Logistics Centers</td>
</tr>
</tbody>
</table>
BACKGROUND

An aging Orbiter fleet presents inspections and maintenance challenges that must be incorporated in the planning of the Orbiter Maintenance Down Periods (OMDPs). Prior to the Columbia accident, the Space Shuttle Program Office had begun an activity to lengthen the interval between OMDPs from the current requirement of every 3 years or 8 flights to a maximum of 6 years or 12 flights. Initially the Structures Problem Resolution Team (PRT) was assigned the action to examine all structural inspection requirements for effects to extending the OMDP interval. No specific extension period was identified. The Structures PRT examined every requirement dealing with structural inspections in the Orbiter Maintenance Requirements and Specifications Document and compared findings from previous OMDP and in-flow inspections to determine whether new inspection intervals were warranted. The findings from this effort resulted in updated intervals for structures inspections. Structural inspections can support an OMDP interval of 6 years or 12 flights. Part of this new set of inspections is the inclusion of numerous interval inspections that would be conducted between OMDPs. Adverse findings from the sampling inspections could lead to a call for an early OMDP.

In the wake of the Columbia accident, there is no longer a desire to extend the OMDP interval. The requirement for OMDP intervals will remain every 3 years or 8 flights.

NASA IMPLEMENTATION

Orbiter aging vehicle assessments, initiated as part of the Shuttle Service Life Extension Program, will ensure that inspection requirements are evaluated for any needed requirements updates to address aging vehicle concerns. An explicit review of all hardware inspection requirements will be conducted during the Orbiter life certification assessment to determine if aging hardware considerations or certification issues warrant the addition of new inspection requirements or modification to existing requirements. Subsequent to completion of the life certification assessment, inspection requirement adequacy will continue to be evaluated through ongoing aging vehicle assessment activities, including the Orbiter fleet leader program and corrosion control program.

STATUS

NASA has initiated an assessment to ensure that Space Shuttle operations remain safe and viable throughout the Shuttle’s service life.

FORWARD WORK

Orbiter life certification assessments are currently under way for the highest criticality hardware components in support of STS-114 return to flight. Completion of certification verification for the remaining Orbiter hardware will be conducted in a prioritized manner through 2006. Planning for the expanded Orbiter fleet leader hardware assessment and corrosion control programs is under way with an anticipated start date in mid 2004.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>2004</td>
<td>Orbiter life certification assessment for highest criticality hardware</td>
</tr>
<tr>
<td>SSP</td>
<td>2006</td>
<td>Orbiter life certification assessment for remaining hardware</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Observation 10.7-1

Additional and recurring evaluation of corrosion damage should include non-destructive analysis of the potential impacts on structural integrity.

BACKGROUND

The Space Shuttle Program has initiated an action to assess the Columbia Accident Investigation Board observations related to corrosion damage in the Shuttle Orbiter. This action has been assigned to the Orbiter Project Office.

NASA IMPLEMENTATION

The Orbiter element is in full compliance with this observation. Before the disposition of any observed corrosion on Orbiter hardware, a full review is conducted via the Orbiter Corrosion Control Board. Nondestructive analysis is typically used to determine the mechanism, depth, and breadth of the existing corrosion. Inspection intervals are reviewed on a case-by-case basis as new corrosion is discovered. Disposition of corroded components requires evaluation and/or analysis by appropriate subsystem, stress, and materials engineers. Positive margins must be retained, or the affected component is replaced or supplementary load paths are applied. Any course of action must be agreed upon by all technical communities and coordinated through the Orbiter Corrosion Control Board.

STATUS

The Orbiter Program is in compliance with this observation.

FORWARD WORK

None.

SCHEDULE

None.
BACKGROUND
Both Orbiter engineering and management concur that ongoing corrosion of the Space Shuttle fleet should be addressed as a safety issue. As the Orbiters continue to age, NASA must direct the appropriate level of resources to sustain the expanding scope of corrosion and its impact to Orbiter hardware.

NASA IMPLEMENTATION, STATUS, AND FORWARD WORK
Recently, the Aging Vehicle Assessment Committee approved a proposal to expand the scope and authority of the Orbiter Corrosion Control Board. Funding authorization has been received, and NASA, United Space Alliance, and Boeing are working to develop and implement an expanded corrosion control program.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiter Project Office</td>
<td>Completed</td>
<td>Direct appropriate long-term funding (sustained)</td>
</tr>
<tr>
<td></td>
<td>Jun 04</td>
<td>Develop an advanced Orbiter Corrosion Control Program to detect, trend, analyze, and predict future corrosion issues</td>
</tr>
</tbody>
</table>
BACKGROUND
An integral part of an effective corrosion control program is the continual development and use of nondestructive evaluation (NDE) tools. The development of such tools to explore hidden corrosion is a complex problem.

NASA IMPLEMENTATION
NASA is investigating a wide range of advanced NDE techniques, and has several activities ongoing to use NDE to find hidden corrosion.

• Chartered by NASA, the NASA NDE Working Group (NNWG) has representatives from each of the NASA field centers and affiliated contractors. This group meets periodically to address both short- and long-term Space Shuttle Program needs. In the past, the NNWG has executed efforts to develop NDE techniques directly in support of this subject, such as corrosion under tile and corrosion under paint. To date, these efforts have experienced only limited success.

• Before the Columbia accident, the NASA Johnson Space Center (JSC) initiated a partnership with the NASA Langley Research Center to specifically address hidden corrosion. This work is ongoing.

• Recently, United Space Alliance (USA) initiated efforts to investigate advanced techniques such as the Honeywell Structural Anomaly Mapping System to support both structural assessments as well as hidden corrosion. This technology is currently under assessment for potential certification by the Federal Aviation Administration.

• JSC is developing a set of hidden corrosion test standards. These standards will be used for future evaluation of potential NDE techniques.

These efforts will be expanded. A review of current activities will be completed, and compared with long-term Program needs. Both the current NNWG and the future advanced Orbiter Corrosion Control Panel will work together to establish the scope of the effort and, subsequently, to present recommendations to Orbiter Program management.

Appropriate Program resources should be committed in several areas to sustain ongoing development activities well into the future.

STATUS AND FORWARD WORK
The chair of the NNWG is leading NASA’s efforts to enhance our NDE capabilities to detect hidden corrosion. As a result of these efforts, the Aging Vehicle Assessment Committee approved a proposal to expand the scope and authority of the Orbiter Corrosion Control Board. Funding authorization has been received, and NASA, USA, and Boeing are working to develop and implement an expanded corrosion control program. The assessment will include a review of NASA efforts to develop NDE tools.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiter Project Office</td>
<td>Jun 04</td>
<td>Develop an advanced Orbiter Corrosion Control Program, chartered to detect, trend,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>analyze, and predict future corrosion issues. Development of NDE techniques for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>corrosion detection shall be included in the Program.</td>
</tr>
<tr>
<td>NNWG</td>
<td>Jun 04</td>
<td>Coordinate the support of the NNWG in support of advanced NDE development to address</td>
</tr>
<tr>
<td></td>
<td></td>
<td>hidden corrosion.</td>
</tr>
<tr>
<td>Orbiter Project Office</td>
<td>TBD</td>
<td>Direct appropriate funding to support the Orbiter Corrosion Control Program.</td>
</tr>
<tr>
<td>Orbiter Project Office</td>
<td>TBD</td>
<td>Direct appropriate funding to support the NNWG.</td>
</tr>
</tbody>
</table>
BACKGROUND
Historically, inspection intervals for Orbiter corrosion have not been driven by mathematical corrosion rate assessments. In our experience, predicting corrosion rates is only effective when the driving mechanism is limited to general surface corrosion in a known environment over a known period of time. To date, general surface corrosion is not an Orbiter problem. Common Orbiter corrosion problems include pitting, crevice, galvanic, and intergranular corrosion attack. These mechanisms are extremely inconsistent and present tremendous difficulty in effectively predicting corrosion rates. Environments are complex, including time histories with intermittent exposure to the extreme temperatures and vacuum of space. Also, with a limited data set, it is difficult to develop and use a database with a reasonable standard deviation. Any calculated results would carry great uncertainty.

NASA IMPLEMENTATION
NASA agrees with the importance of understanding when and where corrosion occurs as a first step towards mitigating it. Given the difficulty in establishing trenchant mathematical models of corrosion rates for the multiple Orbiter environments, NASA will assess mechanisms, magnitudes, and rates of corrosion occurrence. This can be used to prioritize high corrosion occurrence areas. We will also target inspections toward low-traffic and/or hard-to-access areas that are not consistently inspected. Furthermore, predicting the rates of long-term degradation of our corrosion protection systems will be addressed.

When we do find corrosion, NASA’s standard procedure is to immediately repair it. If the corrosion is widespread in an area or a configuration, specific fixes are incorporated or refurbishments are implemented. In the few cases where this is not possible, such as when the rework cannot be completed without major structural disassembly, engineering assessments are completed to characterize the active corrosion rate specific to the area of concern, and inspection intervals are assigned accordingly, until the corrosion can be corrected. Relative to the general aviation industry, our approach to corrosion repair is extremely aggressive and conservative. In the past, NASA has worked closely with the U.S. Air Force to review corrosion prevention programs for potential application to the Orbiter Program. Several successes from Air Force programs have already been implemented, such as the use of water wash-downs and corrosion preventative compounds.

STATUS AND FORWARD WORK
Recently, a Phase II proposal to expand the scope and authority of the present Orbiter Corrosion Control Board was reviewed by the Aging Vehicle Assessment Committee. Funding authorization has been received, and NASA, United Space Alliance, and Boeing are working to develop and implement an expanded corrosion control program. This activity will include a review of the current state of the art in corrosion control tools and techniques, followed by consideration for implementation into the future Orbiter corrosion control program.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orbiter Project Office</td>
<td>Completed</td>
<td>Direct appropriate funding to develop a sustained Orbiter Corrosion Control Board.</td>
</tr>
<tr>
<td>Orbiter Project Office</td>
<td>Jun 04</td>
<td>Develop an advanced Orbiter Corrosion Control Program to detect, trend, analyze, and predict future corrosion issues.</td>
</tr>
</tbody>
</table>
BACKGROUND
Concerns regarding the use of these materials were initiated due to the brittle fracture mode observed on some A-286 Stainless Steel Leading Edge Subsystem Carrier Panel bolts. Specifically, it was argued that lubricant materials consisting of Teflon and/or Molybdenum Disulfide should not be used due to their potential to contribute to a stress corrosion cracking fracture mechanism at elevated temperatures. Traces of perfluorinated polyether grease and Molybdenum Disulfide (lubricants) were found on the carrier panel bolt shank and sleeve. However, no Teflon was found during the failure analysis of carrier panel fasteners.

A-286 fasteners in the presence of an electrolyte must also be exposed to elevated temperatures for stress corrosion cracking to be of concern. However, fastener installations are protected from temperature extremes (the maximum temperatures seen, by design, are less than 300°F).

NASA IMPLEMENTATION
NASA conducted interviews with ground technicians at Kennedy Space Center (KSC); these interviews indicated that the use of Braycote grease as a lubricant may have become an accepted practice due to the difficult installation of this assembly. Braycote grease contains perfluorinated polyether oil, Teflon, and Molybdenum Disulfide materials. According to design drawings and assembly procedures, the use of lubricants should not have been allowed in these fastener installations.

As a result of these findings, NASA directed United Space Alliance (USA) to institute appropriate corrections to their fastener installation training and certification program. USA shall emphasize to its technicians to follow exactly the installation instructions for all Orbiter fastener installations. Any deviation from specific instructions will require disposition from engineering before implementation. USA will further emphasize that lubricants cannot and should not be used in any fastener installation, unless specifically authorized.

In addition, NASA will address the generic use of lubrication to assist in Orbiter fastener installations. The Orbiter Fastener Problem Resolution Team will assess the feasibility for creating a process control document that will govern the generic use of lubricants for fastener installations across all Orbiter structural assemblies. Rather than just generically banning the use of any lubricants, this will specifically address where, when, and how lubricants can be applied.

STATUS
NASA has implemented corrective actions to ensure that lubricant will not be used where not approved.

FORWARD WORK
None.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC/USA Ground Operations</td>
<td>Mar 04 (Completed)</td>
<td>Update fastener training and certification program for USA technicians; require deviations from instructions to be approved before implementation</td>
</tr>
</tbody>
</table>
BACKGROUND

Galvanic coupling between dissimilar metals is a well-recognized Orbiter concern. As galvanic couples between aluminum and steel alloys cannot be completely eliminated, the Space Shuttle Program (SSP) must implement appropriate corrosion protection schemes.

The SSP Orbiter element requirements are in full compliance with this observation. Currently, according to the Boeing Orbiter Materials Control Plan, “Metals shall be considered compatible if they are in the same grouping as specified in Military-Standard (MIL-STD)-889 or the difference in solution potential is \(\leq 0.25\) Volts.” Otherwise, mitigation for galvanic corrosion is required.

Per NASA requirement Marshall Space Flight Center Specification (MSFC-SPEC)-250, “…when dissimilar metals are involved…the fasteners shall be coated with primer or approved sealing compounds and installed while still wet or for removable or adjustable fasteners, install with corrosion preventative compound.” Where there are exceptions, such as fastener installations that are functionally removable, we depend on scheduled inspections of the fastener hole.

NASA IMPLEMENTATION

Since Orbiter galvanic couples are generally treated with corrosion mitigation schemes, the time-dependent degradation of approved sealing compounds must be addressed. Recent inspections have raised concern in areas where significant galvanic couples exist, even in the presence of sealing materials.

STATUS AND FORWARD WORK

Design changes are being considered in areas where significant galvanic couples exist. Examples of recent design modifications include electrical ground paths in the Orbiter nose cap and on the metallic fittings of the External Tank doors. In the future, NASA will take action to be more proactive in addressing this vehicle-wide concern.

The SSP Aging Vehicle Assessment Committee has approved a proposal to expand the scope and authority of the Orbiter Corrosion Control Board. This activity included a review of the time-dependent degradation of approved sealing compounds.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kennedy Space Center</td>
<td>Jun 04</td>
<td>Develop an advanced Orbiter Corrosion Control Program, including implementation of an aging materials evaluation as applied to galvanic couple seal materials on Orbiter hardware.</td>
</tr>
<tr>
<td>SSP</td>
<td>TBD</td>
<td>Present to the SSP Program Requirements Control Board for direction and funding.</td>
</tr>
</tbody>
</table>
BACKGROUND

Concerns regarding the use of Room Temperature Vulcanizing (RTV) 560 and Koropon materials were initiated due to the brittle fracture mode observed on some A-286 Stainless Steel Leading Edge Subsystem Carrier Panel bolts. Specifically, it was argued that trace amounts of contaminants in these materials could, at elevated temperatures, contribute to a stress corrosion cracking (SCC) of the bolts. It was also proposed that these contaminants might accelerate corrosion, particularly in tight crevices.

SCC of A-286 material is only credible at high temperatures. This is not a concern as all fastener installations are protected from such temperature extremes (the maximum temperatures seen, by design, are less than 300°F).

NASA IMPLEMENTATION

NASA completed materials analyses on multiple A-286 bolts that exhibited a brittle-like fracture mode. Failure analysis included fractography, metallography, and chemical analysis. Furthermore, a research program was executed to duplicate and compare the bolt failures experienced on Columbia. This proved conclusively that the brittle-looking fracture surfaces were produced during bolt failure at temperatures approaching 2000°F and above. This failure mode is not a concern with the A-286 Stainless Steel Leading Edge Subsystem Carrier Panel bolts, as all fastener installations are protected from such temperature extremes.

In addition to failure analysis, both RTV 560 and Koropon were assessed for the presence of trace contaminants. Inductively Coupled Plasma analyses were completed on samples of both materials. The amount and type of trace contaminants were analyzed and determined to be insignificant.

RTV 560 and Koropon were selected for widespread use in the Shuttle Program because they prevent corrosion. All corrosion testing and failure analysis performed during the life of the Shuttle Program have not shown deleterious effects from either product. Several non-Shuttle aerospace companies have used Koropon extensively as an anticorrosion primer and sealant. To date, problems with its use in the military and industry have not been identified.

Both of these materials may eventually fail in their ability to protect from corrosion attack, but do not fail by chemically breaking down to assist corrosion mechanisms. Thus, NASA concluded that trace contaminants in Koropon and RTV 560 do not contribute to accelerated corrosion or SCC mechanisms.

In addition to answering this specific observation, NASA will widen the scope of its review and evaluate the long-term performance of all nonmetallic materials used on the Orbiter through a vehicle-wide aging materials evaluation.

STATUS

NASA considers that these materials have been reviewed, and present no risk for supporting accelerated corrosion and/or SCC mechanisms.

FORWARD WORK

None.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space Shuttle Program (SSP)</td>
<td>Mar 04</td>
<td>Review use of room temperature Vulcanizing 560 and Koropon</td>
</tr>
<tr>
<td>(Completed)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BACKGROUND
Initial concerns regarding the use of these A-286 stainless steel fastener materials were initiated due to the brittle fracture mode observed on some Leading Edge Subsystem Carrier Panel bolts. The concern about residual compressive stresses, and to some extent the concerns about Koropen, RTV [Room Temperature Vulcanizing] 560, Teflon, and Molybdenum Disulfide, emanated from a conjecture that the brittle fracture of some of the bolts could have been caused by stress corrosion cracking (SCC).

For SCC to occur, each of the following conditions must exist:

- Material of concern must be susceptible to SCC
- Presence of an active electrolyte
- Presence of a sustained tensile stress

Additionally, SCC of A-286 fasteners is a concern only under exposure to high temperatures. All fastener installations are protected from such temperature extremes.

NASA IMPLEMENTATION
To address the concern that sustained tensile stress might have contributed to SCC, NASA completed materials analyses on multiple A-286 bolts that exhibited a brittle-like fracture mode (i.e., minimal ductility, flat fracture). The failure analysis included fractography, metallography, and chemical analysis. Furthermore, a research program was executed to duplicate and compare the bolt failures experienced on Columbia. This proved conclusively that the brittle-looking fracture surfaces were produced during bolt failure at temperatures approaching 2000°F and above. The observed intergranular fracture mechanism is consistent with grain boundary embrittlement at elevated temperatures, along with potential effects from liquid metal embrittlement from vaporized aluminum. The effects of high temperature exposures on A-286 stainless steel materials are not consistent with the SCC concerns.

In addition to this effort, NASA completed residual stress analyses on several A-286 bolts via neutron diffraction at the National Research Council of Canada. In general, residual stresses were determined to be negligible or compressive in the axial bolt direction. The bolts used on the Space Shuttle have a sufficient compressive stress layer, which is governed by appropriate process controls at the manufacturer.

NASA reviewed the manufacturing and material specifications for the A-286 bolts. This review confirmed that only qualified vendors are contracted, manufacturing process controls are sufficient, and Certificates of Compliance are maintained for material traceability.

STATUS
NASA has analyzed the requirements and process for A-286 bolts and found that current processes and controls are adequate.

FORWARD WORK
None.

SCHEDULE
None.
Note: This response also encompasses the response to Recommendation D.a-10, Hold-Down Post (HDP) Cable Anomaly.

BACKGROUND

Each of the two Solid Rocket Boosters (SRBs) is attached to the Mobile Launch Platform by four hold-down bolts that are each secured by a 5-in. diameter restraint nut. The restraint nuts each contain two pyrotechnic initiators designed to sever the nuts when the SRBs ignite, releasing the Space Shuttle stack to lift off the launch platform.

Release is normally accomplished by simultaneously firing two redundant pyrotechnic charges called NASA standard initiators (NSIs) on each of eight SRB stud frangible nuts. Two independent ground-based pyrotechnic initiation control (PIC) systems, A and B, are used to receive the command and to distribute the firing signals to each HDP. On STS-112, the system A Fire 1 command was not received by the ground-based PIC system; however, the redundant system B functioned properly and fired all system B NSIs, separated the frangible nuts, and enabled the release of the stud frangible nuts on all posts. As a result, the Shuttle safely separated from the launch platform.

NASA was unable to conclusively isolate the anomaly in any of the failed components. The most probable cause was determined to be an intermittent connection failure at the launch platform-to-Orbiter interface at the tail service mast (TSM) caused by the dynamic vibration environment after main engine start. Several contributing factors were identified, including groundside connector corrosion at the TSM T-0 umbilical, weak connection spring force, potential nonlocked Orbiter connector savers, lack of proper inspections, and a blind (non-visual verified) mate between the ground cable and the Orbiter connector saver.

The STS-112 investigation resulted in the replacement of all T-0 ground cables after every flight, a redesign of the T-0 interface to the PIC rack cable, and replacement of all Orbiter T-0 connector savers. Also, the pyrotechnic connectors will be prescreened with pin retention tests and the connector saver mate process will be verified using videoscopes. The Columbia Accident Investigation Board (CAIB) determined that the prelaunch testing procedures for this system may not be adequate to identify intermittent failure. Therefore, the CAIB suggested that NASA consider a redesign of the system or implement advanced testing for intermittent failures.

NASA IMPLEMENTATION

Five options for redesign of this system were presented to the Orbiter Project Configuration Control Board on August 20, 2003. The recommended redesign configuration provides redundancy directly at the T-0 umbilical, which was determined to be the primary contributing cause of the STS-112 anomaly. The selected option results in the least impact to hardware (fewer connectors, less wiring, less weight added), can be implemented in a reasonably short time period, and requires only limited modifications to existing ground support equipment.

Orbiter and groundside implementations are not affected as they interface at the same T-0 pins.

Kennedy Space Center (KSC) has implemented a number of processing changes to greatly reduce the possibility of another intermittent condition at the TSM. The ground cables from the Orbiter interface to the TSM bulkhead plate are now replaced after each use; reuse after inspection was previously allowed. The ground connector springs that maintain the mating force against the Orbiter T-0 umbilical are all removed and tested to verify the spring constants meet specification between each flight. Cables from the TSM bulkhead plate to the PIC rack were previously inspected for damage, replaced as needed, and thoroughly tested. The Orbiter T-0 connector savers are inspected before each flight and are now secured with safety wire before the launch platform cables are connected. New ground cables are thoroughly inspected before mate to the Orbiter. In addition, the connection process was enhanced to provide a bore scope optical verification of proper mate.
For STS-114 return to flight (RTF), the Space Shuttle Program (SSP) is implementing several design changes and enhancements to further reduce the risk of a similar event. The Orbiter Project is adding redundant command paths for each Arm, Fire 1, Fire 2, and return circuits from the Orbiter through separate connectors on the Orbiter/TSM umbilical. The ground support equipment cables will be modified to extend the signals to the ground PIC rack solid-state switches. This modification adds copper path redundancy through the most dynamic and susceptible environment in the PIC system. Additionally, the KSC Shuttle Processing Project is redesigning and replacing all electrical cables, from the Orbiter T-0 umbilical through the TSMs, to their respective distribution points. The new cables will be factory constructed with a more robust insulation and be better suited for the environment in which they are used. This new cable design also eliminates the old style standard polyimide (“Kapton”) wire insulation that can be damaged by handling and degrades with age.

SSP technical experts have investigated laser-initiated ordnance devices and have concluded that there would be no functional improvement in the ground PIC system operation. Although laser-initiated ordnance has good capabilities, no conclusive benefit for use on the Space Shuttle systems has been identified. Additionally, use of laser-initiated ordnance would have only changed the firing command path from the ground PIC rack to each of the ordnance devices. This would not change or have had any impact on master command path failures experienced during the STS-112 launch, since they would still be electrical copper paths.

NASA has been engaged for more than three years with the joint Department of Defense, NASA, Federal Aviation Agency, and industry aging aircraft wiring community to develop, test, and implement fault-detection methods and equipment to find emerging wire anomalies and intermittent failures before they prevent electrical function. Several tools have been developed and tested for that purpose, but no tool is available with a conclusive ability to guarantee total wire function, especially under dynamic conditions that cannot be tested in place just before use.

STATUS

A cross-strapping cable was not recommended as part of the redesign options because of concerns that it would introduce a single point failure that could inhibit both hold-down post pyrotechnic systems. The recommended redesign, plus the previously identified processing and verification modifications, are considered to be sufficient to mitigate the risks identified during the STS-112 anomaly investigation. Actions are in place to investigate additional methods to verify connector mating and system integrity. Several technical issues associated with the implementation of this redesign are continuing to be evaluated.

Proposed hardware modifications and development activity status include:

- The TSM cable preliminary redesign is complete and has been designated an RTF mandatory modification by the Shuttle Processing Project.
- The Orbiter Project is implementing the T-0 redundancy modification in the Orbiter cable system and T-0 connectors. KSC will modify groundside circuits accordingly.
- The SSP is not currently considering laser pyrotechnic firing for the Shuttle Program but may readdress the issue in the future as the technology matures and the flight vehicle is upgraded.
- NASA is currently supporting two separate strategies to determine wiring integrity. In addition, NASA is engaged with the Department of Defense and the Federal Aviation Agency to encourage further studies and projects.

FORWARD WORK

The evaluation team for laser initiation of pyrotechnics will continue to monitor hardware development for application to Shuttle hardware. The NASA team will continue to engage in development of emerging wire fault detection and fault location tools with the government and industry wiring community. NASA will advocate funding for tool development and implement all new effective methods.

Additionally, a NASA Headquarters (HQ)-sponsored Independent Assessment (IA) Team has been formed to review this anomaly and generically review the T-0 umbilical electrical/data interfaces. While this independent review is not considered a constraint to implementing the redesign, it provides an opportunity to ensure that the original investigation was thorough and to look for additional recommendations or improvements that might be implemented.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP, KSC, USA</td>
<td>Oct 03</td>
<td>Present to SSP Integration Control Board</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP, KSC, USA</td>
<td>Oct 03</td>
<td>Present to SSP Program Requirements Control Board</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP, KSC, USA</td>
<td>Nov 03</td>
<td>Design Review</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP, KSC, USA</td>
<td>Dec 03</td>
<td>Wire Design Engineering</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>HQ IA Team</td>
<td>Dec 03</td>
<td>Independent Assessment Final Report</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>HQ IA Team</td>
<td>Mar 04</td>
<td>Wire Installation Engineering</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>Orbiter Project</td>
<td>Apr 04</td>
<td>Provide redundant firing path in the Orbiter for HDP separation</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Approve new Operational Maintenance Requirements and Specification Documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>requirement for specific ground cable inspections as a condition for mating</td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Report on new technology wire fault detection capability</td>
</tr>
<tr>
<td>Shuttle Integration</td>
<td>Oct 04</td>
<td>Evaluate cross-strapping for simultaneous NSI detonation</td>
</tr>
<tr>
<td>Shuttle Processing</td>
<td>RTF</td>
<td>Modify, install, and certify the ground cabling to protect against damage and</td>
</tr>
<tr>
<td>Project</td>
<td></td>
<td>degradation and to implement a redundant ground electrical path to match Orbiter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>commands</td>
</tr>
</tbody>
</table>
This action also encompasses the action in Recommendation D.a-11, SRB ETA Ring.

BACKGROUND

The External Tank Attach (ETA) rings are located on the Solid Rocket Boosters (SRBs) on the forward end of the aft motor segment (figure O10.10-1-1). The rings provide the aft attach points for the SRBs to the External Tank (ET). Approximately two minutes after liftoff, the SRBs separate from the Shuttle vehicle.

In late 2002, Marshall Space Flight Center (MSFC) engineers were performing tensile tests on ETA ring web material prior to the launch of STS-107 and discovered the ETA ring material strengths were lower than the design requirement. The ring material was from a previously flown and subsequently scrapped ETA ring representative of current flight inventory material. A one-time waiver was granted for the STS-107 launch based on an evaluation of the structural strength factor of safety requirement for the ring of 1.4 and adequate fracture mechanics safe-life at launch. The most probable cause for the low strength material was an off-nominal heat treatment process. Following SRB retrieval, the STS-107 rings were inspected as a normal part of postflight inspection, and no issues were identified with flight performance. Subsequent testing revealed lower than expected fracture properties; as a result, the scope of the initial investigation of low material strength was expanded to include a fracture assessment of the ETA ring hardware.

NASA IMPLEMENTATION

NASA used a nonlinear analysis method to determine whether the rings met Program strength requirements for a factor of safety of 1.4 or greater. The nonlinear analysis method is a well-established technique employed throughout the aerospace industry that addresses the entire material stress-strain response and more accurately represents the material’s ultimate strength capability by allowing load redistribution. Nonlinear analysis demonstrates that all ETA ring hardware meets Program strength requirements.

In addition to strength analysis, a fracture mechanics analysis will be required to determine the minimum mission life for the rings and to define the necessary inspection interval. Fracture testing on the ETA ring hardware will be performed to determine the appropriate properties for mission-life assessment. NASA will continue to use testing, inspection, and analyses of flight hardware to fully characterize the material for each of the ETA rings in the Shuttle Program inventory. This will provide added assurance that the flight hardware meets Shuttle Program requirements and continues to have an adequate margin for safety above the 1.4 factor of safety requirement.

Figure O10.10-1-1. ETA ring location.
STATUS

The SRB Project has developed and verified by test (figure O10.10-1-2) a nonlinear analysis approach for the 1.4 factor of safety assurance. The hardware materials characterization used in this analysis includes ring web thickness measurements and hardness testing (figure O10.10-1-3) of the splice plates and ring webs.

Serial number 15 and 16 ETA rings exhibited undesirable material variability and are being set aside as the initial candidates for upgrade/replacement. Fracture property testing for the splice plates resulted in unacceptable material properties. Replacement splice plates are being fabricated under controlled processes and lot acceptance testing and will be available for the first two flight sets in April 2004. Any other ring hardware that exhibits similarly unacceptable material or high variability in the hardness measurements will also be set aside for upgrade or replacement. Fracture Control Plan requirements compliance will be ensured by performing extensive nondestructive inspections to re-baseline all areas of the ETA ring hardware.

Hardware inspections for the first flight set of ETA rings are complete; there were no reportable problems and all areas of the rings met factor of safety requirements. Final safe life assessment is pending fracture property testing, which is scheduled for completion at the end of April 2004.

FORWARD WORK

A funding request for procurement of new ETA rings has been approved. The first new ring is currently scheduled for delivery in January 2006; however, a tiger team has been formed to find ways to expedite this schedule. Hardware inspections for each of the remaining ETA rings in the Space Shuttle Program inventory will continue until replacement hardware becomes available.
SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRB Project</td>
<td>Feb 04</td>
<td>New ring procurement funding approved</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SRB Project</td>
<td>Jun 04</td>
<td>First flight set ETA rings complete</td>
</tr>
<tr>
<td>SRB Project</td>
<td>Jan 06</td>
<td>Delivery of first new ETA ring</td>
</tr>
</tbody>
</table>

April 26, 2004
BACKGROUND

The *Columbia* Accident Investigation Board (CAIB) review of Shuttle test equipment at NASA and contractor facilities revealed the use of antiquated and obsolete 1970s-era technology such as analog equipment. Current state-of-the-art technology is digital rather than analog. Digital equipment is less costly, easier to maintain, and more reliable and accurate. The CAIB recommended that, with the Shuttle projected to fly through 2020, upgrading the test equipment to digital technology would avoid the high maintenance, lack of parts, and questionable accuracy of the equipment currently in use. Furthermore, although the new equipment would require certification for use, the benefit in accuracy, maintainability, and longevity would likely outweigh the drawbacks of certification costs. Based on the recently announced Vision for Space Exploration, NASA plans to retire the Shuttle following completion of International Space Station assembly, which is planned for the end of the decade.

The Shuttle Program will continue to upgrade test equipment systems to ensure that we maintain the necessary capacity throughout the life of the Shuttle. Decisions on appropriate investments in new test equipment will be made taking into consideration the projected end of Shuttle service life.

NASA IMPLEMENTATION

In 2002, the Space Shuttle Program (SSP) Manager established a Program Logistics Office to provide stronger focus and leadership for long-term sustainability issues such as material, hardware and test equipment obsolescence. In 2002 and 2003, the Program Logistics Office performed comprehensive supportability reviews of all Program elements and supporting contractors to identify near- and long-term issues, with an emphasis on test equipment. The Program Logistics Office developed a health assessment metric to determine the relative health of the equipment and assist in prioritization of projects for funding. Additionally, the Program Logistics Office is refining and formalizing the health assessment process, now called the Shuttle Health Integrated Metric System (SHIMS), which will provide a formal, annual health assessment of all critical equipment, facilities, and hardware required to support the SSP. This health assessment will provide visibility into where equipment upgrades are required. This assessment will also evaluate the relative merit of sustaining and repairing old equipment versus procuring new equipment on a case-by-case basis.

STATUS

In 2003, the logistics board approved $32 million towards equipment modernizations or upgrades, such as the Space Shuttle Main Engine controller special test equipment (STE), the Orbiter inertial measurement unit, and the Star Tracker STE. Additionally, the Program Logistics Office identified and submitted through the Service Life Extension Program (SLEP) an additional requirement for sustainability to support similar test equipment and obsolescence issues. Certification costs and schedules and the associated Program risks are required elements of the total project package reviewed by the logistics board prior to authority to proceed.

FORWARD WORK

The Program Logistics Office will assess all critical Program equipment, through the use of the SHIMS health assessment tool and annual supportability reviews, and will determine where upgrades are needed to support the Program for the remainder of the Space Shuttle’s service life. Identified upgrades will be submitted through the SLEP process to ensure funding of specific projects.

SCHEDULE

- This is an ongoing process. Near-term (<5 year) equipment upgrade requirements are being defined by the Program and validated by the SLEP 2004 Sustainability Panel. Longer-term upgrade needs for the remaining service life of the Program will be identified through the annual SHIMS process. Approximately $17 million in
additional test equipment upgrades identified and approved through last year’s SLEP summit for fiscal year (FY) 2004 start will be implemented.

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Dec 03</td>
<td>Approve FY04 test equipment upgrades</td>
</tr>
<tr>
<td></td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SLEP Sustainability</td>
<td>Feb 04</td>
<td>Define FY05 test equipment upgrades</td>
</tr>
<tr>
<td>Panel</td>
<td>(Completed)</td>
<td></td>
</tr>
<tr>
<td>SSP</td>
<td>May 04</td>
<td>Approve SHIMS process plan documentation</td>
</tr>
<tr>
<td>SSP Development</td>
<td>May 04</td>
<td>Provide final Summit II investment recommendations to the Space Flight Leadership</td>
</tr>
<tr>
<td>Office</td>
<td></td>
<td>Council</td>
</tr>
</tbody>
</table>
BACKGROUND

The NASA Training and Development Division offers a wide curriculum of leadership development programs to the NASA workforce. The content of internally sponsored programs is developed around the NASA leadership model, which delineates six leadership competencies at four different levels. Each level contains distinct core competencies along with a suggested curriculum. The four levels are executive leader, senior leader, manager/supervisor, and influence leader. NASA also develops leadership skills in the workforce by taking advantage of training and development opportunities at the Office of Personnel Management, Federal Executive Institute, Brookings Institute, and the Center for Creative Leadership, among many other resources. In addition, the Agency sponsors leadership development opportunities through academic fellowships in executive leadership and management, as well as through the NASA-wide Leadership Development Program.

Some NASA centers offer locally sponsored leadership development programs for their first-level and/or mid-level managers and supervisors; these programs are unique to the center, rather than being standardized across NASA. Neither the Agency as a whole nor most of the NASA centers have required, structured, basic supervisor/team lead training programs in place.

To enhance career development opportunities for the NASA workforce, the Agency recognizes that development assignments and career coaching should be a part of an employee’s career development. The Agency has begun to address this issue by conducting a mobility study to assess job and development assignments experience across the Agency, developing and offering a formalized program for in-house coaches at each NASA center, and revising criteria for selection into the Senior Executive Service.

NASA IMPLEMENTATION

- The NASA Office of Human Resources has established an Agency team to address the development and implementation of an Agencywide strategy for leadership and management development training. The team is composed of NASA leaders, Agency and center training and development staff, line managers. The team plans to consult with academia to obtain an external perspective. The Agency office is performing benchmarking of other governmental agencies, major corporations, and universities relating to their leadership and management development programs. The office will also review literature on leadership development from organizations such as the American Society of Training and Development and results of previous benchmarking activity conducted by organizations such as the Corporate Leadership Council.

STATUS

- Activities to date include:
 - Collection and preliminary analysis of benchmarking data.
 - An Agencywide meeting held February 23-27, 2004, with the training community and Enterprise representatives to discuss the current leadership and management career development program and to begin to develop a shared vision, roadmap, and strategy for a more consistent and integrated approach.
 - Results from the Agencywide meeting were reviewed by the Management Education Program (MEP 96) class March 8-19, 2004.
FORWARD WORK

Benchmarking will continue, and results will be incorporated into the strategy to be developed by the team. Further, results from the MEP 96 review will be distributed to the team for integration into the strategy. Finally, the strategy will be validated with NASA Senior Leadership.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>HQ/Code FT (Agency Training and Development Division)</td>
<td>Oct 03 (Completed)</td>
<td>Begin Benchmarking Activities</td>
</tr>
<tr>
<td>HQ/Code FT</td>
<td>Oct 03 (Completed)</td>
<td>Begin the staff work to form the Agency team</td>
</tr>
<tr>
<td>HQ/Code FT</td>
<td>Jan 04 (Completed)</td>
<td>Benchmarking data to date compiled</td>
</tr>
<tr>
<td>HQ/Code FT</td>
<td>Apr 04</td>
<td>Draft strategy reviewed/validated by Enterprises/Senior leadership</td>
</tr>
<tr>
<td>HQ/Code FT</td>
<td>May 04</td>
<td>Strategy developed and presented to the NASA Associate Deputy Administrator for Institutions and Asset Management</td>
</tr>
</tbody>
</table>
Volume II, Appendix D.a, also know as the “Deal Appendix,” augments the CAIB Report and its condensed list of recommendations. The Appendix outlines concerns raised by Brigadier General Duane Deal and others that, if addressed, might prevent a future accident. The fourteen recommendations contained in this Appendix expand and emphasize CAIB report discussions of Quality Assurance processes, Orbiter corrosion detection methods, Solid Rocket Booster External Tank Attach Ring factor-of-safety concerns, crew survivability, security concerns relating to the Michoud Assembly Facility, and shipment of Reusable Solid Rocket Motor segments. NASA is addressing each of the recommendations offered in Appendix D.a. Many of the recommendations have been addressed in previous versions of the Space Shuttle RTF Implementation Plan and, therefore, its response to those recommendations refers to the location in the Plan where its previously provided response is found. Although the recommendations are not numbered in Appendix D.a, NASA has assigned a number to each of the fourteen recommendations for tracking purposes.
BACKGROUND

The *Columbia* Accident Investigation Board noted the need for a responsive system for adding or deleting Government Mandatory Inspection Points (GMIPs) and the need for a periodic review of the Quality Planning Requirements Document (QPRD). The Space Shuttle Program, Shuttle Processing Element located at the Kennedy Space Center is responsible for overseeing the QPRD process and implementation of associated GMIPs.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE

This recommendation is addressed in Section 2.1, Space Shuttle Program Action 1, and Section 2.2, Observation 10.4-1, of this Implementation Plan. Implementation of this recommendation has been in work since the issuance of the *Columbia* Accident Investigation Board Report, Volume I. NASA commissioned an assessment team, independent of the Space Shuttle Program, to review the effectiveness of the QPRD, its companion document at the Michoud Assembly Facility, referred to as the Mandatory Inspection Document, and the associated GMIPs. NASA continues work to improve this process through its defined implementation plan and will demonstrate our progress with this and future updates to the Return to Flight Implementation Plan.

Columbia Accident Investigation Board

Volume II, Appendix D.a, Quality Assurance Section, Recommendation D.a-1 Review Quality Planning Requirements Document Process

Perform an independently led, bottom-up review of the Kennedy Space Center Quality Planning Requirements Document to address the entire quality assurance program and its administration. This review should include development of a responsive system to add or delete government mandatory inspections. Suggested Government Mandatory Inspection Point (GMIP) additions should be treated by higher review levels as justifying why they should not be added, versus making the lower levels justify why they should be added. Any GMIPs suggested for removal need concurrence of those in the chain of approval, including responsible engineers.
BACKGROUND

The Columbia Accident Investigation Board noted the need for a responsive system for updating Government Mandatory Inspection Points (GMIPs), including the need for a periodic review of the Quality Planning Requirements Document (QPRD). The Space Shuttle Program’s Shuttle Processing Element, located at the Kennedy Space Center, is responsible for overseeing the QPRD process and implementation of associated GMIPs.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE

This recommendation is addressed in Section 2.2, Observation 10.4-1, of this Implementation Plan. Implementation of the recommendation has been in work since the release of the Columbia Accident Investigation Board Report, Volume I. NASA continues to address this issue through its defined implementation plan and will demonstrate progress with this and future updates to the Return to Flight Implementation Plan.
BACKGROUND

The Columbia Accident Investigation Board (CAIB) noted the need for a statistically valid sampling program to evaluate contractor operations. Kennedy Space Center currently samples contractor operations within the Space Shuttle Main Engine Processing Facility; however, the sample size is not statistically significant and does not represent all processing activities.

Columbia Accident Investigation Board
Volume II, Appendix D.a, Quality Assurance Section, Recommendation D.a-3 Statistically Driven Sampling of Contractor Operations

NASA Safety and Mission Assurance should establish a process inspection program to provide a valid evaluation of contractor daily operations, while in process, using statistically-driven sampling. Inspections should include all aspects of production, including training records, worker certification, etc., as well as Foreign Object Damage prevention. NASA should also add all process inspection findings to its tracking programs.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE

This recommendation is addressed in Section 2.2, CAIB Observation 10.5-3, of this Implementation Plan.

Corrective measures have been in work since the release of the Columbia Accident Investigation Board Report, Volume I. NASA continues to address this issue through its defined implementation plan and will demonstrate progress in this and future updates of Observation 10.5-3.
BACKGROUND

The Columbia Accident Investigation Board expressed concern regarding staffing levels of Quality Assurance Specialists (QAS) at Kennedy Space Center (KSC) and Michoud Assembly Facility. Specifically, they stated that staffing processes must be sufficient to select qualified candidates in a timely manner. Previously, KSC hired three QAS through a step program; none of them had previous experience in quality assurance. The step program was a human resources sponsored effort to provide training and mobility opportunities to administrative staff. Of the three, only one remains a QAS. In addition to hiring qualified candidates, staffing levels should be sufficient to ensure the QAS function involves more than just inspection. Additional functions performed should include hardware surveillance, procedure evaluations, and assisting in audits.

NASA IMPLEMENTATION

NASA currently uses two techniques for selecting and developing qualified QAS. First, NASA can hire a QAS at the GS-7, GS-9, or GS-11 level, if the candidate meets a predetermined list of requirements and level of experience. QAS candidates at all levels require additional training. Candidates selected at lower grades require additional classroom and on-the-job training before being certified as a QAS. NASA also uses a cooperative education program that brings in college students as part of their education process. This program is designed to develop QAS or quality control technicians for NASA and the contractor. The program is an extensive two-year program, including classroom and on-the-job training.

| If at the end of the cooperative education program the student does not demonstrate the required proficiency, NASA will not hire the individual. |

Hiring practices have also improved. NASA can hire temporary or term employees. Although permanent hiring is preferred, this practice provides flexibility for short-term staffing issues. Examples include replacements for QAS military reservists who deploy to active duty and instances when permanent hiring authority is not immediately available.

Several QAS are deploying a hardware surveillance program. This program will define the areas in which hardware surveillance will be performed, the checklist of items to be assessed, the number of hardware inspections required, and the data to be collected.

STATUS

| KSC has addressed the hiring issue. Identified training issues are addressed in Section 2.2, Observation O10.4-3, and a team has been formed to develop, pilot, and deploy a hardware surveillance program. |

FORWARD WORK

<p>| KSC is running a pilot hardware surveillance program in the Orbiter Processing Facility (OPF), the Hypergolic Maintenance Facility, and the Space Shuttle Main Engine Processing Facility. NASA will expand the surveillance program to the remaining facilities as dictated by pilot program results. |</p>
<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Completed</td>
<td>Develop and implement processes for timely hiring of qualified candidates</td>
</tr>
<tr>
<td>KSC</td>
<td>Completed</td>
<td>Develop and implement hardware surveillance program in the OPFs</td>
</tr>
<tr>
<td>KSC</td>
<td>In work</td>
<td>Deploy hardware surveillance program to all QAS facilities</td>
</tr>
<tr>
<td>KSC</td>
<td>In work</td>
<td>Develop reporting metric</td>
</tr>
<tr>
<td>KSC</td>
<td>Apr 04</td>
<td>Develop and implement procedure evaluation</td>
</tr>
</tbody>
</table>
BACKGROUND
The Columbia Accident Investigation Board expressed concern regarding staffing qualifications of Quality Assurance Specialists (QAS) at Kennedy Space Center (KSC). Previously, KSC hired three QAS, none of whom had previous experience in quality assurance, through a step program. Of the three, only one remains as a QAS.

NASA IMPLEMENTATION
NASA currently uses two techniques for selecting and developing qualified QAS. First, NASA can hire a QAS at the GS-7, GS-9, or GS-11 level, if the candidate meets a predetermined list of requirements and level of experience. QAS candidates at all levels require additional training. Candidates selected at lower grades require additional classroom and on-the-job training before being certified as a QAS. NASA also uses a cooperative education program that brings in college students as part of their education process. This program is designed to develop QAS or quality control technicians for NASA and the contractor. The program is an extensive two-year program, including classroom and on-the-job training.

If at the end of the cooperative education program the student does not demonstrate the required proficiency, NASA will not hire the individual.

NASA will benchmark assurance training programs that are implemented by the Department of Defense (DoD) and Defense Contract Management Agency (DCMA). NASA's present goal is to develop a comparable training program for the quality engineers, process analysts, and QAS. The training requirements will be documented in a formal training records template. Additional information on the training plan is found in Section 2.2, Observation O10.4-3.

STATUS
NASA has benchmarked with DoD and DCMA to understand their training requirements and to determine where the Agency can directly use their training. A team consisting of engineers and QAS in both the Shuttle and International Space Station Programs has been formed to develop and document a more robust training program.

The team has evaluated a course on quality assurance skills and a course on visual inspection. The team is gathering its recommendations to improve the overall training program and is expected to present them in April 2004.

FORWARD WORK
KSC will document a comparable training program and update the training templates. Personnel not meeting the new training requirements will be given a reasonable timeframe to complete the training.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSC</td>
<td>Completed</td>
<td>Develop and implement processes for hiring and developing qualified QAS</td>
</tr>
<tr>
<td>KSC</td>
<td>Completed</td>
<td>Benchmark DoD and DCMA training programs (from O10.4-3)</td>
</tr>
<tr>
<td>KSC</td>
<td>Apr 04</td>
<td>Develop and document improved training requirements (from O10.4-3)</td>
</tr>
<tr>
<td>KSC</td>
<td>Jun 04</td>
<td>Complete personnel training (from O10.4-3)</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Volume II, Appendix D.a, Quality Assurance Section, Recommendation D.a-6 Review Mandatory Inspection Document Process

Marshall Space Flight Center should perform an independently-led bottom-up review of the Michoud Quality Planning Requirements Document to address the quality program and its administration. This review should include development of a responsive system to add or delete government mandatory inspections. Suggested Government Mandatory Inspection Point (GMIP) additions should be treated by higher review levels as justifying why they should not be added, versus making the lower levels justify why they should be added. Any GMIPs suggested for removal should need concurrence of those in the chain of approval, including responsible engineers.

BACKGROUND

The *Columbia* Accident Investigation Board noted the need for a responsive system for adding or deleting Government Mandatory Inspection Points (GMIPs), including those at the Michoud Assembly Facility (MAF), and the need for a periodic review of the Quality Planning Requirements Document (QPRD). The Shuttle Propulsion Element at the Marshall Space Flight Center is responsible for overseeing the Mandatory Inspection Document process and implementation of associated GMIPs.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE

This recommendation is addressed in Section 2.1, Space Shuttle Program Action 1, and Section 2.2, Observation 10.4-1, of this Implementation Plan. Efforts to implement this recommendation have been in work since the issuance of the *Columbia* Accident Investigation Board Report, Volume I. NASA commissioned an assessment team, independent of the Space Shuttle Program, to review the effectiveness of the QPRD and its companion document at the MAF, referred to as the Mandatory Inspection Document, and the associated GMIPs. NASA continues efforts to improve this process through its defined implementation plan and will demonstrate its progress with this and future updates to the Return to Flight Implementation Plan.
BACKGROUND
The Columbia Accident Investigation Board noted the need for a responsive system for updating Government Mandatory Inspection Points (GMIPs), including the need for a periodic review of the Quality Planning Requirements Document (QPRD). The Space Shuttle Program, Shuttle Processing Element, located at the Kennedy Space Center is responsible for overseeing the QPRD process and implementation of associated GMIPs.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE
This recommendation is addressed in Section 2.1, Space Shuttle Program Action 1, and Section 2.2, Observation 10.4-1, of this Implementation Plan. Efforts to implement this recommendation have been in work since the issuance of the Columbia Accident Investigation Board Report, Volume I. NASA commissioned an assessment team, independent of the Space Shuttle Program, to review the effectiveness of the QPRD, its companion at the Michoud Assembly Facility, referred to as the Mandatory Inspection Document, and the associated GMIPs. NASA continues efforts to improve this process through its defined implementation plan and will demonstrate progress with this and future updates to the Return to Flight Implementation Plan.
BACKGROUND

The *Columbia* Accident Investigation Board report highlighted Kennedy Space Center’s reliance on the International Organization for Standardization (ISO) 9000/9001 certification. The report stated, “While ISO 9000/9001 expresses strong principles, they are more applicable to manufacturing and repetitive-procedure industries, such as running a major airline, than to a research-and-development, flight test environment like that of the Space Shuttle. Indeed, many perceive International Standardization as emphasizing process over product.” Currently, ISO 9000/9001 certification is a contract requirement for United Space Alliance.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE

This recommendation is addressed in Section 2.2, Observation 10.4-4, of this Implementation Plan. Evaluation of this recommendation has been in work since the release of the *Columbia* Accident Investigation Board Report, Volume I. NASA continues efforts to improve this process through its defined implementation plan and will demonstrate progress with this and future updates to the Return to Flight Implementation Plan.
BACKGROUND
The Space Shuttle Program has initiated an action to assess the Columbia Accident Investigation Board observations related to corrosion damage in the Orbiters. This action has been assigned to the Orbiter Project Office.

NASA IMPLEMENTATION, STATUS, FORWARD WORK, AND SCHEDULE
This recommendation is addressed in Section 2.2, Observations 10.7-1 through 10.7-4, of this Implementation Plan. Evaluation of this recommendation has been in work since the release of the Columbia Accident Investigation Board Report, Volume I. NASA demonstrates progress in the Return to Flight Implementation Plan.

Columbia Accident Investigation Board
Volume II, Appendix D.a, Quality Assurance Section, Recommendation D.a-9 Orbiter Corrosion

Develop non-destructive evaluation inspections to detect and, as necessary, correct hidden corrosion.
This recommendation is addressed in Section 2.2, Observation 10.9-1, of this Implementation Plan.
This recommendation is addressed in Section 2.2, Observation 10.10-1, of this Implementation Plan.
To enhance the likelihood of crew survivability, NASA must evaluate the feasibility of improvements to protect the crew cabin on existing Orbiters.

BACKGROUND

The Columbia Accident Investigation Board (CAIB) found that, in both the Challenger and the Columbia accidents, the crew cabin initially survived the disintegration of the Orbiter intact.

NASA IMPLEMENTATION

Implementation of this recommendation has been in work since the release of the Columbia Accident Investigation Board Report, Volume I. The Space Shuttle Service Life Extension Program II Crew Survivability Sub-panel recognized the need for the Program to continue funding the vehicle forensic analysis and follow-on thermal and structural hardening analysis. This work plays a part not only as resolution to a CAIB Recommendation but also as a component of furthering the technical understanding of the space/atmosphere-aero interface and conveys knowledge capture for future programs.

STATUS

Specific funding and schedule requirements are to be presented for approval and funding at an upcoming Space Shuttle Program Requirements Control Board (PRCB).

FORWARD WORK

It is expected that analysis completion will require 12-18 months and provide vehicle forensic data as well as recommendations for follow-on activity.

SCHEDULE

<table>
<thead>
<tr>
<th>Responsibility</th>
<th>Due Date</th>
<th>Activity/Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSP</td>
<td>Jun 04</td>
<td>PRCB for funding</td>
</tr>
</tbody>
</table>
Columbia Accident Investigation Board

Volume II, Appendix D.a, Quality Assurance Section,
Recommendation D.a-13 RSRM Segment Shipping Security

NASA and ATK Thiokol perform a thorough security assessment of the RSRM segment security, from manufacturing to delivery to Kennedy Space Center, identifying vulnerabilities and identifying remedies for such vulnerabilities.

BACKGROUND

During security program assessments at the ATK Thiokol Reusable Solid Rocket Motor (RSRM) Production Facility, the Columbia Accident Investigation Board raised concerns about several elements of the overall security program. Most notable of these concerns was protection of completed segments prior to rail shipment to the Kennedy Space Center (KSC).

NASA IMPLEMENTATION

- NASA has conducted a full security program vulnerability assessment of the ATK Thiokol RSRM Production Facility, with the goal of identifying and mitigating security vulnerabilities.
- NASA security officials, together with ATK Thiokol Security Program officials, performed an assessment of the RSRM security program from RSRM manufacturing to delivery, inspection, and storage at KSC. The assessment included a review of the ATK Thiokol manufacturing plant to the railhead; participation in the rail shipment activities of RSRM segment(s) to or from KSC; regional and local threats; and rotation, processing, and storage facility security at KSC. Based on this assessment, NASA plans to implement a vulnerability mitigation activity.

STATUS

SCHEDULE

- Security vulnerability mitigation activity is still in the planning stages. Cost and schedule evaluations should be complete by mid May 2004.
BACKGROUND
During security program assessments at the Michoud Assembly Facility (MAF), the Columbia Accident Investigation Board expressed concerns about several elements of the overall security program. Most notable of these concerns is the adequacy of particular security equipment and staffing.

NASA IMPLEMENTATION
| NASA conducted a full security program vulnerability assessment of the MAF and External Tank (ET) production activity, with the goal of identifying and mitigating security vulnerabilities.
| They assessed the MAF and the ET production security programs from ET manufacturing to delivery, inspection, and storage at Kennedy Space Center (KSC). The assessment included a review of the MAF to the shipping port; shipping activities of the ET to and from KSC; regional and local threats; and Vehicle Assembly Building security at KSC. Based on the assessment, NASA plans to implement a vulnerability mitigation activity.

STATUS
| The NASA assessment was conducted from January 26 through January 30, 2004. A comprehensive Report of Findings and a separate Executive Summary, both administratively controlled documents, were prepared by the assessment team and presented to the NASA Office of Security Management and Safeguards, Code X, and to the Marshall Space Flight Center Security Director.

SCHEDULE
| Security vulnerability mitigation activity is in the planning stage. Cost and schedule will be established by April 2004.
Appendix A:
NASA’s Return to Flight Process
BACKGROUND

The planning for return to flight (RTF) began even before the Agency received the first two Columbia Accident Investigation Board (CAIB) preliminary recommendations on April 16, 2003. Informally, activities started in mid-February as the Space Shuttle projects and elements began a systematic fault-tree analysis to determine possible RTF constraints. In a more formal sense, the RTF process had its beginnings in a March 2003 Office of Space Flight (OSF) memorandum.

Mr. William F. Readdy, the Associate Administrator for Space Flight, initiated the Space Shuttle Return to Flight planning process in a letter to Maj. Gen. Michael C. Kostelnik, the Deputy Associate Administrator for International Space Station and Space Shuttle Programs, on March 12, 2003. The letter gave Maj. Gen. Kostelnik the direction and authority “to begin focusing on those activities necessary to expeditiously return the Space Shuttle to flight.”

Maj. Gen. Kostelnik established a Return to Flight Planning Team (RTFPT) under the leadership of veteran astronaut Col. James Halsell. The RTF organization is depicted in figure A-1.

Space Shuttle Program (SSP) Role in Return to Flight

The SSP provided the analyses required to determine the NASA return to flight constraints (RTFCs). SSP project and element fault-tree analyses combined with technical working group documentation and analyses provided the database needed to create a list of potential RTFCs. For example, the SSP’s Orbiter Project organized first as the Orbiter Vehicle Engineering Working Group (OVEWG) to develop fault-tree analyses, and later as the Orbiter Return to Flight Working Group to recommend implementation options for RTFCs. The OVEWG structure and its subgroups are listed in figure A-2.

Once analyses were complete, the working groups briefed the CAIB on their findings and solicited the Space Shuttle Program Requirements Control Board’s (SSPRCB’s) approval of identified corrective actions.

Each SSP project and element formed similar organizations to accomplish thorough fault-tree analysis and closure.

Return to Flight Planning Team

The RTFPT was formed to address those actions needed to comply with formal CAIB recommendations and NASA initiatives (“Raising the Bar”), and to determine the fastest path for a safe RTF. The approximately 30-member team was assembled with representatives from NASA Headquarters and the OSF Field Centers, crossing the Space Shuttle Operations, Flight Crew Operations, and Safety and Mission Assurance disciplines.

Starting in early April 2003, the RTFPT held weekly teleconferences to discuss core team processes and product delivery schedules. Weekly status reports, describing the progress of RTF constraints, were generated for Maj. Gen. Kostelnik and Dr. Michael Greenfield, one of the Space Flight Leadership Council (SFLC) cochairs. These reports were also posted on a
secure Web site for the RTFPT membership and other senior NASA officials to review. The RTFPT often previewed RTF briefing packages being prepared for SSPRCBs. The leader of the RTFPT, Col. Halsell, became a voting member of the SSPRCB for all RTF issues. The RTFPT also arranged for all recommended SSPRCB RTF issues to be scheduled for SFLC review and approval. These RTFPT tasks were primarily assessment, status, and scheduling activities. The team’s most significant contribution has been preparing and maintaining this Implementation Plan, a living document chronicling NASA’s RTF.

As the Implementation Plan has matured and obtained SFLC approval, NASA has transitioned from planning for RTF to implementing the Plan. As intended, the lead role has transitioned from the RTFPT to the Space Shuttle Program, which is now responsible to the SFLC for executing the Plan to successful completion.

Space Flight Leadership Council

Cochaired by the Associate Administrator for Space Flight and the Associate Deputy Administrator for Technical Programs, the purpose of the SFLC (figure A-3) was to receive and disposition the joint RTFPT/SSPRCB recommendations on RTF issues. The SFLC is charged with approving RTF items and directing the implementation of specific corrective actions. The SFLC can also direct independent analysis on technical issues related to RTF issues or schedule (e.g., the category of wiring inspection on Orbiter Vehicle (OV)-103/Discovery). The membership of the SFLC includes the OSF Center Directors (Johnson Space Center, Kennedy Space Center, Marshall Space Flight Center, and Stennis Space Center) and the Associate Administrator for Safety and Mission Assurance. SFLC meetings are scheduled as needed.

Members of the Return to Flight Task Group (RTFTG) are invited to attend the SFLC meetings.

Return to Flight Task Group

Also known as the Stafford-Covey Task Group, the RTFTG was established by the NASA Administrator to perform an independent assessment of NASA’s actions to implement the CAIB recommendations. The RTFTG was chartered from the existing Stafford International Space Station Operations Readiness Task Force (Stafford Task Force), a Task Force under the auspices of the NASA Advisory Council. The RTFTG is comprised of standing members of the Stafford Task Force, other members selected by the cochair, and a nonvoting ex-officio member (the Associate Administrator for Safety and Mission Assurance). The RTFTG is organized into three panels: technical, operations, and management. The team held its first meeting, primarily for administrative and orientation purposes, in early August 2003, and has been meeting periodically since. They issued their first Interim Report in January 2004.

Operational Readiness Review

Before RTF, the SFLC will convene one or more meetings to disposition NASA’s internal handling of all RTF constraints. The first such meeting, a Flight Certification Review, was held at the Marshall Space Flight Center on December 11-12, 2003.
Figure A-4. RTF and RTFTG schedules overlaid with the schedule for release of the CAIB final report.
Appendix B: Return to Flight Task Group
INTRODUCTION

The Return to Flight Task Group, cochaired by Thomas P. Stafford and Richard O. Covey, was formed to address the Shuttle Program’s return to flight effort. The Task Group is chartered to perform an independent assessment of NASA’s actions to implement the Columbia Accident Investigation Board (CAIB), as they relate to the safety and operational readiness of STS-114.

The Stafford/Covey Task Group will report on the progress of NASA’s response to the CAIB report and may also make other observations on safety or operational readiness that it believes appropriate.

The Task Group will formally and publicly report its results to NASA on a continuing basis, and we will fold their recommendations into our formal planning for return to flight. The paragraphs below describe the charter and membership for the Task Group.

RETURN TO FLIGHT TASK GROUP CHARTER

ESTABLISHMENT AND AUTHORITY

The NASA Administrator, having determined that it is in the public interest in connection with performance of the Agency duties under the law, and with the concurrence of the General Services Administration, establishes the NASA Return to Flight Task Group (“Task Group”), pursuant to the Federal Advisory Committee Act (FACA), 5 U.S.C. App. §§1 et seq.

PURPOSE AND DUTIES

1. The Task Group will perform an independent assessment of NASA’s actions to implement the CAIB recommendations as they relate to the safety and operational readiness of STS-114. As necessary to their activities, the Task Group will consult with former members of the CAIB.

2. While the Task Group will not attempt to assess the adequacy of the CAIB recommendations, it will report on the progress of NASA’s response to meet their intent.

3. The Task Group may make other observations on safety or operational readiness as it believes appropriate.

4. The Task Group will draw on the expertise of its members and other sources to provide its assessment to the Administrator. The Task Group will hold meetings and make site visits as necessary to accomplish its fact finding. The Task Group will be provided information on activities of both the Agency and its contractors as needed to perform its advisory functions.

5. The Task Group will function solely as an advisory body and will comply fully with the provisions of the Federal Advisory Committee Act.

ORGANIZATION

The Task Group is authorized to establish panels in areas related to its work. The panels will report their findings and recommendations to the Task Group.

MEMBERSHIP

1. In order to reflect a balance of views, the Task Group will consist of non-NASA employees and one NASA nonvoting, ex-officio member, the Deputy Associate Administrator for Safety and Mission Assurance. In addition, there may be associate members selected for Task Group panels. The Task Group may also request appointment of consultants to support specific tasks. Members of the Task Group and panels will be chosen from among industry, academia, and Government personnel with recognized knowledge and expertise in fields relevant to safety and space flight.

2. The Task Group members and Cochairs will be appointed by the Administrator. At the request of the Task Group, associate members and consultants will be appointed by the Associate Deputy Administrator (Technical Programs).

ADMINISTRATIVE PROVISIONS

1. The Task Group will formally report its results to NASA on a continuing basis at appropriate intervals, and will provide a final written report.

2. The Task Group will meet as often as required to complete its duties and will conduct at least two public meetings. Meetings will be open to the public, except when the General Counsel and the Agency Committee Management Officer determine that the meeting or a portion of it will be closed pursuant to the Government in the Sunshine Act or that the meeting is not covered by the Federal Advisory Committee Act. Panel meetings will be held as required.

3. The Executive Secretary will be appointed by the Administrator and will serve as the Designated Federal Officer.
4. The Office of Space Flight will provide technical and staff support through the Task Force on International Space Station Operational Readiness. The Office of Space Flight will provide operating funds for the Task Group and panels. The estimated operating costs total approximately $2M, including 17.5 work-years for staff support.

5. Members of the Task Group are entitled to be compensated for their services at the rate equivalent to a GS 15, step 10. Members of the Task Group will also be allowed per diem and travel expenses as authorized by 5 U.S.C. § 5701 et seq.

DURATION

The Task Group will terminate two years from the date of this charter, unless terminated earlier or renewed by the NASA Administrator.

STAFFORD-COVEY TASK GROUP MEMBERS

Col. James C. Adamson, U.S. Army (Ret.):
CEO, Monarch Precision, LLC, consulting firm

Col. Adamson, a former astronaut, has an extensive background in aerodynamics as well as business management. He received his Bachelor of Science degree in Engineering from the U.S. Military Academy at West Point and his Master’s degree in Aerospace Engineering from Princeton University. He returned to West Point as an Assistant Professor of Aerodynamics until he was selected to attend the Navy Test Pilot School at Patuxent River, Md. in 1979. In 1981 he became Aerodynamics Officer for the Space Shuttle Operational Flight Test Program at the Johnson Space Center’s Mission Control Center. Col. Adamson became an astronaut in 1984 and flew two missions, the first aboard Columbia (STS-28) and the second aboard Atlantis (STS-43).

After retiring from NASA in 1992, he created his own consulting firm, Monarch Precision, and was then recruited by Lockheed as President/Chief Executive Officer (CEO) of Lockheed Engineering and Sciences Company. In 1995 he helped create United Space Alliance and became their first Chief Operating Officer, where he remained until 1999. In late 1999, Col. Adamson was again recruited to serve as President/CEO of Allied Signal Technical Services Corporation, which later became Honeywell Technology Solutions, Inc. Retiring from Honeywell in 2001, Col. Adamson resumed part-time consulting with his own company, Monarch Precision, LLC. In addition to corporate board positions, he has served as a member of the NASA Advisory Council Task Force on Shuttle-Mir Rendezvous and Docking Missions and is currently a member of the NASA Advisory Council Task Force on International Space Station Operational Readiness.

After graduation in 1955 as an electrical engineer from the United States Naval Academy, Maj. Gen. Anders earned his pilot’s wings in 1956. He received a graduate degree in nuclear engineering from the U.S. Air Force (USAF) Institute of Technology while concurrently graduating with honors in aeronautical engineering from Ohio State University. In 1963 he was selected for the astronaut corps. He was the Lunar Module Pilot of Apollo 8 and backup Command Module Pilot for Apollo 11. Among other successful public and private endeavors, Maj. Gen. Anders has served as a Presidential appointee to the Aeronautics & Space Council, the Atomic Energy Commission, and the Nuclear Regulatory Commission (where he was the first chairman), and as U.S. Ambassador to Norway.

Subsequent to his public service, he joined the General Dynamics Corporation as Chairman and CEO (1990–1993), and was awarded the National Security Industrial Association’s “CEO of the Year” award.

During his distinguished career, Maj. Gen. Anders was the co-holder of several world flight records and has received numerous awards including the USAF, NASA, and Atomic Energy Commission’s Distinguished Service Medals. He is a member of the National Academy of Engineering, the Society of Experimental Test Pilots, and the Experimental Aircraft Association. He is the founder and President of the Heritage Flight Museum.

Dr. Walter Broadnax:

Dr. Broadnax is President of Clark Atlanta University in Atlanta, Ga. Just before coming to Clark, Broadnax was Dean of the School of Public Affairs at American University in Washington. Previously, he was Professor of Public Policy and Management in the School of Public Affairs at the University of Maryland, College Park, Md., where he also directed the Bureau of Governmental Research. Before joining the University of Maryland faculty, Dr. Broadnax served as Deputy Secretary and Chief Operating Officer of the U.S. Department of Health and Human Services; President, Center for Governmental Research, Inc., in Rochester, N.Y.; President, New York State Civil
Service Commission; Lecturer and Director, Innovations in State and Local Government Programs in the Kennedy School of Government at Harvard University; Senior Staff Member, The Brookings Institution; Principal Deputy Assistant Secretary for Planning and Evaluation, U.S. Department of Health, Education and Welfare; Director, Children, Youth and Adult Services, State of Kansas; and Professor, The Federal Executive Institute, Charlottesville, Va.

He is one of America’s leading scholar-practitioners in the field of public policy and management. He has published widely in the field and served in leadership positions in various professional associations: American Political Science Association, American Public Personnel Association, Association of Public Policy and Management, National Association of Schools of Public Affairs and Administration, National Association of State Personnel Executives, and American Society for Public Administration.

Broadnax received his Ph.D. from the Maxwell School at Syracuse University, his B.A. from Washburn University, and his M.P.A. from the University of Kansas. He is a Fellow of the National Academy of Public Administration and a former trustee of the Academy’s Board. In March, he was installed as President of the American Society for Public Administration for 2003–2004. He is a member of the Syracuse University Board of Trustees, Harvard University’s Taubman Center Advisory Board, and United States Comptroller General Advisory Board. He has also served on several corporate and nonprofit boards of directors including the CNA Corporation, Keycorp Bank, Medecision Inc., Rochester General Hospital, Rochester United Way, and the Ford Foundation/Harvard University Innovations in State and Local Government Program, the Maxwell School Advisory Board, and the National Blue Ribbon Commission on Youth Safety and Juvenile Justice Reform in the District of Columbia.

Rear Adm. Walter H. Cantrell, USN (Ret.):

Rear Adm. Cantrell has a long history of successfully solving high-profile, technical issues. He is frequently asked to conduct reviews of complex, politically sensitive programs and to make recommendations for corrective actions.

He graduated from the U.S. Naval Academy in 1958 with a Bachelor of Science degree in Naval Science. He received Master’s degrees in Naval Architecture and Marine and Naval Engineering, and a NavEng (Professional Degree) from the Massachusetts Institute of Technology in 1965. He is a graduate of the Senior Officials in National Security Program, JFK School of Government at Harvard. After an extensive and distinguished naval career, he retired in 1995.

He then joined Global Associates Limited as Executive Director for Technology and Systems. From 1996 to 1997, he was President of the Signal Processing Systems Division. Most recently, from 1997 to 2001, he was Program Director, Land Level Transfer Facility, Bath Iron Works, and was responsible for the design and construction of a $260M state-of-the-art shipbuilding facility. Rear Adm. Cantrell currently serves on NASA’s Aerospace Safety Advisory Panel.

Dr. Kathryn Clark:

Dr. Clark is the Vice President for Education at TIVY, Inc., an exciting game that combines strategy and mathematics in a manner that makes learning fun. Organized competitions for the game have provided a strong motivation for students to improve their skills, resulting in increased standardized math scores. Baseball TIVY has competitions at professional baseball games, with competitors and their parents receiving free tickets to the game. Space TIVY has a National Tournament on Space Day at the National Air and Space Museum the first Thursday in May each year.

Dr. Clark is also consultant in the fields of space, oceans, and education. She consults for the Jean-Michel Cousteau Society, the National Marine Sanctuaries, and the Sea World–Hubbs Institute to enhance the study of oceans and marine wildlife and use the data for education and awareness of the environment of the seas.

She recently completed a job for the Michigan Virtual High School to aid in the development of the Math, Science, and Technology Academy. She worked on the vision and mission of the Academy as well as the development of partners as they increase the scope and reach of the program to a national and international scale. She recently resigned from her job as NASA's Chief Scientist for the Human Exploration and Development of Space Enterprise (HEDS), a position she accepted in August 2000 after completing a 2-year term as NASA's Chief Scientist for the International Space Station Program. On leave from the University of Michigan Medical School, she worked in the Chief Scientist position with scientists from all other areas of NASA to communicate research needs and look for possible collaboration among others.
the science programs at NASA. She also assisted with education and outreach activities related to any human space flight endeavors, including the International Space Station, the Shuttle, any expendable launch vehicles intended to further human endeavors in space, and future missions to the Moon and Mars. Her particular interest is in “Human Factors:” all the elements necessary for the health, safety, and efficiency of crews involved in long-duration space flight. These include training, interfacing with machines and robotics, biological countermeasures for the undesirable physical changes associated with space flight, and the psychological issues that may occur in response to the closed, dangerous environments while traveling in space or living on other planets.

She received both her Master’s and Doctoral degrees from the University of Michigan and then joined the faculty in the Department of Cell and Developmental Biology in 1993. She also served as the Deputy Director of the NASA Commercial Space Center, the Center for Microgravity Automation Technology (CMAT) from 1996 to 1998. CMAT provides imaging technology for use on the International Space Station. The primary commercial focus of that Center is on using high-fidelity imaging technology for science and education.

Dr. Clark’s scientific interests are focused on neuromuscular development and adaptation to altered environments. Her experiments are performed at the tissue level and include immunocytochemistry and in situ hybridization of skeletal muscle and spinal cord grown both in vivo and in vitro. Her experience with NASA began with a neuromuscular development study (NIH.R1) that flew on STS-66 in November 1994. These experiments were repeated and augmented (NIH.R2) on STS-70 in July 1995. She was also involved in the Neurolab project flown on STS-90 in May 1998 and the ladybug experiment that flew on STS-93 with Commander Eileen Collins.

Dr. Clark is the Chair of the Academic Affairs Committee of Board of Control of Michigan Tech University, the Chair of the Board of Visitors of Western Reserve Academy, and serves on the boards of The Space Day Foundation and Orion’s Quest, both education oriented not-for-profit organizations.

She is a past member of the Board of Directors of Women in Aerospace, is an airplane pilot and a member of the 99’s (the International Society of Women Pilots), and is an avid cyclist, swimmer, and cross-country skier. She owns a jazz club in Ann Arbor, Michigan. She is married to Dr. Robert Ike, a rheumatologist at the University of Michigan Medical School.

Mr. Benjamin A. Cosgrove:
Consultant

Mr. Cosgrove has a long and distinguished career as an engineer and manager associated with most of Boeing jet aircraft programs. His extensive background in aerospace stress and structures includes having served as a stress engineer or structural unit chief on the B-47, B-52, KC-135, 707, 727, 737, and 747 jetliners. He was Chief Engineer of the 767.

He was honored by Aviation Week and Space Technology for his role in converting the Boeing 767 transport design from a three-man to a two-man cockpit configuration and received the Ed Wells Technical Management Award for addressing aging aircraft issues. He received the National Aeronautics Association’s prestigious Wright Brothers Memorial Trophy in 1991 for his lifetime contributions to commercial aviation safety and for technical achievement. He is a member of the National Academy of Engineering and a fellow of both the AIAA and England’s Royal Aeronautical Society. Having retired from his position as Senior Vice President of the Boeing Commercial Airplane Group in 1993 after 44 years of service, he is now a consultant. He holds a Bachelor of Science degree in Aeronautical Engineering and received an honorary Doctorate of Engineering degree from the University of Notre Dame in 1993. Mr. Cosgrove is a member of the NASA Advisory Committee’s Task Force on International Space Station Operational Readiness.

Col. Richard O. Covey, U.S. Air Force (Ret.):
Cochair, Return to Flight Task Group
Vice President, Support Operations, Boeing Homeland Security and Services

Col. Covey, a veteran of four Space Shuttle flights, has over 35 years of aerospace experience in both the private and public sectors. He piloted STS-26, the first flight after the Challenger accident, and was commander of STS-61, the acclaimed Endeavour/Hubble Space Telescope first service and repair mission.

Covey is a highly decorated combat pilot and Outstanding Graduate of the Air Force Test Pilot School, holds a Bachelor of Science degree in Engineering Sciences from the U.S. Air Force Academy, and has a Master of Science degree in Aeronautics and Astronautics from Purdue University.
He served as the U.S. Air Force Joint Test Force Director for F-15 electronic warfare systems developmental and production verification testing. During his distinguished 16-year career at NASA, he held key management positions in the Astronaut Office and Flight Crew Operations Directorate at Johnson Space Center (JSC). Covey left NASA and retired from the Air Force in 1994.

In his position at Boeing, his organization provides system engineering, facility/system maintenance and operations, and spacecraft operations and launch support to commercial, Department of Defense, and other U.S. Government space and communication programs throughout the world. Prior to his current position, Covey was Vice President of Boeing’s Houston Operations.

He has been the recipient of numerous awards such as two Department of Defense Distinguished Service Medals, the Department of Defense Superior Service Medal, the Legion of Merit, five Air Force Distinguished Flying Crosses, 16 Air Medals, the Air Force Meritorious Service Medal, the Air Force Commendation Medal, the National Intelligence Medal of Achievement, the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Service Medal, and the Goddard and Collier Trophies for his role on STS-61.

Dan L. Crippen, Ph.D.:
Former Director of the Congressional Budget Office

Dr. Crippen has a strong reputation for objective and insightful analysis. He served, until January 3, 2003, as the fifth Director of the Congressional Budget Office. His public service positions also include Chief Counsel and Economic Policy Adviser to the Senate Majority Leader (1981–1985); Deputy Assistant to the President for Domestic Policy (1987–1988); and Domestic Policy Advisor and Assistant to the President for Domestic Policy (1988–1989), where he advised the President on all issues relating to domestic policy, including the preparation and presentation of the Federal budget. He has provided service to several national commissions, including membership on the National Commission on Financial Institution Reform, Recovery, and Enforcement.

Dr. Crippen has substantial experience in the private sector as well. Before joining the Congressional Budget Office, he was a principal with Washington Counsel, a law and consulting firm. He has also served as Executive Director of the Merrill Lynch International Advisory Council and as a founding partner and Senior Vice President of The Duberstein Group.

He received a Bachelor of Arts degree from the University of South Dakota in 1974, a Master of Arts from Ohio State University in 1976, and a Doctor of Philosophy degree in Public Finance from Ohio State in 1981.

Mr. Joseph W. Cuzzupoli:
Vice President and K-1 Program Manager, Kistler Aerospace Corporation

Mr. Cuzzupoli brings to the Task Group more than 40 years of aerospace engineering and managerial experience. He began his career with General Dynamics as Launch Director (1959–1962), and then became Manager of Manufacturing/Engineering and Director of Test Operations for Rockwell International (1962–1966). Cuzzupoli directed all functions in the building and testing of Apollo 6, Apollo 8, Apollo 9, and Apollo 12 spacecraft as Rockwell’s Assistant Program Manager for the Apollo Program; he later was Vice President of Operations. In 1978, he became the Vice President and Program Manager for the Space Shuttle Orbiter Project and was responsible for 5000 employees in the development of the Shuttle.

He left Rockwell in 1980 and consulted on various aerospace projects for NASA centers until 1991, when he joined American Pacific Corporation as Senior Vice President. In his current position at Kistler Aerospace (Vice President and Program Manager, 1996–present), he has primary responsibility for design and production of the K-1 reusable launch vehicle.

He holds a Bachelor of Science degree in Mechanical Engineering from the Maine Maritime Academy, a Bachelor of Science degree in Electrical Engineering from the University of Connecticut, and a Certificate of Management/Business Administration from the University of Southern California.

He was a member of the NASA Advisory Council’s Task Force on Shuttle-Mir Rendezvous and Docking Missions and is a current member of the NASA Advisory Council’s Task Force on International Space Station Operational Readiness.

Charles C. Daniel, Ph.D.:
Engineering Consultant

Dr. Daniel has over 35 years experience as an engineer and manager in the fields of space flight vehicle design, analysis, integration, and testing; and he has been involved in aerospace programs from Saturn V to the International Space Station. In 1968, he began his career at Marshall
Space Flight Center (MSFC), where he supported Saturn Instrument Unit operations for Apollo 11, 12, and 13. In 1971, he performed avionics integration work for the Skylab Program and spent the next decade developing avionics for the Solid Rocket Boosters (SRBs). He was SRB flight operations lead in that activity.

Dr. Daniel worked as part of the original Space Station Skunk Works for definition of the initial U.S. space station concept and developed the master engineering schedule for the station.

Following the Challenger accident, he led the evaluation of all hazards analyses associated with Shuttle and coordinated acceptance analyses associated with the modifications to the Solid Rocket Motors (SRMs) and SRBs. During Space Station Freedom development, he was the avionics lead and served as MSFC lead for Level II assembly and configuration development. He was part of the initial group to define the concept for Russian participation in the Space Station Rstructure activity and later returned to MSFC as Chief Engineer for Space Station.

He holds a Doctorate degree in Engineering and has completed postgraduate work at the University of California, Berkeley, and MIT. He was a member of the NASA Advisory Council Task Force on Shuttle-Mir Rendezvous and Docking Operations and is a member of the NASA Advisory Council Task Force, ISS Operational Readiness.

Richard Danzig, J.D., Ph.D.:
A Director of National Semiconductor Corporation, Human Genome Sciences, and Saffron Hill Ventures

Dr. Danzig, former Under Secretary of the Navy (1993–1997) and Secretary of the Navy (1998–2001), has vast and varied expertise in law, business, military, and Government operations as well as national service. He is currently a Director of the National Semiconductor Corporation and a Director of Human Genome Sciences. He also serves as a consultant to the Department of Defense (DOD) and other Federal agencies regarding response to terrorism, and is Chairman of the Board of the Center for Strategic and Budgetary Assessment.

Dr. Danzig holds a Doctor of Jurisprudence degree from Yale Law School and Bachelor and Doctor of Philosophy degrees from Oxford University, where he was a Rhodes Scholar. He served as a law clerk for U.S. Supreme Court Justice Byron White. In the 1970s, he was an Associate Professor of Law at Stanford University, a Prize Fellow at Harvard, and a Rockefeller Foundation Fellow. He later served as a Deputy Assistant Secretary of Defense in the Office of the Secretary of Defense and then as the Principal Deputy Assistant Secretary of Defense for Manpower, Reserve Affairs, and Logistics. Between 1981 and 1993, he was a partner in the law firm of Latham and Watkins, co-authored a book on national service, and taught a law class at Georgetown University Law School. He has written a book, Joseph’s Way, on innovation in large organizations, which will be published in 2004.

During his distinguished public career at DOD, Dr. Danzig received the Defense Distinguished Public Service Award (the highest Department of Defense civilian award) three times. He is a member of the NASA Advisory Council.

Amy K. Donahue, Ph.D.:
Assistant Professor of Public Administration at the University of Connecticut Institute of Public Affairs

Dr. Donahue teaches graduate courses in public organizations and management, policy analysis, intergovernmental relations, and research methods. Her research focuses on the productivity of emergency services organizations and on the nature of citizen demand for public safety services. She is author of published work about the design, management, and finance of fire departments and other public agencies. Dr. Donahue serves as a consultant for local governments seeking to improve the structure and management of their fire and emergency services.

Under the Intergovernmental Personnel Act, Dr. Donahue serves as Senior Advisor to the NASA Administrator for Homeland Security. She functions as NASA’s liaison with the Department of Homeland Security and the Homeland Security Council. She also works within NASA to discern opportunities to contribute to homeland security efforts Government-wide, including evaluating existing projects and identifying new opportunities for interagency collaboration targeted at homeland security. She recently spent three months in the field in Texas managing the Columbia recovery operation.

Previously, Dr. Donahue was a senior research associate at the Alan K. Campbell Public Affairs Institute at Syracuse University. She conducted research and analysis in support of the Government Performance Project, a five-year initiative funded by the Pew Charitable Trusts to evaluate comprehensively performance of Federal, state, and local government management systems. She developed conceptual models and evaluation criteria, designed
written survey instruments for administration to governments and agencies, and conducted data analysis.

Dr. Donahue has 20 years of field experience and training in an array of emergency services-related fields, including managing a 911 communications center and working as a firefighter and emergency medical technician in Fairbanks, Ala., and upstate New York.

As an officer in the U.S. Army Medical Service Corps, she spent four years on active duty in the 6th Infantry Division, where her positions included Main Support Battalion Training and Operations Officer, Officer-in-Charge of the division’s Forward Surgical Team, and Chief of Mobilization, Education, Training and Security at Bassett Army Hospital.

She holds a doctor of Philosophy degree in Public Administration and a Master of Public Administration from the Maxwell School of Citizenship and Public Affairs at Syracuse University, and a Bachelor of Arts in Geological and Geophysical Sciences from Princeton University.

She has been honored with the National Association of Schools of Public Affairs and Administration Dissertation Award, the Syracuse University Doctoral Prize, the Jon Ben Snow Graduate Fellowship in Nonprofit Management at Syracuse University, the Arthur F. Buddington Award for Excellence in the Earth Sciences at Princeton University, and several military awards, including the Meritorious Service Medal, three Army Commendation Medals, the Expert Field Medical Badge, Air Assault Badge, and Basic Military Parachutist Badge.

Gen. Ron Fogleman, U.S. Air Force (Ret.):
President and Chief Operating Officer of Durango Aerospace Incorporated

Gen. Fogleman has vast experience in air and space operations, expertise in long-range programming and strategic planning, and extensive training in fighter and mobility aircraft. He served in the Air Force for 34 years, culminating in his appointment as Chief of Staff, until his retirement in 1997. Fogleman has served as a military advisor to the Secretary of Defense, the National Security Council, and the President of the United States.

Among other advisory boards, he is a member of the National Defense Policy Board, the NASA Advisory Council, the Jet Propulsion Laboratory Advisory Board, the Council on Foreign Relations, and the congressionally directed Commission to Assess United States National Security Space Management and Organization. He is chairing a National Research Council Committee on Aeronautics Research and Technology for Vision 2050: An Integrated Transportation System.

Gen. Fogleman received a Master’s Degree in Military History from the U.S. Air Force Academy, a Master’s Degree in Political Science from Duke University, and graduated from the U.S. Army War College. He has been awarded several military decorations including Defense Distinguished Service Medal with two oak leaf clusters, the Air Force Distinguished Service Medal with oak leaf cluster, both the Army and Navy Distinguished Service Medals, Silver Star, Purple Heart. Meritorious Service Medal, and two Distinguished Flying Crosses.

Ms. Christine H. Fox :
Vice President and Director, Operations Evaluation Group, Center for Naval Analyses

Christine H. Fox is Vice President and Director of the Operations Evaluation Group at the Center for Naval Analyses, a federally funded research and development center based in Alexandria, VA. In this role she is responsible for approximately 40 field representatives and 45 Washington-based analysts whose analytical focus is on helping operational commanders execute their missions.

Ms. Fox has spent her career as an analyst, assisting complex organizations like the U.S. Navy assess challenges and define practical solutions. She joined the Center for Naval Analysis in 1981 where she has served in a variety of analyst, leadership, and management positions.

Her assignments at the Center include serving as Team Leader; Operational Policy Team; Director, Anti-air Warfare Department; Program Director, Fleet Tactics and Capabilities; Team Leader of Third Fleet Tactical Analysis Team; Field Representative to Tactical Training Group – Pacific; Project Director, Electronic Warfare Project; Field Representative to Fighter Airborne Early Warning Wing-U.S. Pacific Fleet; and Analyst, Air Warfare Division, Operations Evaluation Group.

Before joining the Center, Ms. Fox served as a member of the Computer Group at the Institute for Defense Analysis in Alexandria, where she participated in planning and analyses of evaluations of tactical air survivability during close air support, and effectiveness of electronic warfare during close air support.
Ms. Fox received a bachelor of science degree in mathematics and a master of science degree in applied mathematics from George Mason University.

Col. Gary S. Geyer, U.S. Air Force (Ret.): Consultant

Col. Geyer has 35 years of experience in space engineering and program management, primarily in senior positions in the Government and industry that emphasize management and system engineering. He has been responsible for all aspects of systems’ success, including schedule, cost, and technical performance.

He served for 26 years with the National Reconnaissance Office (NRO) and was the NRO System Program Office Director for two major programs, which encompassed the design, manufacture, test, launch, and operation of several of our nation’s most important reconnaissance satellites. Col. Geyer received the NRO Pioneer Award 2000 for his contributions as one of 46 pioneers of the NRO responsible for our nation’s information superiority that significantly contributed to the end of the Cold War.

Following his career at the NRO, Col. Geyer was Vice President for a major classified program at Lockheed Martin and responsible for all aspects of program and mission success. His other assignments have included Chief Engineer for another nationally vital classified program and Deputy for Analysis for the Titan IV Program. Col. Geyer is teaching a Space Design course and a System Engineering/Program Management course at New Mexico State University in Las Cruces, N.M. He has a Bachelor of Science degree in Electrical Engineering from Ohio State University, and a Master’s in Electrical Engineering and Aeronautical Engineering from the University of Southern California.

Col. Susan J. Helms, U.S. Air Force

Chief, Space Control Division, Requirements Directorate, Air Force Space Command

Col. Helms graduated from the U.S. Air Force Academy in 1980. She received her commission and was assigned to Eglin Air Force Base, Florida, as an F-16 weapons separation engineer with the Air Force Armament Laboratory. In 1982, she became the lead engineer for F-15 weapons separation. In 1984, she was selected to attend graduate school. She received her degree from Stanford University in 1985 and was assigned as an assistant professor of aeronautics at the U.S. Air Force Academy. In 1987, she attended the Air Force Test Pilot School at Edwards Air Force Base, California. After completing one year of training as a flight test engineer, Col. Helms was assigned as a USAF Exchange Officer to the Aerospace Engineering Test Establishment, Canadian Forces Base, Cold Lake, Alberta, Canada, where she worked as a flight test engineer and project officer on the CF-18 aircraft. She was managing the development of a CF-18 Flight Control System Simulation for the Canadian Forces when selected for the astronaut program. As a flight test engineer, Col. Helms has flown in 30 different types of U.S. and Canadian military aircraft.

Col. Helms is the recipient of the Distinguished Superior Service Medal, the Defense Meritorious Service Medal, the Air Force Meritorious Service Medal, the Air Force Commendation Medal, the NASA Distinguished Service Medal, NASA Space Flight Medals, and the NASA Outstanding Leadership Medal. Named the Air Force Armament Laboratory Junior Engineer of the Year in 1983 and a Distinguished Graduate of the USAF Test Pilot School, she was the recipient of the R.L. Jones Award for Outstanding Flight Test Engineer, Class 88A. In 1990, she received the Aerospace Engineering Test Establishment Commanding Officer’s Commendation, a special award unique to the Canadian Forces.

Mr. Richard Kohrs:

Chief Engineer, Kistler Aerospace Corporation

Richard Kohrs has over 40 years of experience in aerospace systems engineering, stress analysis, and integration. He has held senior management positions in major NASA programs from Apollo to the Space Station.
As a member of the Apollo Spacecraft Program’s Systems Engineering and Integration Office, he developed the Spacecraft Operations Data Book system that documented systems and subsystem performance and was the control database for developing flight rules, crew procedures, and overall performance of the Apollo spacecraft.

After Apollo, he became Manager of System Integration for the Space Shuttle Program; Deputy Manager, Space Shuttle Program; and then Deputy Director of the Space Shuttle Program at JSC. As Deputy Director, he was responsible for the daily engineering, processing, and operations activities of the Shuttle Program, and he developed an extensive background in Shuttle systems integration. In 1989, he became the Director of Space Station Freedom, with overall responsibility for its development and operation.

After years of public service, he left NASA to become the Director of the ANSER Center for International Aerospace Cooperation (1994–1997). Mr. Kohrs joined Kistler Aerospace in 1997 as Chief Engineer. His primary responsibilities include vehicle integration, design specifications, design data books, interface control, vehicle weight, performance, and engineering review board matters. He received a Bachelor of Science degree from Washington University, St. Louis, in 1956.

Susan Morrisey Livingstone:

Ms. Livingstone has served her nation for more than 30 years in both government and civic roles. From July 2001 to February 2003, Ms. Livingstone served as Under Secretary of the Navy, the second highest civilian leadership position in the Department of the Navy. As “COO” to the Secretary of the Navy, she had a broad executive management portfolio (e.g., programming, planning, budgeting, business processes, organizational alignment), but also focused on Naval space, information technology and intelligence/compartmented programs; integration of Navy-Marine Corps capabilities; audit, IG and criminal investigative programs; and civilian personnel programs.

Currently, Ms. Livingstone is a policy and management consultant and also serves as a member of the National Security Studies Board of Advisors (Maxwell School, Syracuse University) and on the Board of Directors of The Atlantic Council and the Procurement Round Table; and is a member of NASA’s Space Shuttle Return to Flight Task Group, an independent advisory group charged with assessing NASA’s implementation of the return to flight recommendations in the Columbia Accident Investigation Report.

Before serving as Under Secretary of the Navy, Ms. Livingstone was CEO of the Association of the United States Army (AUSA) and deputy chair of its Council of Trustees. She also served as a vice president and board member of the Procurement Round Table, and as a consultant and panel chair to the Defense Science Board (on logistics transformation).

From 1993 to 1998, Ms. Livingstone served the American Red Cross HQ as Vice President of Health and Safety Services, Acting Senior Vice President for Chapter Services and as a consultant for Armed Forces Emergency Services.

As Assistant Secretary of the Army for Installations, Logistics and Environment from 1989 to 1993, Ms. Livingstone was responsible for a wide range of programs including military construction, installation management, Army logistics programs, base realignment and closures, energy and environmental issues, domestic disaster relief, and restoration of public infrastructure to the people of Kuwait following operation Desert Storm. She also was decision and acquisition management authority for the DoD chemical warfare materiel destruction program.

From 1981 to 1989, Ms. Livingstone served at the Veterans Administration, now the Department of Veterans Affairs, in a number of positions including Associate Deputy Administrator for Logistics and Associate Deputy Administrator for Management. During this time, she served as the VA’s Senior Acquisition Official and also directed and managed the nation’s largest medical construction program at the time. Before her Executive Branch service, Ms. Livingstone worked for more than nine years in the Legislative branch on the personal staffs of both a Senator and two Congressmen.

Ms. Livingstone graduated from the College of William and Mary in 1968 with an A.B. degree and completed an M.A. in political science at the University of Montana in 1972. She also spent two years in postgraduate studies at Tufts University and the Fletcher School of Law and Diplomacy.

Ms. Livingstone has received numerous awards for her community and national service, including the highest civilian awards from the National Reconnaissance Office, the VA, and the Departments of the Army and Navy. Ms. Livingstone also is a recipient of the Secretary of Defense Award for Outstanding Public Service.
Mr. James D. Lloyd:

Deputy Associate Administrator for Safety and Mission Assurance, NASA

Ex-Officio Member

Mr. Lloyd has extensive experience in safety engineering and risk management, and has supported a number of Blue Ribbon panels relating to mishaps and safety problems throughout his career. He began his career after an intern training period as a system safety engineer with the U.S. Army Aviation Systems Command in St. Louis.

He transferred to its parent headquarters, the Army Materiel Command (AMC) in 1973 and, after serving several safety engineering roles, was appointed as the Chief of the Program Evaluation Division in the Command’s Safety Office, where he assured the adequacy of safety programs for AMC organizations.

In 1979, he continued his career as a civilian engineer with the AMC Field Safety Activity in Charlestown, IN, where he directed worldwide safety engineering, evaluation, and training support. In 1987, a year after the Shuttle Challenger disaster, Mr. Lloyd transferred from the U.S. Army to NASA to help the Agency rebuild its safety mission assurance program. He was instrumental in fulfilling several of the recommendations issued by the Rogers’ Commission, which investigated the Challenger mishap. After the Shuttle returned to flight with the mission of STS-26, Mr. Lloyd moved to the Space Station Freedom Program Office in Reston, Va., where he served in various roles culminating in being appointed as the Program’s Product Assurance Manager.

In 1993, he became Director, Safety and Risk Management Division in the Office of Safety and Mission Assurance, serving as NASA’s “Safety Director” and was appointed to his present position in early 2003. He serves also as an ex-officio member of the NASA Advisory Council Task Force on ISS Operational Readiness. Lloyd holds a Bachelor of Science degree in Mechanical Engineering, with honors, from Union College, Schenectady, N.Y., and a Master of Engineering degree in Industrial Engineering from Texas A&M University, College Station.

Vice Chairman of the Aerospace Safety Advisory Panel

During Lt. Gen. McCartney’s distinguished Air Force career, he held the position of program director for several major satellite programs, was Commander of the Ballistic Missile Organization (responsible for Minuteman and Peacekeeper development), Commander of Air Force Space Division, and Vice Commander, Air Force Space Command.

His military decorations and awards include the Distinguished Service Medal, Legion of Merit with one oak leaf cluster, Meritorious Service Medal, and Air Force Commendation Medal with three oak leaf clusters. He was recipient of the General Thomas D. White Space Trophy in 1984 and the 1987 Military Astronautical Trophy.

Following the Challenger accident, in late 1986 Lt. Gen. McCartney was assigned by the Air Force to NASA and served as the Director of Kennedy Space Center until 1992. He received numerous awards, including NASA’s Distinguished Service Medal and Presidential Rank Award, the National Space Club Goddard Memorial Trophy, and AIAA Von Braun Award for Excellence in Space Program Management.

After 40 years of military and civil service, he became a consultant to industry, specializing in the evaluation of hardware failure/flight readiness. In 1994, he joined Lockheed Martin as the Astronautics Vice President for Launch Operations. He retired from Lockheed Martin in 2001 and is currently the Vice Chairman of the NASA Aerospace Safety Advisory Panel.

Lt. Gen. McCartney has a Bachelor’s degree in Electrical Engineering from Auburn University, a Master’s degree in Nuclear Engineering from the Air Force Institute of Technology, and an honorary doctorate from the Florida Institute of Technology.

Rosemary O’Leary J.D., Ph.D.:

Dr. Rosemary O’Leary is professor of public administration and political science, and coordinator of the Ph.D. program in Public Administration at the Maxwell School of Citizenship and Public Affairs at Syracuse University. An elected member of the U.S. National Academy of Public Administration, she was recently a senior Fulbright scholar in Malaysia. Previously Dr. O’Leary was Professor of Public and Environmental Affairs at Indiana University and cofounder and codirector of the Indiana Conflict Resolution Institute. She has served as the Director of Policy and Planning for a state environmental agency and has worked as an environmental attorney.

Dr. O’Leary teaches graduate courses in Public Organizations and Management, concentrating on organization change, organization culture, and the management of scientific and technical organizations.
She was a consultant to the U.S. Department of the Interior, the U.S. Environmental Protection Agency, the Indiana Department of Environmental Management, the International City/County Management Association, the National Science Foundation, and the National Academy of Sciences.

Dr. O’Leary is the author or editor of five books and more than 75 articles on public management. She has won seven national research awards, including Best Book in Public and Nonprofit Management for 2000 (given by the Academy of Management), Best Book in Environmental Management and Policy for 1999 (given by the American Society for Public Administration), and the Mosher Award, which she won twice, for best article by an academician published in Public Administration Review.

Dr. O’Leary was recently awarded the Syracuse University Chancellor’s Citation for Exceptional Academic Achievement, the highest research award at the university. She has won eight teaching awards as well, including the national Excellence in Teaching Award given by the National Association of Schools of Public Affairs and Administration, and she was the recipient of the Distinguished Service Award given by the American Society for Public Administration’s Section on Environment and Natural Resources Administration. O’Leary has served as national chair of the Public Administration Section of the American Political Science Association, and as the national chair of the Section on Environment and Natural Resources Administration of the American Society for Public Administration.

Mr. Sy Rubenstein:
Aerospace Consultant

Mr. Rubenstein was a major contributor to the design, development, and operation of the Space Shuttle and has been involved in commercial and Government projects for more than 35 years. As an employee of Rockwell International, the prime contractor for the Shuttle, he was the Director of System Engineering, Chief Engineer, Program Manager, and Division President during 20 years of space programs.

He has received the NASA Public Service Medal, the NASA Medal for Exceptional Engineering, and the AIAA Space Systems Award for his contributions to human spacecraft development. Mr. Rubenstein, a leader, innovator, and problem solver, is a fellow of the AIAA and the AAS.

Mr. Robert Sieck:
Aerospace Consultant

Mr. Sieck, the former Director of Shuttle Processing at the Kennedy Space Center (KSC), has an extensive background in Shuttle systems, testing, launch, landing, and processing. He joined NASA in 1964 as a Gemini Spacecraft Systems engineer and then served as an Apollo Spacecraft test team project engineer. He later became the Shuttle Orbiter test team project engineer, and in 1976 was named the Engineering Manager for the Shuttle Approach and Landing Tests at Dryden Flight Research Facility in California. He was the Chief Shuttle Project Engineer for STS-1 through STS-7, and became the first KSC Shuttle Flow Director in 1983. He was appointed Director, Launch and Landing Operations, in 1984, where he served as Shuttle Launch Director for 11 missions.

He served as Deputy Director of Shuttle Operations from 1992 until January 1995 and was responsible for assisting with the management and technical direction of the Shuttle Program at KSC. He also retained his position as Shuttle Launch Director, a responsibility he had held from February 1984 through August 1985, and then from December 1986 to January 1995. He was Launch Director for STS-26R and all subsequent Shuttle missions through STS-63. Mr. Sieck served as Launch Director for 52 Space Shuttle launches.

He earned his Bachelor of Science degree in Electrical Engineering at the University of Virginia in 1960 and
obtained additional postgraduate credits in mathematics, physics, meteorology, and management at both Texas A&M and the Florida Institute of Technology. He has received numerous NASA and industry commendations, including the NASA Exceptional Service Medal and the NASA Distinguished Service Medal. Mr. Sieck joined the Aerospace Safety Advisory Panel as a consultant in March 1999.

Lt. Gen. Thomas Stafford, U.S. Air Force (Ret.):

Cochair, Return to Flight Task Group

President, Stafford, Burke and Hecker Inc., technical consulting

Lt. Gen. Stafford, an honors graduate of the U.S. Naval Academy, joined the space program in 1962 and flew four missions during the Gemini and Apollo programs. He piloted Gemini 6 and Gemini 9, and traveled to the Moon as Commander of Apollo 10. He was assigned as head of the astronaut group in June 1969, responsible for the selection of flight crews for projects Apollo and Skylab.

In 1971, Lt. Gen. Stafford was assigned as Deputy Director of Flight Crew Operations at the NASA Manned Spacecraft Center. His last mission, the Apollo-Soyuz Test Project in 1975, achieved the first rendezvous between American and Soviet spacecrafts.

Lt. Gen. Stafford has served as Defense Advisor to former President Ronald Reagan; and headed The Synthesis Group, which was tasked with plotting the U.S. return to the Moon and eventual journey to Mars.

Throughout his careers in the Air Force and NASA space program, he has received many awards and medals including the Congressional Space Medal of Honor in 1993. He served on the National Research Council’s Aeronautics and Space Engineering Board, the Committee on NASA Scientific and Technological Program Reviews, and the Space Policy Advisory Council.

He was Chairman of the NASA Advisory Council Task Force on Shuttle-Mir Rendezvous and Docking Missions. He is currently the Chairman of the NASA Advisory Council Task Force on International Space Station Operational Readiness.

Mr. Tom Tate:

Mr. Tate was vice president of legislative affairs for the Aerospace Industries Association (AIA), the trade association representing the nation’s manufacturers of commercial, military, and business aircraft, helicopters, aircraft engines, missiles, spacecraft, and related components and equipment. Joining AIA in 1988, Tate directs the activities of the association’s Office of Legislative Affairs, which monitors policy issues affecting the industry and prepares testimony that communicates the industry’s viewpoint to Congress.

Before joining AIA, Tate served on the staff of the House of Representative’s Committee on Science and Technology for 14 years. Joining the staff in 1973 as a technical consultant and counsel to the House Subcommittee on Space Science and Applications, he was appointed deputy staff director of the House Subcommittee on Energy Research and Development in 1976. In 1978, Tate returned to the space subcommittee as chief counsel; and in 1981, he became special assistant to the chairman of the committee until joining AIA.

Mr. Tate worked for the Space Division of Rockwell International in Downey, Calif., from 1962 to 1973 in various engineering and marketing capacities and was director of space operations when he departed the company in 1973. He worked on numerous programs, including the Gemini Paraglider, Apollo, Apollo/Soyuz, and Shuttle Programs.

Mr. Tate worked for RCA’s Missile and Surface Radar Division in Moorestown, N.J. from 1958 to 1962 in the project office of the Ballistic Missile Early Warning System (BMEWS) being built for the USAF. From 1957 to 1958, Tate served in the Army as an artillery and guided missile officer at Fort Bliss, Texas.

He received a Bachelor’s degree in marketing from the University of Scranton in 1956 and a law degree from Western State University College of Law in Fullerton, Calif., in 1970. In his final year of law school, his fellow students awarded him the Gold Book Award as the most outstanding student. In 1991, he received the Frank J. O’Hara award for distinguished alumni in science and technology from the University of Scranton.
Mr. Tate is a member of numerous aerospace and defense associations including the AIAA, the National Space Club, and the National Space Institute, where he serves as an advisor. He also served as a permanent civilian member of the NASA Senior Executive Service Salary and Performance Review Board.

Dr. Kathryn C. Thornton:
Faculty, University of Virginia

After eleven years with NASA, Dr. Thornton left NASA on August 1, 1996, to join the faculty of the University of Virginia. Selected by NASA in May 1984, Dr. Thornton became an astronaut in July 1985. Her technical assignments have included conducting flight software verification in the Shuttle Avionics Integration Laboratory (SAIL), serving as a team member of the Vehicle Integration Test Team (VITT) at KSC, and serving as a spacecraft communicator (CAPCOM). A veteran of three space flights, Dr. Thornton flew on STS-33 in 1989, STS-49 in 1992, and STS-61 in 1993. She has logged over 975 hours in space, including more than 21 hours of extravehicular activity (EVA).

After earning her Ph.D. at the University of Virginia in 1979, Dr. Thornton was awarded a NATO Postdoctoral Fellowship to continue her research at the Max Planck Institute for Nuclear Physics in Heidelberg, West Germany. In 1980, she returned to Charlottesville, Virginia, where she was employed as a physicist at the U. S. Army Foreign Science and Technology Center.

Mr. William Wegner:
Consultant

Mr. Wegner graduated from the U.S. Naval Academy in 1948. He subsequently received Masters’ degrees in Naval Architecture and Marine Engineering from Webb Institute in New York. In 1956 he was selected by Adm. Hyman Rickover to join the Navy’s nuclear program and was sent to the Massachusetts Institute of Technology, where he received his Master’s degree in Nuclear Engineering. After serving in a number of field positions, including that of Nuclear Power Superintendent at the Puget Sound Naval Shipyard, he returned to Washington. He served as deputy director to Adm. Rickover in the Naval Nuclear Program for 16 years and was awarded the DOD Distinguished Service Award and the Atomic Energy Commission’s distinguished service award.

In 1979, he retired from Government service, and formed Basic Energy Technology Associates with three fellow naval retirees. During its 10 successful years of operation, it provided technical services to over 25 nuclear utilities and other nuclear-related activities. Wegner has served on a number of panels including the National Academy of Sciences that studied the safety of Department of Energy nuclear reactors. From 1989 to 1992, he provided technical assistance to the Secretary of Energy on nuclear-related matters. He has provided technical services to over 50 nuclear facilities. Mr. Wegner served as a Director of the Board of Directors of Detroit Edison from 1990 until retiring in 1999.

Lt. Col. David Lengyel:
Executive Secretary, Return to Flight Task Group

Since February 2003, Lt. Col. Lengyel has served on the administrative staff of the Columbia Accident Investigation Board (CAIB). Prior to this, he was Executive Director of the Aerospace Safety Advisory Panel for almost two years.

From 1999 through 2000, he served a tour of duty as the Manager of the Moscow Technical Liaison Office (MTLO) for the International Space Station (ISS) Program in Russia. The MTLO interfaces with Russian contractors and space agency personnel to monitor and track the progress of Russian segment elements and Soyuz/Progress vehicles, as well as to provide technical liaison between U.S. and Russian engineering/mission integration personnel.

Lt. Col. Lengyel joined NASA in October 1993 as the third Executive Officer to Administrator Daniel S. Goldin. He served in several program operations and payloads capacities within the ISS and Shuttle-Mir Programs at JSC from 1994 to 1998. He led an analytical assessment of Shuttle-Mir lessons learned for application to the ISS.

Prior to joining NASA, he was a senior aircrew-training instructor for McDonnell-Douglas in St. Louis. He conducted pilot training for the FA-18 Hornet and F-15 Eagle for both foreign and domestic customers.

He is a Lieutenant Colonel in the Marine Corps Reserves and has accumulated over 2000 hours flight time in the F-4S Phantom II, OV-10 Bronco, and FA-18 Hornet.

Lt. Col. Lengyel holds a Bachelor of Science degree from the U.S. Naval Academy, a Master of Business Administration from the University of Missouri, and a Master of Arts in International Affairs from Washington University in St. Louis.